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Preface

The	 society	 we	 live	 in	 today	 relies	 on	 and	 is	 built	 upon	 our	 ability	 to	 almost	 instantly
communicate	and	share	 information	at	virtually	any	 location.	 In	 the	past	10	 to	15	years,	we
have	witnessed	unprecedented	advances	in	the	areas	of	computer	and	information	technology,
health	 care,	 biotechnology,	 environmental	 sciences	 and	 engineering,	 and	 clean	 energy
technologies	such	as	solar	and	wind	power.	All	of	these	disciplines,	as	well	as	the	challenges
they	face	and	the	opportunities	they	create,	are	interrelated	and	depend	on	our	ability	to	send,
store,	and	convert	information	and	energy.

The	 amount	 of	 information	 that	 we	 exchange	 using	 the	 Internet,	 computers,	 and	 other
personal	 communication	 devices	 such	 as	 smart	 phones,	 laptops,	 high-definition	 televisions,
fitness	and	activity	trackers,	electronic	book	readers,	global	positioning	systems,	autonomous
cars,	 and	 other	 technologies	 continues	 to	 increase	 very	 rapidly.	 At	 the	 very	 core	 of	 these
technologies	 lie	very	 important	devices	made	using	a	number	of	materials	 that	have	unique
electronic,	magnetic,	and	optical	properties.	Thus,	in	this	age	of	information	technology,	any
scientist	 or	 engineer	 must	 have	 some	 knowledge	 of	 the	 basic	 science	 and	 engineering
concepts	 that	 enable	 these	 technologies.	 This	 is	 especially	 important	 as	 we	 move	 to
technologies	that	cut	across	many	different	disciplinary	boundaries.

A	 good	 portion	 of	 information-related	 technologies	 developed	 to	 date	 can	 be	 traced	 to
microelectronic	devices	based	on	silicon.	Of	course,	information	storage	and	processing	has
also	been	supported	by	the	availability	of	magnetic	materials	for	data	storage,	optical	fibers
based	on	ultrahigh-purity	silica,	and	advances	in	sensors	and	detectors.	However,	silicon	has
been	at	 the	 core	of	microelectronics-related	 technologies	 and	has	 served	us	 extremely	well
for	almost	70	years	since	the	invention	of	the	transistor	on	December	16,	1947.	There	is	no
doubt	that	silicon-based	microelectronic	devices	that	enable	the	fabrication	of	computer	chips
from	integrated	circuits	will	continue	to	serve	us	well	for	many	more	years	to	come.

The	first	 transistor,	which	was	based	on	germanium,	used	a	bulky	crystal.	Now,	 in	2017,
state-of-the-art	 transistors	 are	made	 at	 a	 length	 scale	 of	 14	 nm.	 Both	 the	 size	 and	 the	 cost
associated	 with	 the	 manufacturing	 of	 the	 transistors	 have	 decreased	 significantly.	 The	 size
reduction	 has	 followed	 the	 famous	Moore’s	 law,	which	 predicted	 that	 the	 number	 of	 chip-
based	transistors	would	double	every	two	years	(Moore	1965).	This	has	stayed	true	for	nearly
50	years.

We	 are	 now	 at	 a	 point	 where	 we	 are	 starting	 to	 explore	 technologies	 such	 as	 quantum
computing	 that	 take	 us	 into	 regimes	 that	 span	 well	 beyond	 Moore’s	 law.	 This	 means	 that
simply	scaling	down	the	currently	dominant	Si	transistors	and	devices	would	no	longer	meet
the	need.	There	are	opportunities	to	create	novel	electronic,	optical,	and	magnetic	devices	that
can	compete	with	or	enhance	silicon-based	electronics.

Similarly,	 new	 materials	 other	 than	 silicon,	 for	 example,	 carbon	 nanotubes	 (CNT),
graphene,	 silicon	 carbide,	 and	 gallium	 nitride,	 are	 also	 emerging!	 With	 the	 advent	 of
nanowires,	quantum	dots,	and	so	on,	the	distinction	between	a	“device”	and	a	“material”	has
been	steadily	fading	away.	Technologies	such	as	those	related	to	flexible	electronics,	organic
electronics,	photovoltaics,	fuel	cells,	biomedical	implantable	devices,	tissue	engineering,	and



new	 sensors	 and	 actuators	 are	 evolving	 rapidly.	Many	of	 these	 technological	 developments
have	 brought	 the	 fields	 of	 electrical	 engineering,	 materials	 science,	 physics,	 chemistry,
biomedical	 engineering,	 chemical	 engineering,	 and	mechanical	 engineering	closer	 together
—perhaps	more	than	ever	before.

The	 increased	 interdisciplinarity	 and	 interdependencies	 of	 technologies	 mean	 that
engineers	 and	 scientists	 whose	 primary	 training	 or	 specialization	 is	 in	 one	 discipline	 can
benefit	 tremendously	by	 learning	 some	of	 the	 fundamental	 aspects	of	other	disciplines.	For
example,	 it	would	 be	 useful	 for	 an	 electrical	 engineering	 student	 to	 not	 only	 be	 trained	 in
silicon	 semiconductor	 processing	 but	 also	 to	 gain	 some	 insights	 into	 other	 new	materials,
devices,	 and	 functionalities	 that	 will	 likely	 be	 integrated	 with	 traditional	 silicon-based
microelectronics.	 In	 some	 applications,	 hybrid	 approaches	 can	 be	 developed	 in	 which
semiconductors	such	as	silicon	are	integrated	with	gallium	arsenide	and	other	materials	such
as	CNT	and	graphene.

The	primary	motivation	 for	 this	book	stems	 from	 the	need	 for	an	 introductory	 textbook
that	 captures	 the	 fundamentals	 as	 well	 as	 the	 applications	 of	 the	 electronic,	 magnetic,	 and
optical	 properties	 of	 materials.	 The	 subject	 matter	 has	 grown	 significantly	 more
interdisciplinary	and	is	of	interest	to	many	different	academic	disciplines.

There	 are	 several	 undergraduate	 engineering	 and	 science	 textbooks	 devoted	 to	 specific
topics	 such	 as	 electromagnetics,	 semiconductors,	 optoelectronics,	 fiber	 optics,
microelectronic	 circuit	 design,	 photovoltaics,	 superconductors,	 electronic	 ceramics,	 and
magnetic	materials.	However,	most	of	these	books	are	geared	toward	specialists.	We	were	not
able	to	find	a	single	introductory	textbook	that	takes	an	interdisciplinary	approach	that	is	not
only	critical	but	also	of	interest	to	students	from	various	disciplines.	This	book	is	an	attempt
to	fill	 this	gap,	which	is	important	to	so	many	disciplines	but	not	adequately	covered	in	any
one	of	them.

We	have	written	this	book	for	typical	junior	(third-year)	or	senior	(fourth-year)	students	of
science,	 such	 as	 physics	 and	 chemistry,	 or	 engineering,	 such	 as	 materials	 science	 and
electrical,	 chemical,	 and	 mechanical	 engineering,	 and	 we	 have	 used	 an	 interdisciplinary
approach.	The	book	is	also	appropriate	for	graduate	students	from	different	disciplines	and
for	 those	 who	 do	 not	 have	 a	 significant	 background	 in	 solid-state	 physics,	 electrical
engineering,	materials	science	and	engineering,	or	related	disciplines.	This	book	builds	upon
our	 almost	 25	 years	 of	 combined	 experience	 in	 teaching	 an	 introductory	 undergraduate
course	 on	 electrical,	magnetic,	 and	 optical	 properties	 of	materials	 to	 both	 engineering	 and
engineering	physics	students.

We	 faced	 three	major	 challenges.	 First,	we	 had	 to	 select	 a	 few	 topics	 that	 are	 of	 central
importance,	 in	my	opinion,	 to	engineers	and	scientists	 interested	 in	 the	electrical,	magnetic,
and	 optical	 properties	 of	 materials.	 This	 means	 that	 many	 other	 important	 topics	 are	 not
addressed	 in	detail	 or	 are	 left	 out	 altogether.	For	 example,	 topics	 such	 as	 high-temperature
superconductors	and	ionic	conductors	are	not	discussed	in	detail,	and	some	are	not	discussed
at	all.	We	also	have	not	discussed	some	of	the	newest	and	“hottest”	topics	such	as	graphene	or
CNT-based	 devices	 and	 spintronics	 in	 detail	 in	 order	 to	 maintain	 this	 as	 an	 introductory
textbook.	Interested	instructors	may	develop	some	of	the	topics	not	covered	here	as	needed,
since	the	book	covers	the	fundamental	framework	very	well.



The	second	challenge	was	maintaining	a	 relative	balance	between	 the	 fundamentals	 (with
respect	to	the	underlying	physics-related	concepts)	and	the	technological	aspects	 (production
of	 devices,	manufacturing,	materials	 processing,	 etc.).	 The	 approach	we	 have	 adopted	 here
was	 to	 provide	 as	 many	 real-world	 and	 interesting	 technological	 examples	 as	 possible
whenever	 there	 was	 an	 opportunity	 to	 do	 so.	 For	 example,	 while	 discussing	 piezoelectric
materials,	we	provide	many	examples	of	technologies	such	as	smart	materials	and	ultrasound
imaging.	 We	 have	 found	 that	 the	 inclusion	 of	 examples	 of	 real-world	 technologies	 helps
maintain	a	high	level	of	interest	as	students	relate	to	the	topics	easily	(e.g.,	how	is	a	Blu-ray
disc	different	from	a	DVD?).	Students	also	tend	to	retain	what	they	have	learned	for	a	longer
period	when	these	real-world	connections	are	made.

The	third	challenge	was	to	determine	the	level	at	which	different	topics	are	to	be	covered.
For	example,	electrical	engineering	students	who	have	some	exposure	to	circuits	may	find	the
device-related	 problems	 to	 be	 rather	 simple,	 such	 as	 calculating	 limiting	 resistance	 for	 a
light-emitting	diode	(LED).	However,	this	may	not	be	the	case	for	many	other	students	from
other	disciplines.	Similarly,	students	who	have	had	a	class	 in	 introductory	materials	science
may	 find	 some	 of	 the	 concepts	 related	 to	 materials	 synthesis,	 processing,	 and	 structure–
property	 relationships	 to	 be	 somewhat	 straightforward.	However,	many	 other	 students	may
not	have	such	a	background	and	may	be	confused	by	the	terminology	used.	We	have	therefore
maintained	 an	 introductory	 level	 for	 all	 the	 topics	 covered	 and	 have	 tried	 to	 make	 the
concepts	 as	 interesting	 as	 possible	while	 challenging	 the	 students’	 ability	 and	 piquing	 their
curiosity.

In	 the	 second	 edition	 of	 this	 book,	 we	 have	 strengthened	 the	 optical	 materials	 section
significantly.	 Two	 new	 chapters	 have	 been	 added	 to	 address	 the	 fundamentals	 of	 optical
materials	as	well	as	their	applications	to	technologies	such	as	solar	cells	and	LEDs.

We	take	full	responsibility	for	any	mistakes	or	errors	this	book	may	have.	Please	contact
us	 as	 necessary	 so	 that	 they	 can	 be	 corrected	 as	 soon	 as	 possible.	We	welcome	 any	 other
suggestions	you	may	have	as	well.

Any	book	such	as	 this	 is	a	 team	effort,	 and	 this	book	 is	no	exception.	 In	 this	 regard,	we
appreciate	the	assistance	of	the	Taylor	&	Francis	staff	who	worked	with	us.	In	particular,	we
thank	Allison	Shatkin	for	helping	us	develop	this	textbook.	We	are	thankful	to	Todd	Perry	and
Viswanath	Prasanna	for	their	assistance	and	patience	in	working	with	us	on	this	book.	We	are
also	 grateful	 to	 a	 number	 of	 colleagues	 and	 corporations	who	 have	 provided	many	 of	 the
illustrations.

Pradeep	Fulay	is	thankful	to	his	mother,	Pratibha	Fulay,	and	father,	Prabhakar	Fulay,	for	all
they	have	done	for	him	and	the	values	they	have	taught	him,	and	to	his	wife,	Dr.	Jyotsna	Fulay,
his	 daughter,	 Aarohee,	 and	 his	 son,	 Suyash,	 for	 the	 support,	 patience,	 understanding,	 and
encouragement	they	have	always	provided	him.

Jung-Kun	 Lee	 expresses	 his	 appreciation	 to	 his	 father	 and	 mother	 for	 their	 love	 and
unconditional	support.	He	is	also	very	thankful	to	his	wife,	Heajin,	his	daughter,	Grace,	and
his	son,	Noah.	They	have	been	a	constant	source	of	joy,	strength,	and	encouragement,	without
whom	nothing	would	have	been	accomplished.
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1 Introduction

KEY	TOPICS

Ways	to	classify	materials
Atomic-level	bonding	in	materials
Crystal	structures	of	materials
Effects	of	imperfections	on	atomic	arrangements
Microstructure–property	relationships

1.1 INTRODUCTION

The	goal	of	this	chapter	is	to	recapitulate	some	of	the	basic	concepts	in	materials	science	and
engineering	as	they	relate	to	electronic,	magnetic,	and	optical	materials	and	devices.	We	will
learn	 the	 different	 ways	 in	 which	 technologically	 useful	 electronic,	 magnetic,	 or	 optical
materials	are	classified.	We	will	examine	 the	different	ways	 in	which	 the	atoms	or	 ions	are
arranged	 in	 these	 materials,	 the	 imperfections	 they	 contain,	 and	 the	 concept	 of	 the
microstructure–property	 relationship.	 You	 may	 have	 studied	 some	 of	 these—and	 perhaps
more	 advanced—concepts	 in	 an	 introductory	 course	 in	materials	 science	 and	 engineering,
physics,	or	chemistry.

1.2 CLASSIFICATION	OF	MATERIALS

An	important	way	to	classify	materials	is	to	do	so	based	on	the	arrangements	of	atoms	or	ions
in	the	material	(Figure	1.1).	The	manner	in	which	atoms	or	ions	are	arranged	in	a	material	has
a	significant	effect	on	its	properties.	For	example,	Si	single	crystals	and	amorphous	Si	film
are	 made	 of	 same	 silicon	 atoms.	 Though	 their	 compositions	 are	 same,	 they	 exhibit	 very
different	 electric	 and	 optical	 properties.	While	 single	 crystal	 Si	 has	 higher	 electric	 carrier
mobility,	amorphous	Si	exhibits	higher	optical	band	gap.	This	is	because	of	different	Si	atom
arrangement.	 While	 atoms	 are	 perfectly	 aligned	 in	 single	 crystals,	 they	 are	 randomly
distributed	in	amorphous	film.

1.3 CRYSTALLINE	MATERIALS

A	 crystalline	material	 is	 defined	 as	 a	 material	 in	 which	 atoms	 or	 ions	 are	 arranged	 in	 a
particular	order	that	repeats	itself	in	all	three	dimensions.	The	unit	cell	is	the	smallest	group
of	atoms	and	ions	that	represents	how	atoms	and	ions	are	arranged	in	crystals.	Repetition	of	a
unit	cell	in	three	dimension	leads	to	the	formation	of	a	three-dimensional	crystal.	The	crystal
structure	 is	 the	specific	geometrical	order	by	which	atoms	and	ions	are	arranged	within	the
unit	 cell.	Crystal	 structures	can	be	expressed	using	a	concept	of	Bravais	 lattices,	 or	 simply
lattices.	 A	 lattice	 is	 an	 infinite	 array	 of	 points	 which	 fills	 space	 without	 a	 gap.	 Auguste



Bravais,	 a	 French	 physicist,	 showed	 that	 there	 are	 only	 14	 independent	ways	 of	 repeatedly
placing	a	basic	unit	of	points	in	space	without	leaving	a	hole.	A	concept	of	lattice	is	analogous
to	that	of	a	crystal	consisting	of	unit	cells	(Figure	1.2).

Note	 that	 a	 sphere	 in	 Figure	 1.2,	 which	 is	 called	 a	 lattice	 point,	 does	 not	 refer	 to	 the
location	of	a	single	atom	or	 ion.	The	lattice	point	 is	a	mathematical	 idea	 that	refers	only	 to
points	 in	 space,	 which	 is	 applied	 to	 several	 fields	 of	 science	 and	 engineering.	 In
crystallography,	the	lattice	represents	the	crystal	and	the	lattice	points	are	associated	with	the
location	of	atoms	and	ions.	Simply	speaking,	we	can	think	that	either	a	single	atom/ion	or	a
group	of	 atoms/ions	occupy	a	 lattice	point.	When	a	group	of	 atoms/ions	 take	up	 the	 lattice
point,	their	configuration	exhibits	a	certain	symmetry	around	the	lattice	point.	The	symmetry
of	atoms	and	ions	occupying	the	same	lattice	point	is	called	basis.	A	combination	of	the	lattice
and	the	basis	determines	the	crystal	structure.	In	other	words:



FIGURE	1.1 Classification	of	materials	based	on	arrangements	of	atoms	or	ions.

We	have	only	14	Bravais	lattices	(Figure	1.2).	However,	there	are	many	possible	bases	for
the	 same	 Bravais	 lattice.	 The	 symmetry	 operation	 of	 bases	 includes	 angular	 rotation,
reflection	at	mirror	plane,	center-symmetric	inversion,	and	gliding,	which	in	turn	leads	to	230
possible	crystal	structures	out	of	14	Bravais	lattices.	We	also	have	many	materials	that	exhibit
the	 same	 crystal	 structure	 but	 have	 different	 compositions,	 that	 is,	 the	 chemical	makeup	 of
these	materials.	For	example,	silver	(Ag),	copper	(Cu),	and	gold	(Au)	have	the	same	crystal
structure	(see	Section	1.6).

Similarly,	 materials	 often	 exhibit	 different	 crystal	 structures,	 depending	 upon	 the
temperature	 (T)	 and	 pressure	 (P)	 to	 which	 they	 are	 subjected.	 In	 some	 cases,	 changes	 in



crystal	 structures	may	also	 result	 from	 the	application	of	other	 stimuli,	 such	as	mechanical
stress	(σ	or	τ),	electric	field	(E),	or	magnetic	field	(H),	or	a	combination	of	such	stimuli.	The
different	 crystal	 structures	 exhibited	 by	 the	 same	 compound	 are	 known	 as	polymorphs.	 For
example,	at	room	temperature	and	atmospheric	pressure,	barium	titanate	(BaTiO3)	exhibits	a
tetragonal	 structure	 (Figure	 1.3).	 However,	 at	 temperatures	 slightly	 higher	 than	 120°C,
BaTiO3	exhibits	a	cubic	structure,	and	at	even	higher	temperatures,	this	structure	changes	into
a	hexagonal	structure.	The	different	crystal	structures	exhibited	by	an	element	are	known	as
allotropes.

FIGURE	1.2 Bravais	lattices	showing	the	arrangements	of	points	in	space.	(From	Askeland,	D.	and	Fulay,	P.,	The	Science
and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



FIGURE	 1.3 (a)	 Cubic	 and	 (b)	 tetragonal	 structures	 of	 barium	 titanate	 (BaTiO3).	 (From	 Singh,	 J.,	Optoelectronics:	 An
Introduction	to	Materials	and	Devices,	McGraw	Hill,	New	York,	1996.	With	permission.)

A	phase	 is	 defined	 as	 any	 portion	 of	 a	 system—including	 the	whole—that	 is	 physically
homogeneous	and	bounded	by	a	surface	so	 that	 it	 is	mechanically	separable	 from	the	other
portions.	One	of	the	simplest	examples	is	ice,	which	represents	a	solid	phase	of	water	(H2O).
A	 phase	 diagram	 indicates	 the	 phase	 or	 phases	 that	 can	 be	 expected	 in	 a	 given	 system	 of
materials	at	thermodynamic	equilibrium.	The	phase	diagram	also	shows	a	specific	condition
at	which	multiple	phases	coexist.	For	instance,	a	stable	regime	of	a	liquid	phase	and	that	of	a
solid	phase	meet	at	0°C	and	1	atm	in	the	phase	diagram	of	water	(H2O)	at	which	both	water
and	ice	are	found.	Thus,	amorphous	and	crystalline	materials	formed	under	nonequilibrium
conditions	are	not	shown	in	a	phase	diagram.

The	 phase	 diagram	 of	 a	 binary	 lead–tin	 (Pb–Sn)	 system	 is	 shown	 in	 Figure	 1.4.	 Three
phases,	α,	β,	and	L,	are	seen	at	different	compositions	and	temperature	ranges.	The	liquidus
represents	the	traces	of	temperature	above	which	the	material	is	in	the	liquid	phase.	Similarly,
the	 solidus	 is	 the	 trace	 of	 temperature	 below	 which	 the	 material	 is	 completely	 solid.	 In	 a
region	 between	 liquidus	 and	 solidus	 lines,	 both	 solid	 and	 liquid	 phases	 are
thermodynamically	stable.	Note	that,	although	most	alloys	melt	over	a	range	of	temperatures
(i.e.,	 coexistence	 of	 liquid	 and	 solid	 phases	 between	 the	 solidus	 and	 the	 liquidus),	 some
specific	 compositions	 (e.g.,	 61.9%	 tin	 in	 the	 lead–tin	 system),	which	 are	 known	 as	 eutectic
compositions,	 melt	 and	 solidify	 at	 a	 single	 temperature,	 which	 is	 known	 as	 the	 eutectic
temperature.	 The	 eutectic	 composition	 of	 lead–tin	 alloy	 has	 been	 used	 for	 soldering
electronic	 components,	 because	 the	 eutectic	 composition	 alloy	 melts	 at	 lower	 temperature
than	any	other	Pb–Sn	alloys.	Currently,	lead-free	substitutes	(developed	because	of	the	toxicity
of	lead)	are	increasingly	being	used.

The	electrical,	magnetic,	and	optical	properties	of	a	material	can	significantly	change	if	the
crystal	 structure	 changes.	 For	 example,	 the	 tetragonal	 form	 of	 BaTiO3	 is	 ferroelectric	 and
piezoelectric	 (Figure	 1.3).	However,	 the	 cubic	 form	 of	 BaTiO3	 is	 neither	 ferroelectric	 nor
piezoelectric.	We	will	learn	more	about	these	materials	in	later	chapters.

Crystalline	 materials	 can	 be	 further	 classified	 into	 single-crystal	 and	 polycrystalline
materials	 (Figure	 1.1).	 A	 single-crystal	 material,	 as	 the	 name	 suggests,	 is	 made	 up	 of	 one
crystal	 in	which	 the	atomic	arrangements	of	 that	particular	crystal	 structure	are	 followed	at



any	 location,	 except	 in	 the	 external	 surfaces	 of	 the	 crystal.	A	 photograph	 of	 a	 large	 single
crystal	of	silicon	(Si)	is	shown	in	Figure	1.5.	Single	crystals	are	not	always	large;	some	are
only	a	few	millimeters	in	size.

FIGURE	 1.4 Lead–tin	 phase	 diagram.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and	 Engineering	 of	 Materials,
Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	 1.5 Single	 crystal	 of	 silicon.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and	 Engineering	 of	 Materials,
Thomson,	Washington,	DC,	2006.	With	permission.)



FIGURE	1.6 Microstructures	of	 alumina	 ceramics.	 (From	Kim,	B.-N.,	 et	 al.,	Acta	Mater.,	 57(5),	 1319–1326,	 2009.	With
permission.)

Large	single	crystals	of	silicon	(up	to	18	inches	in	diameter	and	several	feet	in	height)	are
sliced	 into	 thin	 wafers	 (thickness	 <1	 mm).	 These	 silicon	 wafers	 are	 then	 used	 for
manufacturing	 integrated	circuits	 (ICs)	 that	are	packaged	 into	computer	chips.	We	prefer	 to
use	 the	 largest	 possible	 crystals	 for	 this	 application	 because	 it	 reduces	 the	 total	 cost	 of
producing	ICs.

In	polycrystalline	materials,	 small	 single	 crystals	 are	put	 together	 to	 form	bulk.	A	 long-
range	order	(LRO)	of	atoms	or	ions	is	present	in	each	small	single	crystal;	that	is,	atoms	or
ions	 are	 arranged	 in	 a	 particular	 geometric	 arrangement	within	 each	 crystal	 or	 grain.	 The
term	grain	refers	to	a	relatively	small,	single-crystal	region	within	a	polycrystalline	material.
The	LRO	can	exist	across	relatively	larger	distances,	ranging	from	a	few	micrometers	up	to
centimeters	in	a	grain.	A	polycrystalline	material	comprises	many	smaller	grains.	The	LRO	in
a	grain	ends	at	the	boundaries	of	that	grain.	The	regions	or	interfaces	between	adjacent	grains
are	 known	 as	 grain	 boundaries.	 The	 microstructure	 of	 a	 material	 is	 examined	 in	 a	 two-
dimensional	cross	section	 in	which	 the	grain	boundaries	are	seen	as	 lines	or	curves.	As	we
will	 learn	 in	 Section	 1.17,	 grain	 boundaries	 can	 significantly	 affect	 some,	 but	 not	 all,
properties.

The	 concept	 of	microstructure	 is	 central	 to	many	 of	 the	 ideas	 and	 technologies	we	will
discuss	throughout	this	book.	The	term	microstructure	is	used	to	describe	the	arrangement	of
grains	 in	a	polycrystalline	material.	 It	also	 includes	a	description	of	 the	average	grain	size,
grain-size	distribution,	grain	shape,	and	whether	 the	grains	show	a	preferred	orientation.	 In
addition,	 other	 features	 such	 as	 imperfections	 in	 atomic	 arrangements	 also	 are	 often
considered	part	of	the	microstructure.

The	microstructure	of	a	polycrystalline	alumina	(Al2O3)	ceramic	material	showing	grains
and	grain	boundaries	is	shown	in	Figure	1.6.	The	relationships	among	the	microstructure	and
properties	of	materials	are	explored	in	Section	1.17.

The	atoms	or	ions	of	many	materials	do	not	show	an	LRO.	Such	materials	are	known	as
amorphous	materials.	One	 application	 of	 amorphous	materials	 is	window	glass	 and	 lenses.
We	will	discuss	these	in	Section	1.18.

1.4 CERAMICS,	METALS	AND	ALLOYS,	AND	POLYMERS

Another	way	of	classifying	engineered	materials	is	based	on	their	general	behavior	as	metals,
ceramics,	 or	 polymers/plastics.	 For	 example,	 stainless	 steels,	 copper,	 platinum	 (Pt),	 and



tungsten	 (W)	 are	 metallic	 materials	 that	 exhibit	 high	 electric	 conductivity.	 In	 contrast,
materials	 such	 as	 polyethylene	 and	Teflon™	 are	 considered	 synthetic	 polymers	 or	 plastics
that	 are	 not	 as	 electrically	 conductive	 as	 metals.	 A	 plastic	 is	 a	 synthetic	 polymer-based
material	 that	 is	 formulated	 with	 one	 or	 many	 polymers	 (i.e.,	 large	 molecules	 or
macromolecules	with	a	carbon	backbone)	and	other	additives	(e.g.,	carbon	black,	conductive
or	dielectric	particles,	and	glass	fibers).	Since	loosely	packed	light	atoms	compose	polymers,
plastics	 are	 lightweight.	Depending	 on	 the	 strength	 of	 a	 polymer–polymer	 linkage,	 plastics
can	 be	 flexible	 or	 hard.	 In	 recent	 years,	 significant	 research	 and	 development	 efforts	 have
been	 made	 to	 create	 microelectronic	 devices,	 such	 as	 transistors,	 solar	 cells,	 and	 light-
emitting	 diodes	 (LEDs),	 based	 entirely	 on	 polymers	 or	 carbon-based	 materials,	 such	 as
poly(p-phenylene	vinylene),	poly-3-hexyl	thiophene	(P3HT),	phenyl-C61-butyric	acid	methyl
ester	(PCBM),	carbon	nanotubes	and	graphene.	You	may	have	read	or	heard	that	some	of	the
best	 displays	 for	 televisions	 and	 cell	 phones	 are	 based	 on	 organic	 LEDs	 (OLEDs).	 This
growing	 field	 is	 based	 on	 the	 use	 of	 polymers	 for	 electronics	 and	 is	 known	 as	 organic
electronics.

Efforts	 are	 underway	 that	 are	 aimed	 at	 integrating	 conventional	 silicon-based	 electronic
devices	 with	 polymers	 to	 take	 advantage	 of	 the	 polymer ’s	 low	 density	 and	 flexibility,	 in
addition	to	the	electrical	and	optical	properties.	This	relatively	new	field	of	research	is	known
as	flexible	electronics	or	wearable	electronics.

Materials	 such	 as	 Al2O3	 and	 silica	 (SiO2)	 are	 inorganic	 solids	 and	 are	 considered
ceramics.	Ceramics	have	at	least	partial	ionic	bonding	characteristics	that	make	them	hard	as
well	 as	 brittle.	This	 type	 of	 classification	 does	 not	 always	 distinguish	 among	 the	 details	 of
atomic	 arrangements.	 For	 example,	 SiO2	 is	 considered	 a	 ceramic	 material	 regardless	 of
whether	 it	 is	 in	 an	 amorphous	 or	 crystalline	 form.	 Due	 to	 unique	 structural,	 electric	 and
optical	properties,	ceramics	are	widely	used	in	machine,	electronic	and	chemical	engineering
industries.

1.4.1 INTERATOMIC	BONDS	IN	MATERIALS

The	 types	 of	 interatomic	 bonds	 that	 exist	 in	materials	 are	metallic	 (for	metals	 and	 alloys),
covalent,	and	ionic	bonds	(Figure	1.7).	A	major	difference	is	how	valence	electrons	of	atoms
are	distributed	in	interatomic	bonds.	In	metallic	bonds,	valence	electrons	are	delocalized	and
do	 not	 belong	 to	 specific	 atoms.	 Two	 atoms	 share	 valence	 electrons	 in	 covalent	 bonds,
whereas	two	atoms	donate	and	accept	valence	electrons	to	become	cations	and	anions	in	ionic
bonds.

Most	 ceramics	 (e.g.,	 Al2O3	 and	 SiO2)	 tend	 to	 exhibit	 a	 mixed	 ionic	 and	 covalent	 bond.
Typically,	 the	 greater	 the	 difference	 between	 the	 electronegativity	 of	 the	 atoms	 that	 form
ceramics,	the	higher	the	ionic	character	of	the	mixed	bond.

Pure	covalent	bonds	are	found	in	technologically	important	semiconductors	consisting	of
group	 IV	 elements	 (e.g.,	 silicon,	 germanium	 [Ge]).	 In	 most	 polymers,	 the	 primary	 bonds
(such	 as	 carbon–carbon	 or	 carbon–hydrogen)	 are	 also	 covalent,	 and	 atoms	 share	 valence
electrons.

A	secondary	bond	between	molecules	or	atomic	groups	(i.e.,	a	bond	with	 lower	energy),
known	 as	 the	 van	 der	Waals	 bond,	 is	 present	 in	 all	materials	 and	 is	 caused	 by	 interactions



among	 induced	 dipoles.	 The	 van	 der	 Waals	 forces	 and	 the	 resultant	 bonds	 are	 especially
important	 in	 materials	 that	 have	 polar	 molecules,	 atoms,	 or	 groups	 (e.g.,	 water	 [H2O],
hydroxyl	group	[OH−],	amine	group	[NH2],	chlorine	atom	[Cl],	fluorine	atom	[F]	and	long-
chain	 polymer).	 A	 special	 type	 of	 van	 der	 Waals	 interaction	 originating	 from	 the
intermolecular	 forces	 among	molecules	 with	 a	 permanent	 dipole	moment	 is	 known	 as	 the
hydrogen	bond.	It	occurs	in	water	(hence	the	name	hydrogen	bond)	and	in	many	other	solids
and	liquids.	In	water	(i.e.,	a	liquid	phase	of	H2O),	local	positive	charge	of	hydrogen	and	local
negative	charge	of	oxygen	form	an	intermolecular	bond.

FIGURE	 1.7 Different	 types	 of	 bonds	 in	 materials:	 (a)	 ionic,	 (b)	 covalent,	 and	 (c)	 metallic.	 (From	 Groover,	 M.P.,
Fundamentals	of	Modern	Manufacturing:	Materials,	Processes,	and	Systems,	Wiley,	New	York,	2007.	With	permission.)

The	 van	 der	Waals	 bonds	 play	 an	 important	 role	 in	 modifying	 the	 properties	 of	 many
materials,	such	as	water,	polyvinyl	chloride	(PVC),	graphite,	and	clay.	For	example,	graphite
functions	as	a	solid	 lubricant.	On	the	contrary,	diamond,	which	is	also	a	form	of	carbon,	 is
one	 of	 the	 hardest	 naturally	 occurring	 materials.	 In	 both,	 the	 primary	 bonds	 are	 covalent
carbon–carbon	 bonds.	 However,	 graphite	 has	 a	 layered	 structure	 and	 the	 layers	 of	 carbon
atoms	are	bonded	by	 relatively	weak	van	der	Waals	 forces.	Thus,	 the	van	der	Waals	 bonds
between	carbon	layers	can	be	easily	broken	when	external	force	is	applied.

Similarly,	water	has	a	relatively	high	boiling	point	and	surface	tension	compared	to	other
liquids	with	similar	molecular	weight,	and	it	is	denser	than	ice	(a	solid	phase	of	H2O).	This	is
because	 the	 hydrogen	 bond	 of	water	 is	 stronger	 than	 the	 rest	 of	 van	 der	Waals	 bonds	 and
holds	H2O	molecules	 tightly.	PVC	 is	more	brittle	 than	other	polymers,	because	 the	van	der
Waals	 forces	 between	 the	 chlorine	 and	 hydrogen	 atoms	 of	 the	 adjacent	 molecular	 chains
makes	the	intermolecular	linkage	stronger.

1.5 FUNCTIONAL	CLASSIFICATION	OF	MATERIALS

Materials	 can	 also	 be	 classified	 by	 their	 functional	 properties	 (Figure	 1.8).	 In	 this
classification,	the	primary	functionality	 that	a	material	provides	is	highlighted.	For	example,
one	form	of	iron	oxide	(Fe3O4),	which	is	a	kind	of	ceramics,	and	another	metallic	material,
such	 as	 permendur	 (an	 alloy	 of	 iron	 [Fe]	 and	 cobalt	 [Co])	 which	 is	 a	 kind	 of	 metals,	 are
classified	as	magnetic	materials,	though	they	have	different	atomic	bonds.



1.6 CRYSTAL	STRUCTURES

We	 will	 now	 describe	 the	 crystal	 structures	 of	 some	 materials	 that	 have	 useful	 electrical,
magnetic,	 or	 optical	 properties.	 Many	 materials	 that	 we	 will	 encounter	 later	 in	 this	 book
exhibit	a	cubic	structure,	comprising	simple	cubic	(SC),	face-centered	cubic	(FCC),	or	body-
centered	cubic	(BCC)	arrangements	of	atoms	or	ions	(Figure	1.9).	In	FCC,	the	same	kind	of
atoms	 is	 additionally	 placed	 at	 the	 center	 of	 each	 face	 of	 an	 SC	 structure.	 In	 BCC
arrangements,	the	same	kind	of	atoms	is	additionally	placed	at	the	center	of	a	cube	of	an	SC
structure.

In	 some	 materials,	 atoms	 are	 packed	 in	 a	 hexagonal	 arrangement	 (Figure	 1.10).	 The
hexagonal	 close-packed	 (HCP)	 arrangements	 shown	 in	 Figures	1.10	 and	1.11	 are	 the	 same.
Similarly,	 the	 FCC	 structure	 can	 be	 schematically	 plotted	 in	 two	 different	ways,	which	 are
shown	in	Figure	1.12.	When	you	compare	Figures	1.11	and	1.12,	you	find	that	FCC	and	HCP
arrangements	 have	 the	 same	 packing	 density	 of	 atoms	 and	 that	 the	 only	 difference	 is	 the
packing	 sequence	of	 closely	packed	 layers.	Atomic	 locations	of	 an	upper	 layer	 are	 slightly
shifted	 in	a	 lower	 layer	 in	different	manners	(ABCABC…	for	FCC	vs.	ABABAB	for	HCP).
Both	FCC	and	HCP	arrangements	lead	to	the	maximum	possible	packing	fraction	of	0.74	for
atoms	or	spheres	of	the	same	size.	The	term	packing	fraction	refers	to	the	ratio	of	the	volume
occupied	by	the	atoms	to	the	volume	of	the	unit	cell.	It	can	be	shown	that,	if	we	have	a	cube-
shaped	box,	the	best	we	can	do	is	fill	up	74%	of	the	space	available	with	spheres	of	a	given
radius.	The	packing	fraction	does	not	depend	upon	the	radius	of	the	sphere	(i.e.,	whether	it	is	a
basketball	 or	 a	 tennis	 ball),	 as	 long	 as	we	 have	 spheres	 of	 the	 same	 size.	When	 atoms	 are
packed	such	that	the	structure	exhibits	the	maximum	possible	packing	fraction,	the	structure	is
referred	 to	 as	 a	 close-packed	 (CP)	 structure.	 Thus,	 a	 hexagonal	 structure	with	 a	maximum
possible	packing	fraction	of	0.74	is	known	as	a	close-HCP	structure	(Figure	1.11).	Although
metals	 with	 a	 hexagonal	 structure	 have	 a	 nearly	 CP	 structure,	 a	 hexagonal	 structure	 of
ceramics	(e.g.,	Al2O3)	is	not	necessarily	closely	packed.	As	you	can	guess,	for	a	ratio	of	Al
and	O	atoms,	a	plane	of	Al	that	is	not	fully	packed	has	a	periodic	opening.



FIGURE	 1.8 Functional	 classification	 of	materials.	 (From	Askeland,	 D.	 and	 Fulay,	 P.,	The	 Science	 and	 Engineering	 of
Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	1.9 Simple	cubic,	body-centered	cubic,	and	face-centered	cubic	structures.	(From	Askeland,	D.	and	Fulay,	P.,	The
Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



FIGURE	 1.10 A	 unit	 cell	 of	 a	 hexagonal	 close-packed	 structure.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and
Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	 1.11 The	 packing	 sequence	 of	 a	 hexagonal	 close-packed	 structure.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The
Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	1.12 The	packing	sequence	of	a	face-centered	cubic	structure.	(From	Askeland,	D.	and	Fulay,	P.,	The	Science	and
Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



The	 following	 example	 illustrates	 the	 calculation	 of	 packing	 fractions	 for	 cubic	 CP
structures.

Example	1.1: Calculation	of	Packing	Fractions

Calculate	the	maximum	possible	packing	fractions	for	the	(a)	SC,	(b)	FCC,	and	(c)	BCC	structures.	Assume	that	all
atoms	have	a	radius	r	and	the	unit-cell	parameter	is	a.

Solution
1.	 As	shown	in	Figure	1.13,	in	the	SC	structure,	atoms	touch	along	the	cube	edges,

that	is,

Thus,	the	packing	fraction	is

Thus,	 for	 a	 CP–SC	 structure	 based	 on	 atoms	 of	 a	 single	 size,	 regardless	 of
whether	the	atoms	are	big	or	small,	the	packing	fraction	is	0.52.	This	means	that
48%	of	the	space	in	the	unit	cell	is	empty.	We	can	introduce	other	smaller	atoms
in	 the	 voids,	 or	 so-called	 interstitial	 sites,	 found	 within	 the	 crystal	 structure
(Section	1.8).

2.	 In	 the	CP–FCC	 structure,	 atoms	 touch	 along	 the	 face	diagonals	 (Figure	 1.13),
that	is,

or

FIGURE	 1.13 Packing	 of	 atoms	 in	 simple	 cubic	 (SC),	 body-centered	 cubic	 (BCC),	 and	 face-centered
cubic	 (FCC)	 crystal	 structures.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and	 Engineering	 of
Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



This	 is	 the	packing	 fraction	 for	 an	FCC–CP	 structure.	This	 structure	has	only
26%	empty	space.	Both	the	CP–FCC	structure	and	the	HCP	offer	 the	same	and
the	 highest	 possible	 volume-packing	 fraction	 	 for	 spheres	 of	 uniform
size.
Note	that,	if	the	empty	spaces	or	voids	in	the	CP	structure	are	filled	with	other
smaller	atoms,	the	packing	fraction	will	be	higher.	In	fact,	many	ceramic	crystal
structures	are	rationalized	using	the	close	packing	of	bigger	anions	(negatively
charged	 ions)	 and	 then	 stuffing	 the	 voids	 with	 smaller,	 positively	 charged
cations	(see	Section	1.11).

3.	 Atoms	 in	 the	CP–BCC	structure	 touch	 along	 the	body	diagonal	 (Figure	 1.13).
Thus,	the	relationship	between	r	and	a	is

or

Thus,	the	packing	fraction	for	a	CP–BCC	structure	is

Therefore,	the	BCC	structure	has	a	packing	fraction	of	0.68,	which	is	in	between
the	 values	 for	 the	 FCC	 and	 SC	 structures.	 This	 structure	 has	 32%	 void	 space
available.

1.7 DIRECTIONS	AND	PLANES	IN	CRYSTAL	STRUCTURES

There	 is	 a	need	 to	 specify	 the	 crystallographic	directions	 and	planes	 in	 a	unit	 cell	 in	many
applications	involving	the	magnetic,	electronic,	and	optical	properties	of	materials.	We	use	a



notation	known	as	Miller	indices	to	designate	specific	directions	and	planes	in	cubic	unit	cells.
In	describing	these,	we	always	use	a	right-handed	coordinate	system.

1.7.1 MILLER	INDICES	FOR	DIRECTIONS

Let	us	think	about	how	to	express	a	direction	between	two	lattice	points	A	and	B.	To	obtain	the
Miller	 indices	 of	 a	 direction	 that	 starts	 at	 Point	A	 (illustrated	 as	 an	 arrow	 tail)	 and	 ends	 at
Point	B	(illustrated	as	an	arrow	head),	we	subtract	the	coordinates	of	Point	A	from	those	of
Point	B.	We	then	clear	the	fractions	and	reduce	the	results	to	the	lowest	integers.	The	results
on	the	Miller	 indices	of	directions	are	 included	in	square	brackets	(e.g.,	 [hkl]).	 If	a	negative
sign	is	needed	to	express	the	direction,	we	insert	a	bar	on	top	of	that	index.	Details	are	found
in	Example	1.2.

1.7.2 MILLER	INDICES	FOR	PLANES

To	obtain	the	Miller	indices	for	planes	touching	multiple	lattice	points,	we	start	by	identifying
the	intercepts	of	a	plane	on	the	three	axes	(i.e.,	x,	y,	and	z).	We	then	take	the	reciprocals	of	the
intercepts	and	clear	the	fractions	by	multiplying	the	least	common	multiples	of	denominators.
If	a	plane	is	parallel	to	an	axis,	the	intercept	for	that	axis	is	infinity	(∞)	and	its	reciprocal	is
zero.

For	 the	Miller	 indices	of	planes,	we	do	not	 reduce	 these	numbers	 to	 the	 lowest	 integers.
Similar	to	the	results	for	directions,	we	put	a	bar	above	any	negative	index.	The	Miller	indices
of	planes	are	written	in	parentheses	(	).	In	some	cases,	the	intercepts	of	planes	may	not	be	easy
to	identify	(e.g.,	a	plane	that	passes	through	the	origin).	In	this	case,	we	can	move	the	origin	of
the	unit	cell	(i.e.,	shift	the	plane	in	parallel	to	touch	a	set	of	neighboring	lattice	points).	In	the
cubic	system,	the	direction	[hkl]	is	perpendicular	to	the	plane	(hkl).

1.7.3 MILLER–BRAVAIS	INDICES	FOR	HEXAGONAL	SYSTEMS

In	a	hexagonal	unit	cell,	the	Miller–Bravais	indices	for	directions	and	planes	are	designated	as
[hkil]	and	(hkil),	respectively;	hki	 in	the	Miller–Bravais	indices	are	associated	with	the	three
axes	in	one	plane	(a1,	a2,	a3)	where	atoms	are	closely	packed.	The	angle	between	these	axes	is
120°.	In	the	Miller–Bravais	 indices,	 l	 is	 related	 to	 the	c-axis	 that	 is	perpendicular	 to	a	plane
(a1,	a2,	a3).	Because	the	three	axes	a1,	a2,	and	a3	are	in	one	plane,	the	Miller–Bravais	indices
corresponding	to	them	cannot	all	be	independent.	The	relationship	among	them	is	given	by

Thus,	a	direction	[010]	in	the	orthogonal	coordinate	system	(i.e.,	[hkl])	will	be	equivalent
to	the	direction	 	of	a	hexagonal	coordinate	system	which	is	beneficial	for	expressing
HCP	structure.	To	get	the	Miller–Bravais	indices	for	direction	[010]	of	the	orthogonal	system,
we	move	 a	 point	 of	 interest	 by	 one	 lattice	 constant	 along	 the	 negative	 a1	 direction	 of	 the
hexagonal	coordinate	system,	then	by	two	lattice	constants	along	the	positive	a2	direction,	and
finally	by	one	 lattice	constant	along	 the	negative	a3	 direction.	Thus,	 the	 condition	given	by
Equation	1.8	is	satisfied	(Figure	1.14).



We	 can	 also	 verify	 that	 the	 direction	 [100]	 of	 the	 orthogonal	 coordinate	 system	 is
equivalent	to	 	of	a	hexagonal	coordinate	system.

FIGURE	1.14 Typical	directions	 in	a	hexagonal	unit	cell.	The	major	axes	are	a1,	a2,	a3,	and	c.	 (From	Askeland,	D.	 and
Fulay,	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

Similar	 considerations	 apply	 to	 the	 Miller–Bravais	 indices	 for	 planes.	 We	 locate	 the
intercepts	on	 the	 three	 axes	 (a1,	a2,	a3),	 in	 addition	 to	 that	 on	 the	c-axis.	 Then,	we	 take	 the
inverses	 of	 these	 values	 and	 clear	 the	 fractions	without	 reducing	 the	 integers.	Note	 that	 the
rule	(h	+	k)	=	−i	holds	because	the	a-axes	lie	in	the	plane.

In	 the	 HCP	 structure,	 atoms	 are	 packed	 in	 the	 closest	 way	 along	 	 directions.	 In
addition,	 planes	 (0001)	 and	 (0002)	 are	 the	 closest-packed	 planes	 in	 materials	 with	 HCP
structure.	(i.e.,	they	have	the	highest	number	of	atoms	per	unit	area).

1.7.4 INTERPLANAR	SPACING
There	 are	 multiple	 planes	 with	 the	 same	 Miller	 indices	 (hkl)	 and	 the	 distance	 between
neighbor	planes	is	the	same.	In	a	cubic	system	with	a	unit-cell	size	a	(i.e.,	lattice	constant	a),
the	 distance	 d	 between	 a	 set	 of	 parallel	 planes	 with	 Miller	 indices	 (hkl)	 is	 given	 by	 the
following	equation:

We	 can	 measure	 dhkl	 experimentally	 using	 X-ray	 diffraction	 or	 electron	 diffraction
techniques	and	deduce	a	from	dhkl.

Examples	1.2,	1.3	and	1.4	show	how	to	obtain	the	Miller	indices	of	directions	and	a	plane
and	also	how	to	calculate	interplanar	distances	and	connect	them	with	the	lattice	constant.

Example	1.2: Miller	Indices	for	Directions

What	are	the	Miller	indices	for	any	one	of	the	CP	directions	in	FCC	and	BCC	structures?

Solution
In	an	FCC	structure,	the	atoms	touch	along	the	face	diagonal.	Therefore,	the	face	diagonals	are	the	CP	directions.



One	 face	 diagonal	 (marked	 as	 OA)	 is	 shown	 in	 Figure	 1.15.	 We	 follow	 the	 procedure	 described	 earlier	 for
obtaining	the	Miller	indices	of	direction:

1.	 The	coordinates	of	the	“head”	point	A	are	1,	1,	0.
2.	 The	coordinates	of	the	“tail”	point	B	(in	this	case,	the	origin	point	O)	are	0,	0,	0.
3.	 Subtracting	the	coordinates	of	the	tail	from	those	of	the	head,	that	is,	1	−	0,	1	−

0,	0	−	0,	we	get	1,	1,	0.

FIGURE	1.15 One	 of	 the	 close-packed	 directions	 in	 an	 FCC	 unit	 cell	 is	 shown	 as	OA	 here.	 In	BCC,	 atoms	 are	 closely
packed	along	direction	OB.	Atoms	are	not	shown.

There	 are	no	 fractions	 to	 clear	 and	no	negative	 integers.	Therefore,	 the	Miller	 indices	of	 this	direction	OA	are
[110].	Note	that	the	opposite	direction,	AO,	will	have	Miller	indices	of	 .

In	an	FCC	structure,	all	 the	face	diagonals	are	close-packed	with	atoms.	All	directions	along	which	atoms	are
arranged	in	the	same	way	are	said	to	be	crystallographically	equivalent.	A	family	of	such	equivalent	directions	is
known	as	the	directions	of	a	form	and	is	designated	as	<	>.	For	an	FCC,	the	directions	of	a	form	for	CP	directions
will	be	<110>.	There	would	be	12	 total	directions	 in	 this	 family	of	CP	directions	for	an	FCC	(six	 face	diagonals
and	corresponding	opposite	directions).	[110],	[101]	and	[011]	are	included	in	<110>	of	FCC	structure.
You	can	also	see	that,	similarly,	for	a	BCC	structure	(atoms	not	shown	in	Figure	1.15),	the	atoms	touch	along	the

body	diagonal.	The	Miller	indices	for	one	such	direction	OB	(Figure	1.15)	are	[111].	Note	that	the	direction	BO	is
also	a	CP	direction	for	the	BCC	structure,	and	its	Miller	indices	are	 .	Both	OB	and	BO	directions	are	a	part
of	<111>	in	the	orthogonal	coordinate	system.

Example	1.3: Miller	Indices	for	a	Plane

What	are	the	Miller	indices	for	the	plane	P	shown	in	Figure	1.16?

Solution
We	see	that	this	plane,	shown	in	Figure	1.16,	intersects	the	x-	and	y-axes	at	a	length	of	“1x”	lattice	parameter.
The	plane	is	parallel	to	the	z-axis,	that	is,	it	does	not	intersect	the	z-axis	at	all;	hence,	this	intercept	is	∞.
We	follow	the	directions	for	establishing	the	Miller	indices	of	a	plane	as

1.	 The	intercepts	on	the	x-,	y-,	and	z-axes	are	1,	1,	and	∞,	respectively.
2.	 The	 reciprocals	 of	 these	 are	 1,	 1,	 and	 0.	 There	 are	 no	 fractions	 to	 clear.

Therefore,	the	Miller	indices	of	this	plane	are	(110).
3.	 Similar	 to	directions	of	a	 form,	 there	are	also	planes	of	a	 form.	These	planes

are	 equivalent	 and	are	 shown	 in	curly	brackets	{	}.	The	planes	of	 a	 form	 for



{110}	will	include	the	following:	(110),	(101),	(011),	 ,	 ,	and	 .

Example	1.4: Interplanar	Spacing	in	Materials

X-rays	 of	 a	 single	 wavelength	 (λ)	 were	 used	 to	 analyze	 a	 glittering	 sample	 suspected	 to	 be	 Au.	 The	 X-ray
diffraction	(XRD)	analysis,	by	which	the	lattice	constant	of	an	unit	cell	is	determined,	showed	that	the	(400)	planes
in	this	sample	were	separated	by	a	distance	of	0.717	Å.	Is	the	sample	made	of	Au?	Assume	that	the	radius	(r)	of	Au
atoms	is	144	pm.	Also	assume	that,	 in	this	hypothetical	example,	no	other	obvious	measurements,	such	as	density,
can	be	made.	Au	has	an	FCC	structure.

FIGURE	1.16 Plane	for	Example	1.3.

Solution
We	are	given	d400	as	0.717	Å.	From	Equation	1.9,	we	get:

Therefore,	the	lattice	constant	for	this	sample	is	a	=	(0.717)	(4)	=	2.868	Å.

Now,	it	is	given	that	the	radius	(r)	of	Au	atoms	is	144	pm	=	144	pm	×	10−12	m/pm	×	1010	Å/m.	This	is	1.44	Å.
Because	 Au	 has	 an	 FCC	 crystal	 structure,	 the	 lattice	 constant	 (a)	 and	 the	 atomic	 radius	 (r)	 are	 related	 by

Equation	1.4.
From	this	equation,	we	get	 .	This	is	the	lattice	constant	of	Au.
The	sample	of	this	example	has	a	lattice	constant	of	2.868	Å.	Thus,	the	sample	is	not	Au!
By	comparing	the	lattice	constant	of	2.868	Å	to	that	of	other	elements,	we	will	see	that	it	is	close	to	the	lattice

constant	of	BCC	Fe.	Thus,	it	is	likely	that	the	sample	we	have	is	BCC	Fe.	Because	this	sample	glittered	like	Au,	it
may	have	been	plated	with	a	thin	layer	of	Au.	Thus,	the	lesson	to	be	learned	here	is	that	all	that	glitters	is	not	gold!
In	this	example,	we	also	learned	that	the	unknown	sample	has	a	cubic	structure.

1.8 INTERSTITIAL	SITES	OR	HOLES	IN	CRYSTAL	STRUCTURES

As	mentioned	in	the	previous	section,	the	packing	fraction	of	even	the	CP	structures	is	smaller
than	80%,	and	voids,	known	as	interstitial	sites,	are	found	in	different	CP	structures.	Smaller
atoms	or	ions	can	enter	these	interstitial	sites	or	holes	in	a	crystal	structure,	which	changes	the
crystal	structure	by	varying	the	basis	of	 that	structure.	In	many	ceramics,	 interstitial	sites	of
the	anion	lattice	are	filled	with	cations	smaller	than	the	anions.	Different	types	of	interstitial



sites	are	illustrated	in	Figure	1.17.	 (The	coordination	number	 in	Figure	1.17	 is	explained	 in
the	next	section.)

FIGURE	 1.17 Different	 types	 of	 interstitial	 sites.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and	 Engineering	 of
Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

1.9 COORDINATION	NUMBERS

The	total	number	of	nearest-neighbor	atoms	that	surround	an	atom	(occupying	a	lattice	point
or	an	interstitial	site)	is	often	referred	to	as	the	coordination	number	(CN).	For	example,	in	the
FCC	and	HCP	structures,	the	CN	of	an	atom	taking	up	the	lattice	point	is	12.	This	means	that,
for	 any	 atom	 in	 a	 specific	 position	 of	 the	 lattice,	 there	 are	 12	 nearest-neighbor	 atoms
surrounding	it.	In	the	SC	structure,	the	CN	is	6.	For	a	BCC	structure,	the	CN	is	8.	This	can	be
easily	seen	by	looking	at	the	atom	located	at	the	cube	center.	It	is	surrounded	by	eight	corner
atoms.	 We	 must	 also	 realize	 that,	 in	 a	 periodic	 structure,	 each	 atom	 has	 identical
surroundings;	thus,	atoms	in	lattice	points	have	the	same	CN	whether	we	examine	the	atom	at
the	cube	center	or	at	any	other	position	in	the	structure.

The	CNs	of	atoms	occupying	 the	 lattice	points	of	different	 structures,	 the	corresponding
relationship	 between	 the	 unit-cell	 parameter	 (a)	 and	 the	 atomic	 radius	 (r),	 and	 the	 volume-
packing	fractions	are	given	 in	Table	1.1.	The	CNs	of	 the	 interstitial	 sites	 are	also	 shown	 in
Figure	1.17	with	illustrations.

The	most	 common	 types	 of	 interstitial	 sites	 are	 the	 so-called	 tetrahedral	 and	 octahedral
sites.	A	 tetrahedral	site	means	 that	 an	 atom	 or	 ion	 in	 that	 site	 is	 surrounded	 by	 four	 other



atoms	 or	 ions	 (CN	 =	 4)	 that	 are	 located	 at	 the	 corners	 of	 a	 tetrahedron—hence	 the	 name
tetrahedral	site.	Similarly,	for	an	octahedral	site,	an	atom	or	ion	in	this	site	is	surrounded	by
six	(not	eight)	atoms	(CN	=	6).	These	atoms	or	ions	form	an	octahedron	around	the	site	center
—hence	 the	 name	 of	 the	 interstitial	 site	 is	 octahedral	 site.	 There	 are	 several	 equivalent
interstitial	 sites	within	a	single	unit	cell.	For	example,	 in	an	FCC	unit	cell,	 the	center	of	 the
cube	is	an	octahedral	site.	Centers	of	12	edges	of	an	FCC	unit	cell	are	also	octahedral	sites.
Since	each	edge	of	the	FCC	unit	cell	is	shared	with	a	total	of	four	neighboring	unit	cells,	there
are	a	total	of	[(12	×	1/4)	+	1)]	=	4	octahedral	sites	in	an	FCC	unit	cell.

1.10 RADIUS	RATIO	CONCEPT

The	concept	of	radius	ratio	is	useful	to	rationalize	or	to	guess	whether	a	guest	atom	or	ion	is
likely	to	enter	a	particular	type	of	an	interstitial	site.	The	radius	ratio	is	the	ratio	of	the	radius
of	the	guest	atoms/ions	(occupying	interstitial	sites)	to	that	of	the	host	atoms/ions	(taking	up
lattice	points).	The	radius	ratio	ranges	and	corresponding	sites	are	shown	in	Figure	1.17.

The	general	 idea	behind	the	radius	ratio	concept	 is	 that	we	can	view	crystal	structures	of
many	 ceramic	 materials	 as	 being	 made	 up	 of	 a	 close	 packing	 of	 anions.	 These	 are	 the
negatively	 charged	 ions	 and	 are	 typically	 larger	 because	 of	 the	 extra	 electrons.	 This	 is
conceptually	followed	by	the	stuffing	of	smaller	cations	into	the	interstitial	sites.

TABLE	1.1

Relationships	between	 the	Unit-Cell	Parameter	 (a)	and	Radius	 (r),	 the	Coordination	Number,	 and
the	Volume-Packing	Fraction	for	Different	Unit	Cells

Structure Relationship	of
a	and	r

Atoms	per
Unit	Cell

Coordination
Number

Packing
Fraction

Simple	cubic a	=	2r 1 6 0.52
Body-centered
cubic 2 8 0.68

Face-centered
cubic 4 12 0.74

Hexagonal	close-
packed a	=	2r 2 12 0.74

	 c	≈	1.633a 	 	 	

Note	that	not	all	the	available	interstitial	sites	in	a	unit	cell	need	to	be	occupied.	The	sites	to
be	occupied	(e.g.,	centers	of	tetrahedron	or	octahedron	or	cube)	depend	upon	the	radius	ratio,
that	is,	in	the	case	of	most	ceramics,	rcation/ranion.	Larger	cations	tend	to	fill	larger	interstitial
sites.	 The	 fraction	 of	 the	 sites	 that	 are	 occupied	 depends	 upon	 the	 stoichiometry	 of	 the
compound.	This	is	illustrated	in	the	following	section.

1.11 CRYSTAL	STRUCTURES	OF	DIFFERENT	MATERIALS



We	will	now	discuss	some	of	simple	crystal	structures	exhibited	by	electronic,	magnetic,	and
optical	materials	 that	 are	 of	 interest	 to	 us.	Many	materials	 have	 far	more	 complex	 crystal
structures,	and	a	discussion	of	these	is	beyond	the	scope	of	this	book.

1.11.1 STRUCTURE	OF	SODIUM	CHLORIDE

The	 structure	 of	 a	 sodium	 chloride	 (NaCl)	 crystal	 (Figure	 1.18),	which	 is	 shared	 by	many
ceramic	materials—such	 as	magnesium	 oxide	 (MgO),	 can	 be	 rationalized	 as	 follows:	 The
structure	is	obtained	by	closely	packing	chlorine	anions	(Cl1−)	that	have	a	radius	of	0.181	nm.
The	radius	of	sodium	cations	(Na1+)	is	0.097	nm.	This	results	in	a	radius	ratio	of	 ,	or
~0.536.	Therefore,	we	expect	that	sodium	ions	will	exhibit	an	octahedral	coordination	(Figure
1.17).

Thus,	we	 can	 assume	 that	 this	 structure	 is	 obtained	 by	 creating	 an	 FCC	 arrangement	 of
chlorine	 ions.	All	 the	 octahedral	 sites	 (i.e.,	 cube	 edge	 centers	 and	 cube	 center)	 can	 then	 be
stuffed	with	sodium	ions.

1.11.2 STRUCTURE	OF	CESIUM	CHLORIDE

The	 atomic	 radius	 of	 a	 cesium	 ion	 (Cs+)	 is	 0.167	 nm.	 The	 radius	 ratio	 of	 0.92	 (=	 0.167
nm/0.181	nm)	for	cesium	chloride	(CsCl)	suggests	an	eightfold	coordination	of	Cs	ions.	This
is	achieved	by	locating	the	Cs+	ion	at	the	cube	center.	In	this	structure,	we	have	eight	chlorine
ions	at	the	eight	corners	of	the	cube	(Figure	1.19).	Each	of	the	anions	at	the	corner	is	shared
with	eight	other	neighboring	unit	cells.	The	number	of	chlorine	ions	per	unit	cell	is	(8	×	1/8)
=	 1.	 Thus,	 the	 stoichiometry	 of	 one	 chlorine	 ion	 for	 every	 cesium	 ion	 is	 maintained,	 and
electrical	neutrality	is	assured.

FIGURE	 1.18 Crystal	 structure	 of	 sodium	 chloride	 (NaCl).	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and
Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



FIGURE	1.19 Cesium	 chloride	 (CsCl)	 structure,	 showing	 the	 eightfold	 coordination	 of	 cesium	 ions.	 (From	 Smart,	 L.	 and
Moore,	E.,	Solid	State	Chemistry:	An	Introduction,	Chapman	and	Hall,	Boca	Raton,	FL,	1992.	With	permission.)

As	shown	in	Figure	1.19,	 the	 structure	 can	also	be	 represented	as	 the	 chlorine	 ion	at	 the
center	and	an	FCC	packing	of	cesium	ions.	Example	1.5	illustrates	the	use	of	the	radius	ratio
concept.

Example	1.5: Application	of	the	Radius	Ratio	Concept

NaCl	and	potassium	chloride	(KCl)	have	the	same	stoichiometry.	The	radius	of	the	potassium	ion	(K+)	is	0.133	nm.
The	 radius	of	 the	chlorine	 ion	 (Cl+)	 is	 0.181	nm.	What	will	 be	 the	 expected	CN	 for	K+	 ions?	What	will	 be	 the
expected	structure	of	KCl?	Is	this	structure	consistent	with	the	stoichiometry?

Solution
The	rcation/ranion	 for	KCl	 is	0.133/0.181	=	0.735.	This	 suggests	 that	 the	CN	 for	K

+	 ions	will	 be	 8.	This	CN	 is

possible	if	the	K+	ions	assume	the	location	at	the	cube	center.	Then,	they	are	next	to	eight	other	Cl−	ions.	Thus,	KCl
exhibits	a	structure	similar	 to	 that	of	cesium	chloride	 (CsCl)	 (Figure	1.19).	The	 structure	 is	 consistent	with	 the	1:1
stoichiometry	of	KCl.

1.11.3 DIAMOND	CUBIC	STRUCTURE
One	of	the	most	important	crystal	structures	of	many	semiconductor	materials	is	the	diamond
cubic	 (DC)	 crystal	 structure	 (Figure	 1.20).	 This	 is	 the	 crystal	 structure	 exhibited	 by
semiconductors,	such	as	silicon,	germanium,	and	carbon	in	the	form	of	diamond.

In	 this	 crystal	 structure,	 atoms	 are	 first	 arranged	 in	 an	 FCC	 arrangement	 and	 additional
atoms	 are	 placed	 at	 half	 of	 the	 tetrahedral	 sites.	 Note	 that	 in	 Figure	 1.20,	 for	 the	 sake	 of
clarity,	 the	 atoms	 are	 not	 shown	 touching	 one	 another	 in	 the	 FCC	 and	 tetrahedral
arrangements.	Here	is	how	the	tetrahedral	sites	are	filled:	First,	the	cubic	unit	cell	is	divided
into	eight	smaller	cubes	known	as	octants.	Then,	two	smaller	nonadjacent	octants	on	the	top
are	 selected	 (the	centers	of	 these	cubes	will	be	 at	 a	point	 three-fourths	 the	unit-cell	height).
Similarly,	two	smaller	nonadjacent	octants	at	the	bottom	are	selected	(centers	of	these	cubes
will	be	at	one-fourth	of	the	height	of	the	unit	cell).	Additional	atoms	are	placed	into	four	of
the	 octants.	 Thus,	 in	 this	 crystal	 structure,	 atoms	 exhibit	 what	 is	 called	 a	 tetrahedral
coordination.	 It	 is	 easier	 to	 visualize	 this	 tetrahedral	 arrangement	 by	 examining	 the	 atoms
located	in	the	centers	of	the	octants.	However,	every	atom	in	this	structure	ultimately	has	the
same	tetrahedral	coordination.



FIGURE	 1.20 Diamond	 cubic	 crystal	 structure.	 (From	 Askeland,	 D.	 and	 Fulay,	 P.,	 The	 Science	 and	 Engineering	 of
Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

A	DC	unit	 cell	 has	 a	 total	 of	 eight	 atoms	 in	 the	 unit	 cell.	 Four	 atoms	 are	 from	 the	FCC
arrangement	[8	×	(1/8)	+	6	×	(1/2)].	Four	more	atoms	are	derived	from	the	inside	of	the	unit
cell	(i.e.,	half	of	the	tetrahedral	sites).	Such	a	description	allows	us	to	calculate	the	theoretical
density	of	materials,	such	as	silicon	and	germanium.	This	is	illustrated	in	Example	1.6.

Example	1.6: Theoretical	Density	of	Silicon	(Si)

The	radius	of	Si	in	a	covalent	structure	is	1.176	Å.	What	is	the	lattice	constant	of	Si?	What	is	the	theoretical	density
of	Si	if	its	atomic	mass	is	28.1?

Solution
If	we	examine	the	body	diagonal	in	the	DC	structure	exhibited	by	Si,	we	see	that	there	are	two	atoms	at	the	corner
and	an	atom	within	an	octant.	There	is	space	for	two	more	atoms	to	be	accommodated	along	the	diagonal	(Figure
1.21).
If	the	length	of	the	unit	cell	is	a,	then	the	body	diagonal	is	 .	If	r	is	the	radius	of	the	atoms	in	the	DC	structure,

then	from	Figure	1.21,	we	get:

For	Si,

In	addition,	as	described	earlier,	there	is	the	equivalent	of	eight	atoms	of	Si	per	unit	cell.	Recall	that	one	mole	of
an	element	has	an	Avogadro	number	of	atoms	(6.023	×	1023	atoms).	Thus,	 in	 this	case,	28.1	g	of	Si	would	have
6.023	×	1023	atoms,	and	the	theoretical	density	of	Si	will	be

This	value	matches	with	the	experimentally	observed	values.

1.11.4 ZINC	BLENDE	STRUCTURE



Zinc	sulfide	(ZnS)	exhibits	different	polymorphic	forms	known	as	zinc	blende	and	wurtzite.
The	 structure	 of	 zinc	 blende	 is	 cubic	 (Figure	 1.22),	 whereas	 that	 of	 wurtzite	 is	 hexagonal
(Figure	1.23).	Many	compound	semiconductors,	 such	as	gallium	arsenide	 (GaAs),	 show	the
zinc	blende	structure.

FIGURE	1.21 Schematic	representation	showing	the	arrangement	of	atoms	and	voids	along	a	body	diagonal	in	a	diamond
cubic	crystal	structure.	(From	Askeland,	D.	and	Fulay,	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,
DC,	2006.	With	permission.)

FIGURE	1.22 Schematic	representation	of	a	zinc	blende	structure.	(From	Smart,	L.	and	Moore,	E.,	Solid	State	Chemistry:
An	Introduction,	Chapman	and	Hall,	Boca	Raton,	FL,	1992.	With	permission.)



FIGURE	 1.23 Structure	 of	 a	 wurtzite	 crystal.	 (From	 Smart,	 L.	 and	Moore,	 E.,	 Solid	 State	 Chemistry:	 An	 Introduction,
Chapman	and	Hall,	Boca	Raton,	FL,	1992.	With	permission.)

The	zinc	blende	 structure	 (Figure	1.22)	 is	 similar	 to	 the	DC	structure	 (Figure	1.20).	 The
radius	of	divalent	zinc	ions	(Zn2+)	is	0.074	nm.	The	radius	of	the	larger	sulfur	anion	(S2−)	is
0.184	nm.	The	radius	ratio	of	0.402	suggests	a	tetrahedral	coordination	for	Zn2+	ions	(Figure
1.17).

We	start	with	an	FCC	arrangement	of	S2−	ions.	The	Zn2+	ions	enter	at	the	four	tetrahedral
sites,	 that	 is,	 they	occupy	 the	 centers	 of	 the	 octants	 inside	 the	main	unit	 cell	 (similar	 to	 the
diamond-cubic	unit	cell).

Note	that	not	all	tetrahedral	sites	are	occupied	because	of	the	requirement	of	a	balance	of
stoichiometry	and	electrical	neutrality.	In	addition,	each	S2−	ion	is	coordinated	with	four	Zn2+
ions.	Note	 also	 that	 if	 all	 ions	 in	 the	 zinc	blende	 structure	 (Figure	1.22)	were	 identical,	 we
would	get	a	DC	structure	(Figure	1.20).

GaAs,	 an	 important	 semiconductor,	 exhibits	 the	 zinc	 blende	 structure.	 The	 structure	 of
GaAs	can	be	understood	by	replacing	the	sulfur	atoms	in	ZnS	with	arsenic	atoms	and	the	zinc
atoms	 with	 gallium	 atoms.	 One	 of	 the	 polymorphs	 of	 silicon	 carbide	 (SiC)	 and	 other
materials,	such	as	indium	phosphide	(InP),	indium	antimonide	(InSb),	and	gallium	phosphide
(GaP),	 also	 exhibit	 this	 type	 of	 crystal	 structure.	 Example	 1.7	 explores	 the	 zinc	 blende
structure	in	more	detail.

Example	1.7: Density	of	Indium	Phosphide	(InP)

If	the	lattice	constant	(a)	of	InP	is	about	5.8687	Å,	what	is	its	theoretical	density?	The	atomic	masses	of	indium	(In)
and	phosphorus	(P)	are	114.81	and	31,	respectively.

Solution
Recognize	that	there	are	four	In	atoms	and	four	P	atoms	inside	the	InP	unit	cell	(Figure	1.22).	Also	recall	that	one
mole	of	an	element	has	an	Avogadro	number,	that	is,	6.023	×	1023	atoms.
Thus,	 the	 theoretical	 density	 of	 InP	will	 be	 the	mass	 of	 four	 In	 atoms	+	mass	 of	 four	P	 atoms	divided	 by	 the

volume	of	the	cubic	unit	cell.



What	 we	 calculated	 is	 the	 so-called	 theoretical	 density.	 The	 actual	 density	 is	 comparable	 but	 can	 be	 a	 little
different	because	the	arrangement	of	atoms	in	real	materials	is	never	perfect	(see	Section	1.12).

1.11.5 WURTZITE	STRUCTURE
According	to	the	radius	ratio,	the	Zn2+	 ions	have	a	CN	of	4,	 that	 is,	 they	are	surrounded	by
four	 sulfur	 ions.	Similarly,	 each	 sulfur	 ion	 (S2−)	 is	 coordinated	with	 four	 zinc	 ions	 (Zn2+).
This	tetrahedral	coordination	can	be	found	in	an	HCP	structure	as	well	as	an	FCC	structure.
The	wurtzite	structure	is	based	on	an	HCP	array	of	sulfur	ions.	If	S2−	ions	form	an	HCP	array,
two	tetrahedral	sites	are	found	per	S2−	ion.	Tetrahedral	holes	in	alternate	octants	are	occupied
by	the	zinc	ions	so	that	half	of	the	tetrahedral	sites	of	an	HCP	array	of	sulfur	ions	are	filled.
Many	 semiconductors	 and	 dielectrics,	 such	 as	 gallium	 nitride	 (GaN),	 zinc	 oxide	 (ZnO),
aluminum	 nitride	 (AlN),	 cadmium	 telluride	 (CdTe),	 and	 cadmium	 sulfide	 (CdS),	 show	 this
type	of	polymorph.

This	structure	can	also	be	visualized	by	considering	hexagonal	close	packing	of	zinc	ions,
followed	by	the	stuffing	of	sulfide	anions	in	the	tetrahedral	sites	(Figure	1.23).

1.11.6 FLUORITE	AND	ANTIFLUORITE	STRUCTURE
To	visualize	a	crystal	structure,	it	is	sometimes	easier	to	conceptually	consider	that	the	cations
(i.e.,	 smaller	 ions)	 form	a	CP	 array	 and	 anions	 fill	 interstitial	 sites.	 For	 the	 fluorite	 (CaF2)
structure,	we	start	with	a	CP	array	(FCC	packing)	of	cations.	Then,	all	the	tetrahedral	holes	are
filled	 with	 larger	 fluorine	 anions	 (F1−).	 In	 this	 representation,	 the	 4-fold	 coordination	 of
anions	is	clearly	seen	(Figure	1.24a).

To	better	understand	this,	we	can	extend	the	structure	so	that	the	cubes	have	fluoride	ions	at
the	 corners	 (Figure	 1.24b).	 In	 this	 representation,	 we	 can	 easily	 recognize	 the	 eightfold
coordination	 of	 the	 cations.	 The	 same	 structure	 is	 redrawn	 in	 Figure	 1.24c	 by	 shifting	 the
origin,	and	in	this	figure,	eight	octants	can	be	seen.	Every	other	octant	is	occupied	by	a	Ca2+
ion.	The	relative	distances	among	 the	 ion	centers	are	shown	in	one	of	 the	octants	 in	Figure
1.24d.

Ceramic	materials	that	show	a	fluorite	structure	include	CeO2,	PbO2,	UO2,	and	ThO2.
In	the	antifluorite	structure,	the	positions	of	cations	and	anions	are	reversed.	Materials	that

show	an	antifluorite	structure	include	Li2O,	Na2O,	Rb2O,	K2O,	and	Li2S.

1.11.7 CORUNDUM	STRUCTURE



A	corundum	(α-Al2O3)	structure	can	be	described	by	picturing	a	hexagonal	close	packing	of
oxygen	anions	(O2−).	In	the	hexagonal	CP,	the	number	ratio	of	packing	atoms	and	octahedral
sites	is	1.	Therefore,	in	the	corundum	structure,	two-thirds	of	the	octahedral	sites	are	filled	by
the	aluminum	cations	(Al3+;	Figure	1.25)	to	maintain	the	number	ratio	of	cation/anion	as	2/3.
In	other	words,	Al	layer	and	O	layer	are	alternately	packed	and	holes	are	periodically	found
in	1/3	of	atomic	sites	in	Al	layer.

FIGURE	 1.24 Schematic	 illustration	 of	 fluorite	 structure.	 (From	 Smart,	 L.	 and	 Moore,	 E.,	 Solid	 State	 Chemistry:	 An
Introduction,	Chapman	and	Hall,	Boca	Raton,	FL,	1992.	With	permission.)



FIGURE	1.25 Crystal	structure	of	alpha-alumina	(α-Al2O3	or	corundum).	(From	Askeland,	D.	and	Fulay,	P.,	The	Science
and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

1.11.8 PEROVSKITE	CRYSTAL	STRUCTURE
A	perovskite	crystal	structure	 is	one	of	 the	mixed	oxide	structures,	 that	 is,	a	structure	of	an
oxide	 containing	 different	 kinds	 of	 cations.	 The	 name	 perovskite	 comes	 from	 the	 calcium
titanate	(CaTiO3)	mineral.	A	perovskite	structure	is	often	described	as	ABO3.	In	this	notation,
the	oxygen	ions	(O2−)	occupy	the	face	center	positions	on	the	cube.	Then,	the	A-site	cations
are	divalent	(e.g.,	Ba2+,	Pb2+,	Sr2+)	and	occupy	the	cube	corners,	as	shown	in	Figure	1.3.	The
B-site	cations	(e.g.,	Ti4+,	Zr4+)	occupy	the	cube	centers	(octahedral	site).

Many	 ceramics,	with	 useful	 ferroelectric,	 piezoelectric,	 and	 other	 properties,	 exhibit	 the
perovskite	 crystal	 structure.	 Examples	 include	 barium	 titanate	 (BaTiO3),	 lead	 zirconium
titanate	(Pb(Zr,Ti)O3),	and	strontium	titanate	(SrTiO3).

Important	 functional	 properties	 of	 the	 perovskite	 materials	 are	 developed	 during	 their
polymorphic	phase	 transition.	The	cubic	form	of	BaTiO3	 is	similar	 to	a	 tetragonal	 form	of
BaTiO3	and	two	structures	differ	very	slightly	(~	less	than	1%)	in	terms	of	their	dimensions.
The	lattice	constant	along	c-axis	of	tetragonal	BaTiO3	is	~4.01	Å.	The	lattice	constant	of	cubic
BaTiO3	 is	 only	 4.00	Å	 (Figure	1.3).	 This	 very	 slight	 difference	 of	 ~0.01	Å	 in	 the	 unit-cell
dimension	accompanies	a	shift	of	Ti4+	ion	from	the	cube	center	and	produces	very	significant
changes	in	the	dielectric	properties	of	BaTiO3.	For	example,	the	cubic	form	of	BaTiO3	is	not
ferroelectric,	whereas	the	tetragonal	form	is	ferroelectric.

1.11.9 SPINEL	AND	INVERSE	SPINEL	STRUCTURES
The	spinel	structure	is	another	example	of	a	mixed	oxide	structure.	Many	magnetic	materials,
known	as	ferrites,	exhibit	normal	or	inverse	spinel	structures.	The	general	formula	is	AB2O4,
where	A	 is	 the	divalent	cation	 (e.g.,	Mg2+)	 and	B	 is	 the	 trivalent	cation	 (e.g.,	Al3+).	A	basic
frame	of	the	spinel	structure	is	the	FCC	structure	of	oxygen	ions	(O2−).	Each	edge	center	and
cube	center	of	the	FCC	unit	cell	are	octahedral	sites.	Because	the	edges	are	shared	among	four
unit	 cells,	 there	 are	 a	 total	 of	 (12	 ×	 1/4)	 +	 1	 =	 4	 octahedral	 sites.	 Similarly,	 as	 seen	 in	 a
diamond	crystal	structure	(Figure	1.20),	 there	are	a	 total	of	eight	 tetrahedral	sites	(center	of
each	octant)	in	the	FCC	structure.



To	understand	the	spinel	crystal	structure,	we	will	consider	n	formula	units.	In	the	n	units,
there	 are	 4n	 O2−	 ions,	 8n	 tetrahedral	 holes,	 and	 4n	 octahedral	 holes.	 In	 the	 normal	 spinel
structure,	only	one-eighth	of	the	tetrahedral	sites	are	filled	by	A-type	ions.	This	is	because	we
have	n	 A-type	 ions	 and	 8n	 sites	 are	 available.	 Similarly,	 there	 are	 2n	 B-type	 ions	 and	 4n
octahedral	sites.	Thus,	one-half	of	the	octahedral	sites	are	occupied	by	B-type	ions,	leading	to
the	general	formula	of	AB2O4.	As	shown	in	Figure	1.26,	we	can	break	down	the	spinel	unit
cell	into	eight	octants.

In	one	type	of	octant,	called	an	A-type	octant,	the	A	ions	occupy	the	tetrahedral	sites.	These
atoms	are	coordinated	with	the	corner	and	face	center	anions	(oxygen	ions)	of	the	unit	cell.	In
another	type	of	octant,	known	as	a	B-type	octant,	the	trivalent	B	cations	are	located	at	half	of
the	corners	of	an	octant.	Note	that	out	of	a	total	of	eight	octants,	four	are	A-type	and	four	are
B-type.	Of	the	four	A-type	octants,	only	two	actually	contain	A	ions.	Similarly,	of	the	four	B-
type	octants,	only	 two	contain	B	 ions	 (Figure	1.26).	Examples	 of	 ceramics	with	 this	 crystal
structure	include	magnesium	aluminate	(MgAl2O4)	and	zinc	aluminate	(ZnAl2O4).

FIGURE	1.26 A	spinel	crystal	structure.	(From	Smart,	L.	and	Moore,	E.,	Solid	State	Chemistry:	An	Introduction,	Chapman
and	Hall,	Boca	Raton,	FL,	1992.	With	permission.)

In	some	materials	such	as	Fe3O4	(the	formula	can	also	be	written	as	FeFe2O4	to	emphasize
the	divalent	and	trivalent	forms	of	iron),	an	inverse	spinel	structure	is	observed.	In	this	well-
known	magnetic	material,	 Fe	 exists	 in	 both	 divalent	 (Fe2+)	 and	 trivalent	 (Fe3+)	 forms.	 The
inverse	 spinel	 structure	 is	 written	 as	 B(AB)O4,	 suggesting	 that	 half	 of	 the	 trivalent	 B-type
cations	occupy	tetrahedral	sites.	All	the	A-type	atoms	occupy	octahedral	sites;	therefore,	the
structure	is	known	as	an	inverse	spinel	structure.	The	other	half	of	the	B	cations	continue	to
occupy	 the	 octahedral	 sites.	 The	 type	 of	 trivalent	 ions	 occupying	 both	 tetrahedral	 and
octahedral	positions	has	a	large	effect	on	the	magnetic	coupling	between	them.	This,	in	turn,
has	 a	 significant	 effect	 on	 the	 ferrimagnetic	 or	 antiferromagnetic	 properties	 of	 materials



known	 as	 ceramic	 ferrites.	 Nickel	 ferrite	 (NiFe2O4)	 is	 another	 example	 of	 a	 material	 that
shows	the	inverse	spinel	structure	with	a	strong	magnetic	response.

1.12 DEFECTS	IN	MATERIALS

Arrangements	of	atoms	or	ions	in	real	materials	are	never	perfect.	In	some	cases,	atoms	are
missing	from	sites	at	which	they	are	supposed	to	be	present.	This	creates	a	defect	known	as	a
vacancy.	The	presence	of	vacancies	can	be	useful	in	many	applications	of	electronic	ceramics
because	vacancies	enhance	the	bulk	or	volume	diffusion	of	specific	types	of	ions.	Diffusion	is
a	process	by	which	atoms,	 ions,	or	other	species	move	owing	 to	a	gradient	 in	 the	chemical
potential	 (equivalent	 of	 concentration).	Diffusion	 continues	 until	 the	 concentration	 gradient
disappears.	The	process	of	diffusion	can	occur	through	many	pathways	(e.g.,	within	the	grain,
bulk,	 or	 along	 the	 grain	 boundaries,	 surfaces,	 etc.),	which	 is	 facilitated	 by	 the	 presence	 of
vacancies.	Diffusion	 also	 plays	 a	 key	 role	 in	 enabling	 semiconductor	 device	 processing	 as
well	as	 in	other	materials—for	example,	 in	processing	steps	such	as	 the	sintering	of	metals
and	ceramics.

We	sometimes	deliberately	add	different	atoms	to	a	material.	For	example,	we	add	boron
(B)	or	antimony	 (Sb)	atoms	 to	silicon	 to	change	and	better	control	 the	electrical	properties
(e.g.,	 electric	 conductivity)	 of	 the	 silicon.	 The	 atoms	 that	 we	 add	 (or	 that	 are	 sometimes
introduced	inadvertently	during	processing)	may	take	up	the	positions	of	the	host	atoms.	This
type	of	defect	 is	known	as	a	substitutional	atom	defect.	Typically,	 this	occurs	 if	 the	 radii	of
both	 the	 host	 and	 guest	 atoms	 are	 similar.	 In	 some	 other	 cases,	 the	 atoms	we	 add	 or	 those
introduced	 inadvertently	may	end	up	 in	 the	 interstitial	 sites.	This	 is	known	as	an	 interstitial
atom	defect.	These	different	types	of	point	defects	are	shown	in	Figure	1.27.

When	 atoms	 of	 one	 element	 dissolve	 in	 another	 element	 as	 substitutional	 or	 interstitial
atoms,	we	get	what	is	called	a	solid	solution.	This	is	similar	to	how	sugar	dissolves	in	water.
Formation	 of	 solid	 solutions	 strengthens	metallic	materials.	 In	 Figure	 1.4,	 α	 and	 β	 phases
represent	the	solid	solutions	of	the	lead–tin	system.

Solid	solution	formation	also	occurs	among	compounds	of	similar	crystal	structures	(e.g.,
BaTiO3	 and	 SrTiO3).	 The	 formation	 of	 solid	 solutions	 is	 used	 to	 tune	 the	 electrical	 and
magnetic	properties	of	ceramics,	metals,	and	semiconductors.	For	example,	by	forming	solid
solutions	of	GaAs	and	aluminum	arsenide	(AlAs),	we	can	produce	LEDs	that	emit	light	with
different	colors.

One	 of	 the	 best	 examples	 of	 the	 usefulness	 of	 point	 defects	 and	 formation	 of	 solid
solutions	is	the	doping	of	Si	to	make	an	n-type	semiconductor	or	a	p-type	semiconductor.	As
illustrated	in	Figure	1.28,	when	a	pentavalent	element,	such	as	antimony	(Sb)	or	phosphorus,
is	added	to	Si,	we	create	an	n-type	semiconductor.	This	is	because	substitutional	phosphorus
or	 antimony	 atoms	 occupy	 the	 silicon	 sites	 and	 thus	 provide	 an	 extra	 electron.	 At
temperatures	greater	than	~50	K,	this	electron	breaks	free	 from	the	phosphorus	or	antimony
atoms	 and	 becomes	 available	 for	 conduction.	 This	 leads	 to	 an	 n-type	 semiconductor	 (thus
named	because	most	of	the	charge	carriers	are	negatively	charged	electrons).

Similarly,	 when	 atoms	 of	 trivalent	 elements,	 such	 as	 boron	 or	 aluminum,	 are	 added	 to
silicon,	there	is	the	deficit	of	an	electron.	This	is	because	each	silicon	atom	contributes	four
electrons	 for	 covalent	 bonding.	However,	 an	 aluminum	or	 boron	 atom	can	 contribute	 only



three	 electrons	 from	 its	 outermost	 shell.	 This	 leads	 to	 the	 creation	 of	 a	 hole,	 which	 is
basically	 a	 missing	 electron.	 Such	 semiconductors	 are	 known	 as	 p-type	 (because	 of	 the
positive	effective	charge	on	a	hole).

FIGURE	1.27 Illustration	of	point	defects	 in	materials:	 (a)	vacancy,	 (b)	 interstitial	atom,	 (c)	 small	 substitutional	atom,	 (d)
large	substitutional	atom,	(e)	Frenkel	defect,	and	(f)	Schottky	defect.	All	of	 these	defects	disrupt	 the	perfect	arrangement	of
the	surrounding	atoms.	(From	Askeland,	D.	and	Fulay,	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,
DC,	2006.	With	permission.)

FIGURE	 1.28 Creation	 of	 antimony	 (Sb)	 doped	 n-type	 and	 boron	 (B)	 doped	 p-type	 silicon	 by	 the	 introduction	 of
substitutional	 atoms.	 (From	Askeland,	D.	 and	Fulay,	P.,	The	Science	and	Engineering	of	Materials,	 Thomson,	Washington,
DC,	2006.	With	permission.)

Atoms	of	elements	 that	are	added	purposefully	and	in	controlled	concentrations,	with	the
assumption	 that	 they	 will	 have	 a	 useful	 effect,	 are	 known	 as	 dopants.	 Different	 types	 of
semiconductors	 (i.e.,	 n-type	 and	 p-type)	 form	 the	 fundamental	 basis	 of	 many	 electronic
devices,	such	as	transistors,	diodes,	and	solar	cells.	We	will	learn	in	Chapter	3	that	the	level	of



conductivity	of	a	semiconductor	can	be	changed	by	controlling	 the	concentration	of	dopant
atoms.

Note	that	changes	in	the	conductivity	of	a	semiconductor	will	occur	regardless	of	whether
the	different	atoms	are	added	on	purpose	or	are	introduced	inadvertently.	Atoms	of	elements
that	 find	 their	way	 (usually	 inadvertently)	 into	a	material	of	 interest	during	 the	synthesis	or
fabrication	of	that	material	are	considered	impurities.	For	example,	when	silicon	crystals	are
grown,	 oxygen	 atoms	 are	 introduced	 as	 impurities	 that	 come	 from	 the	 contact	 of	 molten
silicon	 with	 the	 quartz	 (SiO2)	 crucibles.	 Typically,	 we	 want	 to	 minimize	 the	 levels	 of
impurities	in	any	material.	This	is	especially	the	case	for	semiconductors,	in	which	we	want	to
keep	the	impurity	levels	to	a	minimum	(parts	per	million	[ppm]	to	parts	per	billion	[ppb]	for
some	elements).

1.13 POINT	DEFECTS	IN	CERAMIC	MATERIALS

Point	defects	occur	in	ceramic	materials	as	well.	Many	ceramic	materials	are	based	on	ions.	It
is	not	possible	to	remove	a	certain	number	of	cations	or	anions	from	these	materials	without
causing	 an	 imbalance	 in	 the	 net	 electrical	 charge.	 Overall,	 the	 electrical	 neutrality	 and
stoichiometry	 of	 a	 material	 have	 to	 be	 maintained.	 There	 are	 several	 ways	 to	 meet	 this
requirement.	 A	 Schottky	 defect	 is	 a	 defect	 in	 which	 a	 certain	 number	 of	 cations	 and	 a
stoichiometrically	 equivalent	 number	 of	 anions	 are	 missing	 together	 (Figure	 1.27).	 For
example,	in	NaCl,	a	Schottky	defect	is	one	in	which	one	sodium	ion	(Na+)	and	one	chlorine
ion	(Cl1−)	are	missing.	For	a	Schottky	defect	in	Al2O3,	two	Al3+	and	three	O2−	are	missing.	A
Frenkel	defect	is	a	type	of	point	defect	in	which	an	ion	(often	a	cation)	leaves	its	original	site
and	enters	an	 interstitial	site	 (Figure	1.27).	 In	Section	1.14,	we	discuss	 the	notation	used	for
point	defects	in	ceramic	materials.

1.14 KRÖGER–VINK	NOTATION	FOR	POINT	DEFECTS

Defects	 in	 ceramic	materials	 are	 important	 for	many	 applications	 involving	 the	 electronic,
optical,	and	magnetic	properties	of	ceramics.	The	following	rules	must	be	observed	in	regard
to	the	presence	of	point	defects	in	ceramic	materials:

1.	 Electrical	neutrality—The	material,	as	a	whole,	must	be	electrically	neutral.
2.	 Mass	 balance—While	 introducing	 any	 defects,	 the	 mass	 balance	 must	 be	 maintained.

This	means	that	no	atoms	or	ions	disappear	when	defects	are	formed.
3.	 Site	 balance—When	 introducing	 defects,	 the	 overall	 stoichiometry	 of	 sites	 must	 be

maintained.

The	notation	used	to	describe	point	defects	in	ceramics	and	the	equations	that	govern	their
relative	concentrations	is	called	the	Kröger–Vink	notation.

For	 example,	 consider	 an	 oxygen	 vacancy	 in	 MgO.	 In	 the	 Kröger–Vink	 notation,	 the
vacancy	in	the	oxygen	site	of	MgO	is	shown	as	 .	The	symbol	V	represents	a	vacancy.	The
subscript	 (in	 this	case,	O)	 indicates	 the	 location	of	 the	defect	 (i.e.,	where	 the	defect	occurs).
When	an	oxygen	ion	(O2−)	is	missing,	a	negative	charge	of	two	is	missing.	This	means	that



the	 empty	 oxygen	 site	 has	 an	 effective	 positive	 charge	 of	 two	 in	 comparison	with	 a	 filled
oxygen	site	with	a	negative	charge,	−2.	An	effective	positive	charge	of	one	unit	is	indicated	by
the	 dot	 symbol	 (·),	 which	 is	 placed	 as	 a	 superscript.	 Because	 the	 oxygen	 vacancy	 has	 an
effective	charge	of	+2,	we	use	two	dots	in	the	superscript.	Therefore,	we	describe	the	presence
of	an	oxygen	ion	vacancy	as	 .	Similarly,	a	Mg2+	ion	vacancy	is	written	as	 .	In	this	case,
the	vacancy	defect	at	the	Mg	site	has	an	effective	negative	charge	of	−2,	which	is	shown	using
two	dashes	in	the	superscript.	Example	1.8	illustrates	the	use	of	the	Kröger–Vink	notation.

Example	1.8: Yttrium	Oxide	(Y2O3)-Zirconia	(ZrO2)	for	Oxygen	Sensors	and	Solid	Oxide	Fuel	Cells

1.	 Write	down	 the	equation	 that	 expresses	 the	 incorporation	of	Y2O3	 in	ZrO2	 to
form	a	solid	solution.	Assume	that	 the	concentration	of	Y2O3	 is	small	enough
so	that	new	compounds	are	formed.

2.	 What	defects	are	created	by	adding	Y2O3	to	ZrO2?	Are	these	defects	useful?

Solution

1.	 We	assume	that	yttrium	ions	(Y3+)	occupy	 the	sites	of	a	zirconium	ion	(Zr4+).
The	 basis	 for	 this	 assumption	 is	 that	 both	 are	 cations.	 We	 also	 consider	 the
relative	radii	of	the	ions.	Yttrium	(Y)	is	a	trivalent	ion;	when	it	occupies	a	Zr4+
site,	there	will	be	a	deficit	of	one	positive	effective	charge.	Thus,	this	defect	will
have	an	effective	charge	of	−1.

This	defect	is	written	as

In	ZrO2,	 for	each	Zr
4+	atom,	 there	 are	 two	oxygen	 atoms.	Therefore,	 to	 add	 two	Y	 ions	on	 two

Zr4+	 sites,	we	must	 use	 four	 oxygen	 sites	 in	 setting	 up	 a	 reaction	 equation.	 This	 is	 for	 site	 balance.
However,	one	Y2O3	molecule	 provides	 only	 three	 oxygen	 ions	 and	 the	 fourth	 oxygen	 site	 remains
empty.
Hence,	the	defect	reaction	for	incorporation	of	Y2O3	in	ZrO2	is	written	as	follows:

In	this	equation,	the	ZrO2	above	the	arrow	shows	that	Y2O3	(a	solute)	is	being	added	to	ZrO2	 (a
solvent).
We	check	Equation	1.12	 for	mass	balance,	 site	balance,	 and	electrical	neutrality.	We	can	 see	 that

for	the	site	balance,	we	have	used	two	zirconium	sites	and	four	oxygen	sites	(three	have	oxygen	ions
derived	 from	 yttria,	 and	 one	 site	 has	 an	 oxygen	 vacancy,	 ).	We	 also	 have	 charge	 balance—the
defect	caused	by	the	presence	of	the	Y	ion	in	the	Zr4+	site	has	an	effective	charge	of	−1,	and	we	have
two	of	these.	This	is	balanced	by	one	oxygen	ion	vacancy	 ,	which	has	an	effective	charge	of	+2.
We	also	have	mass	balance.

2.	 As	shown	in	equation	1.12,	point	defects	are	formed	in	Zr	and	O	sites.	Oxygen
vacancies	significantly	increase	the	oxygen	ion	conductivity	of	ZrO2.	For	each
mole	of	Y2O3	added,	we	get	one	mole	of	oxygen	vacancy	(Equation	1.12).	This
provides	a	significant	amount	of	room	for	the	oxygen	ions	to	move	around	or
diffuse.	This	is	why	zirconium	oxide	(ZrO2)	containing	small	amounts	of	Y2O3



(~8−10	mol	%)	is	an	oxygen	ion	conductor.	The	rate	at	which	oxygen	ions	can
diffuse	is	considerably	increased	in	Y2O3	added	ZrO2.

This	material	 is	known	as	yttria-stabilized	zirconia	 (YSZ).	 It	 functions	as	a	solid	electrolyte.	Thus,
by	 adding	 Y2O3	 to	 ZrO2,	 we	 have	 converted	 a	 dielectric	 (nonconducting)	 material	 into	 an	 ionic
conductor!	 Applications	 of	 this	 material	 include	 solid	 oxide	 fuel	 cells	 (SOFCs;	 Figure	 1.29)	 and
oxygen	 sensors	 that	 are	used	 in	 cars	 and	 trucks	 (Figure	1.30).	 In	 applications	 of	YSZ	 for	 SOFCs	or
oxygen	 gas	 sensors,	 what	 matters	 the	 most	 is	 the	 ionic	 conductivity	 of	 YSZ	 that	 is	 controlled	 by
introducing	oxygen	vacancies.
Another	 effect	 of	 adding	 Y2O3	 is	 that	 when	 the	 concentration	 of	 oxygen	 vacancies	 increases,	 a

cubic	polymorph	of	ZrO2	which	is	found	at	high	temperature	becomes	stabilized	at	room	temperature.
This	is	why	this	material	is	known	as	YSZ.	In	some	applications,	the	primary	interest	in	using	YSZ	is	for
its	mechanical	properties	and	high-temperature	stability.	When	 the	cubic	phase	 is	stabilized	by	adding
Y2O3,	 ZrO2	 does	 not	 show	 phase	 changes	 from	 cubic	 to	 tetragonal	 to	 monoclinic	 forms	 during
cooling	 of	 sintered	 bodies.	 This	 avoids	 the	 strain	 induced	 by	 the	 transformations,	 which	 would
otherwise	cause	zirconia	ceramics	to	break	during	fabrication	or	thermal	cycling	(heating	and	cooling).

FIGURE	1.29 Schematic	representation	of	a	planar-type	solid	oxide	fuel	cell.	The	electrolyte	typically	is	yttria-stabilized
zirconia	(YSZ).	Calcium-doped	lanthanum	manganite	(LaMnO3)	is	used	as	the	cathode,	and	YSZ-containing	nickel	(Ni)	is	used
as	the	anode.	The	interconnecting	material	is	lanthanum	chromite	(LaCrO3).	(From	Singhal,	S.C.,	Solid	State	Ionics.,	152–153,
405–10,	2002.	With	permission.)



FIGURE	1.30 Schematic	representation	of	a	zirconia	oxygen	sensor	used	in	cars	and	trucks.	(Courtesy	of	Dynamic-Ceramic
Ltd,	UK.)

FIGURE	1.31 Illustration	of	an	edge	dislocation	and	a	screw	dislocation.	(From	Askeland,	D.	and	Fulay,	P.,	The	 Science
and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

1.15 DISLOCATIONS

A	dislocation	is	a	line	defect	that	represents	half	a	plane	of	atoms	missing	from	an	otherwise
perfect	 crystal	 structure.	 The	 two	 types	 of	 dislocations—an	 edge	 dislocation	 and	 a	 screw
dislocation—are	shown	in	Figure	1.31.	A	main	difference	is	the	shape	of	the	defective	plane.
In	 the	 edge	 dislocation,	 a	 flat	 defective	 plane	 is	 inserted	 between	 two	 crystal	 planes.	 In	 the
screw	dislocation,	an	array	of	atoms	slips	on	the	defective	plane.	In	many	cases,	dislocations
in	real	materials	have	characteristics	of	both	edge	dislocation	and	screw	dislocation.

Dislocations	 can	 have	 a	 significant	 and	 deleterious	 effect	 on	 the	 properties	 of
semiconductors	 and	 optoelectronic	 materials.	 Dislocations	 in	 semiconductors	 typically	 are
formed	 during	 crystal	 growth	 or	 during	 semiconductor	 device	 processing.	Many	 years	 of
research	have	gone	 into	 ensuring	 that	 essentially	dislocation-free	 silicon	 and	other	 crystals
can	be	grown.

In	 most	 situations,	 the	 presence	 of	 dislocations	 in	 semiconductors	 is	 considered
deleterious.	 For	 example,	 in	 gallium	 nitride	 (GaN),	which	 is	 a	 semiconductor	 exhibiting	 a



high	 radiative	electron-hole	 recombination	 rate,	 the	presence	of	dislocations	has	a	negative
effect	on	the	optoelectronic	devices	by	reducing	the	radiative	recombination	rate.

FIGURE	 1.32 Illustration	 of	 a	 semiconductor	 film	 (a)	 that	 is	 coherently	 strained	 and	 (b)	 that	 has	 a	 lattice	 mismatch
accommodated	by	misfit	dislocations.	(Reprinted	from	Encyclopedia	of	Materials:	Science	and	Technology,	Stach,	E.	A.,	and
R.	Hull.	Dislocations	in	semiconductors.	2301–12,	Copyright	2008,	with	permission	from	Elsevier.)

The	development	of	LEDs	and	laser	diodes	that	emit	a	blue	or	violet	light	was	hindered	by
the	unavailability	of	GaN	materials	with	very	low	dislocation	levels.	In	recent	years,	superior
materials-processing	methods	for	high	quality	GaN	films	have	been	developed,	which	has	in
turn	led	to	the	development	of	GaN-based	blue	or	violet	lasers.

These	blue	or	violet	laser-emitting	devices	have	enabled	the	so-called	Blu-ray	format	for
high-definition	 (HD)	 optical-data	 storage.	The	Blu-ray	 format	 provides	more	 capacity	 than
digital	video	disks	(DVDs).	It	uses	a	shorter	wavelength	(λ)	of	405	nm	for	optically	writing
the	information	onto	a	disk.	This	wavelength	is	shorter	than	that	of	the	typical	red	lasers	(λ	=
660	 nm)	 that	 are	 used	 for	 authoring	 DVDs.	 For	 conventional	 compact	 discs	 (CDs),	 the
wavelength	 of	 the	 laser	 used	 is	 longer—780	 nm.	 The	 use	 of	 the	 shorter-wavelength	 GaN
lasers	means	 that	 a	 single-layer	optical	 disk	 can	hold	25	GB	of	data	 (about	9	hours	of	HD
video	content).

It	 is	very	difficult	 to	grow	defect-free	GaN	single	crystals.	Therefore,	we	typically	grow
GaN	on	another	substrate,	such	as	sapphire.	This	process	 is	also	used	for	 the	fabrication	of
many	 other	 semiconductor	 devices	 and	 is	 known	 as	 epitaxy.	 In	 this	 process,	 a	 strain	 is
introduced	at	the	interface	if	the	lattice	constants	of	the	film	and	the	substrate	are	not	exactly
the	same.

In	 the	case	of	GaN	on	sapphire	 (Al2O3),	 the	mismatch	 is	about	16%	for	 sapphire.	At	 the
interface,	 the	 strain	 that	 exists	due	 to	 lattice	mismatch	 is	often	 relieved	by	 the	 formation	of
what	are	known	as	misfit	dislocations	(Figure	1.32).	In	GaN,	dislocations	known	as	threading
dislocations	originate	at	the	interface	and	travel	all	the	way	to	the	surface.	In	principle,	the	line
directions	of	the	threading	dislocations	are	normal	to	film/substrate	interface.	This	means	that
a	 formation	 of	 the	 edge	 dislocation	 relives	 the	 strain,	 but	 threading	 dislocations	 also	 have
characteristics	 of	 the	 screw	 dislocation.	Dislocations	 in	GaN,	 as	 examined	 by	 transmission
electron	microscopy	(TEM)	and	high-resolution	TEM	(HRTEM),	are	shown	in	Figure	1.33.



In	 some	 cases,	 the	 presence	 of	 dislocations	 away	 from	 the	 active	 regions	 of	 electrical
devices	 can	 be	 useful.	 Dislocations	 can	 attract	 some	 of	 the	 impurity	 atoms	 toward	 them,
leaving	 the	 regions	 in	 which	 devices	 are	 active	 with	 fewer	 defects.	 This	 method	 of
segregating	 impurities	 is	 known	 as	 gettering.	 Impurities	 in	 a	 semiconductor,	 such	 as
transition	metal	 impurities	 including	 iron	and	nickel,	are	concentrated	by	attracting	 them	to
defects	such	as	precipitates	and	dislocations.

1.16 STACKING	FAULTS	AND	GRAIN	BOUNDARIES

Similar	to	point	defects	(that	are	considered	zero-dimensional	defects)	and	dislocations	(one-
dimensional	 line	defects),	we	 also	 find	 area	defects	 (two-dimensional	 defects).	One	 type	of
area	 defect	 is	 a	 stacking	 fault.	 We	 have	 seen	 that	 the	 FCC	 structure	 can	 be	 visualized	 by
considering	 the	 stacking	 of	 atoms	within	 the	 planes	 as	ABCABCABC…	(Figure	1.12).	 In	 a
stacking	fault,	one	of	the	planes	in	the	expected	sequence	is	missing.	Therefore,	the	stacking
sequence	may	look	like	ABCABABCABC….	Thus,	in	this	stacking	fault,	a	small	region	of	the
material	shows	the	HCP-stacking	sequence.

FIGURE	1.33 (a)	Transmission	electron	microscope	image	of	dislocations	in	gallium	nitride	deposited	on	sapphire	(Al2O3).
(b)	 The	 core	 of	 a	 dislocation	 as	 seen	 using	 high-resolution	 transmission	 electron	microscopy	 (HRTEM):	 stacking	 faults	 are
marked	as	F	and	S.	(Courtesy	of	Dr.	J.	Narayan,	North	Carolina	State	University,	Raleigh,	NC.)



FIGURE	 1.34 Ferroelectric	 domains	 in	 lead-free	 K0.5Na0.5NbO3	 ceramics.	 (From	 López-Juárez,	 R.,	 et	 al.,	 Lead-free
ferroelectric	 ceramics	with	 perovskite	 structure.	 In	Ferroelectrics-Material	 Aspects,	 ed.	M.	 Lallart.	 Rijeka,	 Croatia:	 InTech,
2011.)

Other	 examples	 of	 area	 defects	 are	 domain	 boundaries,	 low-angle	 boundaries,	 and	 twin
boundaries.	A	domain	 is	 a	 small	 region	 of	 a	 material	 in	 which	 the	 dielectric	 or	 magnetic
polarization	direction	is	the	same.	We	will	learn	that	in	magnetic	and	ferroelectric	materials,
the	entire	material	cannot	be	stable	energetically	as	one	 large	magnet	or	an	electric	dipole,
respectively.	 To	 minimize	 the	 overall	 free	 energy,	 the	 material	 spontaneously	 shows	 the
formation	 of	 multiple	 domains	 arranged	 in	 a	 random	 fashion.	 The	 formations	 and
arrangements	of	domains	are	extremely	important	in	determining	the	properties	of	magnetic
and	ferroelectric	materials.	A	scanning	electron	micrograph	of	 the	domains	 in	ferroelectric
ceramics	is	shown	in	Figure	1.34.

One	of	 the	most	 important	 features	of	 the	microstructure	of	a	polycrystalline	material	 is
the	presence	of	grain	boundaries	(Figures	1.6	and	1.34).	At	 the	grain	boundaries,	 the	atomic
order	 is	disrupted.	This	 is	why	grain	boundaries	are	considered	defects.	Because	grains	are
three-dimensional,	 the	 grain	 boundary	 is	 actually	 a	 surface	 in	 three	 dimensions;	 therefore,
grain	boundaries	are	considered	three-dimensional	defects.

Grain	 boundary	 is	 one	 of	 the	 most	 important	 features	 in	 terms	 of	 its	 effects	 on	 the
properties	of	materials.	These	effects	are	discussed	in	the	next	section.

1.17 MICROSTRUCTURE–PROPERTY	RELATIONSHIPS

1.17.1 GRAIN	BOUNDARY	EFFECTS

If	we	need	to	compare	the	electrical	or	other	properties	of	two	different	grades	of	a	BaTiO3-
based	polycrystalline	material,	we	can	refer	to	the	properties	of	these	materials	in	the	context
of	 their	microstructure.	For	example,	we	may	conclude	 that	 finer-grained	BaTiO3	 ceramics
have	 finer	 domains	 and	 higher	 dielectric	 constant	 (k).	We	will	 learn	 in	 Chapter	 7	 that	 the
dielectric	 constant	 is	 a	measure	 of	 a	material’s	 ability	 to	 store	 an	 electrical	 charge.	 Grain
boundary	regions	often	also	have	very	different	electrical	or	magnetic	properties	than	those
of	the	material	inside	the	grains.



1.17.2 GRAIN	SIZE	EFFECTS

As	the	grain	size	decreases,	 the	area	of	 the	grain	boundary	 increases.	 In	many	applications,
grain	boundaries	are	used	to	control	the	properties	of	materials.	Most	often,	a	polycrystalline
metallic	material	exhibits	a	higher	mechanical	strength	than	that	of	a	coarse-grained	material
with	essentially	the	same	composition.

The	presence	of	grain	boundaries	also	has	a	significant	effect	on	the	electrical,	magnetic,
and	optical	properties	of	materials.	For	example,	the	electrical	resistivity	of	a	conductor	such
as	 copper	 or	 silver	 typically	 is	 higher	 for	 a	 polycrystalline	material	 than	 that	 for	 a	 single
crystal	of	the	same	material.	This	is	because	of	the	increased	scattering	of	electrons	by	atoms
in	the	grain	boundary	regions.

FIGURE	1.35 Effect	of	grain	size	on	the	optical	properties	of	alumina	ceramics.	(a)	Finer-sized	alumina	grain	is	opaque.	(b)
Polycrystalline	 alumina	with	 larger	grain	 size	 is	 translucent.	 (From	Kim	et	 al.	 2009.	Acta	Mater	 57(5):1319–26,	 2009.)	 (c)
Parts	made	from	polycrystalline	alumina	with	larger	grain	size	are	translucent.	(Courtesy	of	Covalent	Materials	Corporation,
Tokyo,	Japan.)	(d)	Single-crystal	sapphire	substrates	are	transparent.	(Courtesy	of	Kyocera	Corporation,	Kyoto,	Japan.)

The	 optical	 properties	 of	materials	 are	 also	 affected	 by	 the	 grain	 boundaries	 and	 pores
(holes)	 in	polycrystalline	ceramics	because	these	contribute	 to	 the	scattering	of	 light.	Al2O3
ceramics	 can	be	made	 translucent	by	using	 special	 additives	 and	processing	 techniques	 that
lead	 to	 larger	 grain	 size.	Polycrystalline	Al2O3	 ceramics	with	 a	 fine	grain	 size	 are	 usually
opaque	(Figure	1.35a).	This	is	largely	because	of	the	scattering	of	light	from	both	the	pores
and	 the	 grain	 boundaries.	 The	 microstructure	 of	 larger-grain	 ceramics	 that	 are	 optically
translucent	 is	 shown	 in	 Figure	 1.35b.	 Translucent	 Al2O3	 ceramics	 are	 used	 in	 many
applications,	such	as	in	envelopes	for	high-pressure	sodium	vapor	lamps	(Figure	1.35c).	With
single-crystal	Al2O3	 ceramics,	 the	 material	 essentially	 becomes	 transparent	 (Figure	 1.35d)



because	 this	 material	 has	 very	 little	 intrinsic	 absorption	 and	 there	 are	 no	 pores	 or	 grain
boundaries	 to	 scatter	 light.	 Light	 scattering	 by	 the	 grain	 boundaries	 and	 the	 pores	 is
schematically	 illustrated	 in	Figure	1.36.	 In	 this	 illustration,	 the	hexagonal	 regions	 represent
the	grains	in	a	polycrystalline	material.	Details	of	the	scattering	are	explained	in	the	chapter
on	optical	properties	of	materials.

FIGURE	1.36 Processes	that	cause	absorption	and	scattering	of	light	in	polycrystalline	ceramics.	(Adapted	from	Covalent
Materials	Corporation,	Tokyo,	Japan.	With	permission.)

Similar	to	Al2O3,	many	other	transparent	or	translucent	polycrystalline	ceramic	materials,
such	as	yttrium	aluminum	garnet	(YAG),	yttrium	oxide	(Y2O3),	and	lead	lanthanum	zirconium
titanate	(PLZT),	have	also	been	developed	for	different	commercial	applications.

1.17.3 MICROSTRUCTURE-INSENSITIVE	PROPERTIES

We	 must	 emphasize	 two	 points	 regarding	 the	 microstructure–property	 relationship	 of
materials.	 First,	 when	 we	 change	 the	 microstructure	 of	 a	 material,	 many	 properties	 can
change.	 In	 the	 case	 of	 Al2O3	 ceramics,	 as	 discussed	 before,	 an	 increase	 in	 the	 grain	 size
increases	optical	transparency;	however,	decreases	fracture	toughness.	Likewise,	a	change	in
the	microstructure	may	result	in	concomitant	changes	in	many	properties.

The	 second	 point	 that	 needs	 to	 be	 emphasized	 is	 that	 not	 all	 properties	 of	materials	 are
sensitive	to	microstructure.	A	property	that	does	not	change	with	microstructure	is	known	as	a
microstructure-insensitive	property.	For	example,	typically,	the	Young’s	modulus	(Y)	or	elastic
modulus	(E)	of	a	metallic	or	ceramic	material	will	not	change	drastically	with	changes	in	the
grain	size.	This	is	because	Young’s	modulus,	which	is	a	measure	of	the	difficulty	with	which
elastic	strain	can	be	introduced,	depends	on	the	strength	of	the	interatomic	bonds	in	a	material.
When	 we	 change	 the	 microstructure,	 we	 do	 not	 change	 the	 nature	 of	 the	 bonds;	 hence,
Young’s	modulus	will	not	be	affected.	However,	the	so-called	yield	stress	(σYS)	of	a	material
—a	level	of	stress	that	initiates	permanent	or	plastic	deformation—typically	depends	strongly
upon	 the	 average	 grain	 size	 of	 the	material.	 This	 is	 because	 the	movement	 of	 dislocations
(known	 as	 slip)	 that	 causes	 plastic	 deformation	 is	 resisted	 by	 disruptions	 in	 the	 atomic
arrangements	occurring	at	the	grain	boundary	regions.



We	will	now	turn	our	attention	to	amorphous	materials.

1.18 AMORPHOUS	MATERIALS

In	some	materials,	the	atoms	(or	ions)	do	not	exhibit	an	LRO.	Such	materials	are	considered
amorphous	or	noncrystalline	materials,	or	are	simply	called	glasses.	We	use	the	term	glass	to
refer	to	amorphous	materials	(metallic	or	ceramic)	derived	by	the	relatively	rapid	cooling	of
a	melt.	Amorphous	materials	 typically	 are	 formed	under	 nonequilibrium	conditions	during
processing	(e.g.,	relatively	faster	cooling	of	a	melt	or	decomposition	of	a	vapor).	As	a	result,
they	tend	to	be	thermodynamically	unstable.	Inorganic	glasses	based	on	silica	(SiO2),	which
are	 used	 to	make	 optical	 fibers,	 and	amorphous	 silicon	 (a-Si)	 are	 examples	 of	 amorphous
materials.

1.18.1 ATOMIC	ARRANGEMENTS	IN	AMORPHOUS	MATERIALS

There	 exists	 a	 short-range	 order	 (SRO)	 of	 atoms	 or	 ions	 in	 amorphous	 materials.	 The
difference	between	an	SRO	and	an	LRO	in	amorphous	silicon	(a-Si)	and	crystalline	silicon	(c-
Si),	respectively,	is	shown	in	Figure	1.37.

Note	that	the	a-Si	has	a	structure	wherein	the	angles	at	which	the	silicon	atom	tetrahedra	are
connected	to	one	another	and	the	distances	between	the	silicon	atoms	are	not	exactly	the	same
throughout	the	structure.

a-Si	is	made	using	the	so-called	chemical	vapor	deposition	(CVD)	process,	which	involves
decomposing	silane	(SiH4)	gas.	A	concentration	of	hydrogen	atoms	is	also	incorporated	into
the	structure.	These	hydrogen	atoms	pacify	 some	of	 the	 silicon	bonds	 that	would	otherwise
remain	 unsaturated	 or	 dangling	 (Figure	 1.37).	 This	 is	 helpful	 for	 microelectronic	 devices
based	 on	 a-Si	 because	 the	 unsaturated	 silicon	 bonds	 would	 make	 the	 devices	 electrically
inactive.

Since	 the	 film	 deposition	 does	 not	 require	 high-temperature	 processing,	 a-Si	 is	 used	 in
making	 thin-film	 transistors	 (TFTs)	 that	 are	 integrated	onto	 glass	 surfaces.	The	underlying
circuitry	created	with	such	a-Si-based	TFTs	is	used	to	drive	liquid	crystal	displays	in	personal
computers,	televisions,	and	electronic	ink	(e-ink)-based	bistable	displays	found	in	most	state-
of-the-art	electronic	book	readers	(e.g.,	Kindle).

Another	technologically	important	amorphous	material	is	SiO2-based	glass.	In	both	c-SiO2
and	 a-SiO2,	 the	 silicon	 and	 oxygen	 ions	 are	 connected	 in	 a	 tetrahedral	 arrangement.	 This
means	that	each	silicon	ion	(Si4+)	is	always	surrounded	by	four	oxygen	ions.	This	is	the	SRO.
However,	 in	SiO2-based	glass,	 the	 angles	 at	which	 these	 tetrahedra	 are	 interconnected	vary.
Thus,	 the	 distances	 between	 silicon	 ions	 in	 different	 tetrahedra	 also	 vary	 and	 LRO	 is	 not
found	 in	 a-SiO2.	c-SiO2	 exhibits	many	 equilibrium	 and	 nonequilibrium	polymorphs.	These
have	 both	 LRO	 and	 SRO.	 For	 a	 given	 polymorph	 of	 c-SiO2,	 the	 angles	 at	which	 different
silicon–oxygen	tetrahedra	are	connected	remain	essentially	the	same.



FIGURE	1.37 A	schematic	representation	of	the	difference	between	short-range	order	in	amorphous	silicon	and	long-range
order	in	crystalline	silicon.	(From	Singh,	J.,	Optoelectronics:	An	Introduction	to	Materials	and	Devices,	McGraw	Hill,	New
York,	1996.	With	permission.)

Note	 that	a	material	does	not	have	 to	be	either	crystalline	or	amorphous—it	can	exist	 in
both	forms	either	simultaneously	or	under	different	conditions.	We	often	encounter	materials
that	 have	 both	 crystalline	 and	 amorphous	 phases.	 For	 example,	 in	 polyvinylidene	 fluoride
(PVDF),	one	of	the	most	widely	used	piezoelectric	materials	(see	Chapter	9	on	ferroelectrics,
piezoelectrics,	 and	 pyroelectrics),	 the	 microstructure	 consists	 of	 crystalline	 regions
embedded	in	an	amorphous	matrix.	Most	polymers	are	mixtures	of	crystalline	and	amorphous
regions	interspersed	within	the	material.	The	processing	or	manufacturing	methods	used	for
creating	 a	 material	 have	 a	 significant	 effect	 on	 whether	 it	 is	 crystalline,	 amorphous,	 or	 a
mixture	 of	 the	 two.	 The	 development	 of	 polymers	 for	 flexible	 and	 lightweight	 electronic
devices	is	an	active	area	of	research	and	development	known	as	flexible	electronics.

1.18.2 APPLICATIONS	OF	AMORPHOUS	MATERIALS

Several	factors	need	to	be	considered	before	choosing	an	amorphous	or	a	crystalline	form	of
a	material	for	a	given	application.	For	example,	amorphous	silica	is	used	for	making	optical
fibers	because	kilometers	of	continuous	fibers	can	be	drawn	from	molten	SiO2.	In	principle,
we	 could	 use	 single-crystal	 SiO2	 to	 produce	 the	 optical	 fibers,	 because	 it	 is	 optically
transparent.	 However,	 this	 is	 not	 easy	 or,	 more	 importantly,	 cost-effective.	 For	 the	 same
reason	(i.e.,	manufacturability	and	cost),	a	main	constituent	of	building	glass	windows	is	also
amorphous	SiO2.	If	a	crystalline	form	of	SiO2	is	used,	it	is	difficult	to	fabricate	such	a	flat	and
shiny	surface.



In	contrast,	amorphous	silica	cannot	be	used	for	certain	applications,	such	as	the	so-called
quartz	 clocks.	Only	SiO2	 crystals	 exhibit	what	 is	 described	 as	 a	piezoelectric	 effect,	 where
voltage	is	generated	across	a	material	when	it	is	stressed	(Sections	10.5	and	10.6).	This	effect
is	used	to	make	quartz	clocks.

The	properties	of	a	material	can	be	very	different	in	the	amorphous	and	crystalline	states.
With	some	technologies,	we	can	make	use	of	both	the	amorphous	and	crystalline	forms	of	a
material.	 For	 example,	 in	 phase	 change	 memory	 (PCM)	 technology,	 the	 back-and-forth
switching	of	a	material	between	the	amorphous	and	crystalline	states	is	used	for	data	storage.
Materials	based	on	a	ternary	compound	of	GeSbTe,	known	as	the	GST	materials,	are	used	in
PCM	 technology.	 PCM	 technology	 utilizes	 the	 differences	 between	 the	 electrical	 resistivity
values	of	the	amorphous	and	crystalline	forms	of	the	materials.

FIGURE	 1.38 Phase	 change	 memory	 illustration.	 (Courtesy	 of	 Dr.	 Ritesh	 Agarwal,	 University	 of	 Pennsylvania,
Philadelphia,	PA.)

An	electrical	resistor	rapidly	heats	up	the	material	and	changes	its	state	from	crystalline	to
amorphous	(Figure	1.38).	The	amorphous	material,	 in	 this	case,	exhibits	a	higher	resistivity
than	the	crystalline	material	(Figure	1.39).	These	changes	 in	electrical	properties	are	sensed
by	other	 appropriate	 circuitry.	The	 amorphous	 state	 has	 high	 resistivity	 and	uses	 “1”	 as	 its
code	(data	write).	The	crystalline	state	has	low	resistivity	and	uses	“0”	as	its	code	(data	erase).
The	GST	materials	can	be	cycled	rapidly	and	reversibly	between	the	reset	amorphous	and	set
crystalline	phases	by	heating	and	cooling.	This	is	the	basis	for	PCM	technology.



FIGURE	1.39 Resistivity	of	a	GST-nanowire	phase	change	memory	device.	(Courtesy	of	Dr.	Ritesh	Agarwal,	University	of
Pennsylvania,	Philadelphia,	PA.)

A	similar	concept	 is	used	for	rewritable	CD	and	DVD	media.	For	these	technologies,	 the
differences	between	the	optical	properties	of	materials	in	the	amorphous	and	crystalline	states
are	used	to	write	and	read	information	on	the	media.	The	amorphous	phase	is	less	reflective
than	 the	 crystalline	 phase.	This	 difference	 in	 the	 reflectivity	 is	 exploited	 in	 the	 optical	 data
storage.

1.19 NANOSTRUCTURED	MATERIALS

In	 recent	 years,	 considerable	 research	 and	 development	 has	 occurred	 with	 respect	 to
nanostructured	 materials.	 The	 grain	 size	 or	 crystallite	 size	 of	 these	materials	 is	 extremely
small	(~10	nm	or	less).	In	terms	of	length	scales,	nanostructured	materials	fall	between	those
that	 are	 amorphous	 and	 crystalline.	 The	 nanostructured	 form	 causes	 an	 unusually	 high
fraction	 of	 atoms	 in	 the	 material	 to	 be	 located	 at	 the	 grain	 boundaries	 (if	 the	 material	 is
polycrystalline)	 or	 at	 the	 particle	 surfaces	 (if	 the	material	 is	 in	 the	 form	of	 nanoparticles).
This	 and	 other	 phenomena	 (which	 could	 be	 quantum	 mechanical	 in	 nature)	 often	 lead	 to
unique	and	unexpected	changes	in	the	properties	of	a	nanostructured	material.

For	example,	 the	band	gap	 (Eg)	 of	 a	 semiconductor	becomes	 larger	 for	materials	 in	 the
nanoparticle	form.	This	increase,	which	results	from	smaller	particle	size,	is	known	as	blue
shift	and	is	easily	observed	by	examining	changes	in	the	dispersions	colors	of	semiconductor
nanoparticles	(also	known	as	quantum	dots).	In	addition,	the	availability	of	nanomaterials	has
led	to	the	possibility	of	using	surface	effects,	such	as	surface	plasmons,	because	of	the	large
surface	area/volume	ratio	of	nanomaterials.	This	has	created	new	opportunities	in	the	areas	of
nanophotonics	 and	 quantum	 computing.	 Also,	 mechanical	 properties	 of	 nanostructured
materials	are	very	different	from	their	bulk	counterpart.	The	strength	of	materials	consisting



of	 nanosize	 grains	 is	 much	 greater	 than	 the	 materials	 of	 micrometer-size	 grains.	 Also,
nanostructured	materials	 can	 be	much	more	 ductile	 than	 traditional	 bulk	materials.	 This	 is
because	nanomaterials	have	the	ability	to	suppress	the	formation	of	extended	defects.	Though
point	defects	are	generated	in	nanostructured	materials,	these	defects	can	easily	travel	to	grain
boundaries,	 which	 are	 much	 closer	 to	 the	 location	 of	 the	 point	 defects	 in	 nanostructured
materials	 than	 in	 traditional	 bulk	 materials.	 Then,	 the	 point	 defects	 of	 the	 nanostructured
materials	reaching	the	grain	boundaries	are	annihilated	because	the	grain	boundary	functions
as	a	defect	sink.	Suppression	of	 the	defect	generation	process	 (or	acceleration	of	 the	defect
annihilation)	 results	 in	 unique	 mechanical	 properties	 (e.g.,	 high	 strength	 and	 ductility)	 of
nanostructured	materials.

1.20 DEFECTS	IN	MATERIALS:	GOOD	NEWS	OR	BAD	NEWS?

The	term	defect	is	somewhat	of	a	misnomer	because,	when	defects	are	present,	the	properties
of	a	material	actually	may	be	improved!	Thus,	 the	term	defect	 just	refers	to	the	fact	 that	 the
atomic	arrangement	in	a	given	material	is	disturbed	and	is	not	perfect.	Amorphous	materials
can	have	 a	very	high	 concentration	of	defects.	However,	 the	presence	of	point	 defects,	 line
defects,	 area	 defects	 (domains,	 stacking	 faults),	 and	 volume	 defects	 (grain	 boundaries)	 in
materials	is	extremely	important	and	useful	for	several	reasons.

The	 addition	 of	 antimony	 or	 boron	 to	 silicon	 (Figure	 1.28)	 brought	 about	 the	 entire
technology	of	ICs	based	on	silicon.	The	presence	of	point	defects	also	enables	the	conversion
of	insulating	ceramic	materials	into	semiconductors.	There	are	plenty	of	examples	where	the
presence	 of	 point	 defects	 is	 not	 just	 desirable	 but	 essential.	One	 example	 is	 the	 creation	 of
oxygen	vacancies	in	zirconia	to	turn	it	into	an	ionic	conductor,	which	allows	for	the	transport
of	O2−	ions.	In	cases	of	metals	and	alloys,	the	presence	of	point	defects	is	also	critical	for	the
enhancement	 of	 mechanical	 properties.	 For	 example,	 pure	 copper	 is	 too	 soft.	 The	 elastic
modulus	and	yield	stress	of	copper	are	 improved	considerably	when	we	add	other	alloying
elements	(e.g.,	beryllium	[Be])	to	form	solid	solutions	or	precipitates.

However,	the	presence	of	defects	can	be	detrimental	in	many	situations.	For	example,	in	the
case	of	solid	solution-	or	precipitate-based	strengthening	of	metals,	electrical	conductivity	is
lowered,	 although	 some	mechanical	 properties,	 such	 as	yield	 strength	 (σYS),	 are	 improved.
The	effective	speed	(mobility)	with	which	electrons	can	move	in	a	single-crystal	silicon	is	far
greater	than	that	in	a-Si,	though	highly	crystalline	silicon	is	much	more	difficult	to	fabricate
than	a-Si.	Thus,	defects	can	be	detrimental	for	certain	applications.

To	summarize,	the	term	defect	does	not	mean	that	the	material	is	defective.	The	presence	of
certain	 types	 of	 defects	 (i.e.,	 imperfections	 in	 atomic	 or	 ionic	 arrangements)	 may	 be
beneficial	 and,	 sometimes,	 may	 even	 be	 essential.	 However,	 certain	 types	 of	 defects	 have
deleterious	 effects	 and	 must	 be	 avoided,	 thereby	 suggesting	 the	 importance	 of	 defect
engineering	in	materials.

PROBLEMS

1.1 If	the	lattice	constant	of	BCC	Fe	is	2.8666	Å,	what	is	its	density?	Assume	that	the	atomic
mass	of	Fe	is	55.85.



1.2 For	the	DC	structure,	show	that	the	packing	fraction	is	about	34%.
1.3 What	is	the	theoretical	density	of	Ge?	Assume	that	the	atomic	radius	of	Ge	is	122.3	pm.
1.4 What	is	the	theoretical	density	of	GaAs?	Assume	that	the	lattice	constant	of	GaAs	is	565

pm.	The	atomic	masses	of	Ga	and	As	are	69.7	and	74.9,	respectively.
1.5 Similar	 to	 the	 volume-packing	 fractions,	we	 can	 calculate	 the	 area-packing	 fractions

for	planes	in	a	unit	cell.	Calculate	the	area-packing	fractions	for	FCC-Ni	for	the	planes
(100)	and	(111).	Which	plane	is	close-packed?

1.6 Sketch	 the	 following	 planes	 and	 directions	 in	 a	 cubic	 unit	 cell:	 [111],	 [	 10],	 [011],
(111),	and	(123).

1.7 Sketch	 the	 crystal	 structure	 of	 a	 PZT	 ceramic	 with	 a	 perovskite	 structure.	 Label	 the
different	ions	clearly.

1.8 Calculate	the	interplanar	spacing	for	the	(100),	(110),	and	(111)	planes	in	Si.
1.9 Show	that	the	Miller–Bravais	indices	for	direction	[110]	would	be	 	.
1.10 The	equation	for	the	formation	of	a	Schottky	defect	in	MgO	is	written	as

Write	down	the	equation	for	the	Schottky	defect	formation	in	Al2O3.

1.11 In	 addition	 to	 Y2O3,	 we	 can	 also	 add	 MgO	 to	 ZrO2	 to	 stabilize	 the	 cubic	 crystal
structure	 (Equation	1.12).	Write	 the	 equation	 that	will	 represent	 the	 incorporation	 of
small	concentrations	of	MgO	into	ZrO2.

1.12 Why	 must	 the	 Al2O3	 ceramics	 used	 in	 Na	 (sodium)	 vapor	 lamps	 be	 transparent	 or
translucent?	 How	 does	 a	 larger	 grain	 size	 help	 with	 the	 transparency	 of	 Al2O3
ceramics?

1.13 Both	p-Si	and	a-Si	are	used	for	manufacturing	solar	cells.	For	manufacturing	ICs,	we
use	single-crystal	Si.	Why?

1.14 Although	both	graphite	and	diamond	are	based	on	strong	covalent	C–C	bonds,	graphite
is	used	as	a	solid	lubricant,	whereas	diamond	is	one	of	the	hardest	naturally	occurring
materials.	Why	is	this?

1.15 What	 are	 the	 advantages	 of	 developing	 microelectronic	 components	 based	 on
polymers?

1.16 State	 one	 example	 each	 of	 an	 application	 where	 the	 presence	 of	 dislocations	 is	 (a)
useful	and	(b)	deleterious.

1.17 What	is	the	principle	by	which	PCM	technology	works?
1.18 Similar	 to	GST	materials	 that	 are	 used	 in	 PCM,	 SiO2	 also	 exists	 in	 amorphous	 and

crystalline	 forms.	Compared	 to	GST,	SiO2	 is	 inexpensive.	Will	 it	 be	 possible	 to	 use
SiO2	for	PCM?

1.19 Why	does	 the	Blu-ray	 format	offer	much	higher	density	 for	data	storage	 in	CDs	and
DVDs?

1.20 Conventional	solar	cells	are	made	using	polycrystalline	silicon	and	offer	an	efficiency
of	 about	 15%.	 Some	 companies	 are	 developing	 solar	 cells	 based	 on	 copper	 indium



gallium	 selenide	 (CIGS).	 These	 CIGS-based	 solar	 cells	 can	 offer	 efficiencies	 up	 to
40%.	Why	can	we	not	just	switch	over	to	these	more	efficient	CIGS-based	solar	cells?

1.21 Some	companies	have	developed	solar	cells	based	on	organic	materials.	The	efficiency
of	these	solar	cells	is	about	5%.	If	we	already	have	Si	solar	cells	that	operate	at	~15%,
why	should	we	develop	solar	cells	based	on	polymers	that	are	not	as	efficient?

GLOSSARY

Allotropes:	Different	crystal	structures	exhibited	by	an	element.
Amorphous	materials:	Materials	in	which	atoms	or	ions	do	not	have	a	long-range	order.
Amorphous	 silicon	 (a-Si):	 An	 amorphous	 form	 of	 silicon	 typically	 obtained	 by	 the
chemical	 vapor	 decomposition	 of	 silane	 (SiH4)	 gas,	 which	 is	 used	 in	 thin-film
transistors	and	photovoltaic	applications.

Anions:	Negatively	charged	ions	(e.g.,	O2−,	S2−).
Basis:	An	atom	or	a	set	of	atoms	associated	with	each	lattice	point.	The	combination	of	a
lattice	and	basis	defines	a	crystal	structure.

Body-centered	 cubic	 (BCC)	 structure:	 A	 crystal	 structure	 in	 which	 the	 atoms	 are
positioned	 at	 the	 corners	 of	 a	 unit	 cell	 with	 an	 atom	 at	 the	 cube	 center	 (the	 packing
fraction	is	0.68).

Bravais	lattice:	Any	of	the	14	independent	arrangements	of	points	in	space.
Cations:	Positively	charged	ions	(e.g.,	Si4+,	Al3+).
Close-packed	structure:	A	crystal	structure	that	has	atoms	filled	in	a	way	that	achieves	the
highest	possible	packing	fraction.

Coordination	number	(CN):	The	number	of	atoms	that	surround	an	atom	on	a	lattice	site
or	in	an	interstitial	site.

Crystal	structure:	The	geometrical	arrangement	in	which	atoms	are	arranged	within	the
unit	cell,	described	using	a	Bravais	lattice	and	basis.

Crystalline	material:	A	material	in	which	atoms	or	ions	are	arranged	in	a	particular	three-
dimensional	arrangement,	which	repeats	itself	and	exhibits	a	long-range	order.

Dielectric	 constant	 (k):	 A	 measure	 of	 the	 ability	 of	 a	 material	 to	 store	 an	 electrical
charge.

Diffusion:	 A	 process	 by	 which	 atoms,	 ions,	 or	 other	 species	 move,	 which	 is	 due	 to	 a
gradient	in	the	chemical	potential	(equivalent	to	concentration).

Domain:	A	small	region	of	a	ferroelectric	or	magnetic	material	in	which	the	dielectric	or
magnetic	polarization	direction,	respectively,	is	the	same.

Dopant:	 Foreign	 atoms	 (e.g.,	 boron	 and	 phosphorus)	 deliberately	 added	 to	 a
semiconductor	to	tune	its	level	of	conductivity.

Elastic	 modulus	 (E):	 A	 measure	 of	 the	 difficulty	 with	 which	 elastic	 strain	 can	 be
introduced	into	a	material.	This	depends	on	the	strength	of	the	bonds	within	a	material.
Elastic	modulus	is	the	ratio	of	elastic	stress	to	strain	and	is	also	known	as	the	Young’s
modulus	(Y).



Epitaxy:	A	process	by	which	a	thin	film	of	one	material	is	grown,	typically	over	a	single-
crystal	 substrate	 of	 the	 same	 (homoepitaxy)	 or	 different	 (heteroepitaxy)	 composition.
There	 is	 usually	 a	 good	match	 between	 the	 lattice	 constants	 of	 the	 thin	 film	 and	 the
substrate.

Face-centered	 cubic	 (FCC)	 structure:	 A	 crystal	 structure	 in	 which	 the	 atoms	 are
positioned	 at	 the	 corners	 of	 a	 unit	 cell	 and	 also	 at	 the	 six	 face	 centers	 (the	 packing
fraction	is	0.74).

Ferroelectric	 substance:	 A	 dielectric	 material	 that	 shows	 spontaneous	 and	 reversible
polarization.

Flexible	electronics:	A	 field	of	microelectronics	devoted	 to	 the	development	of	 flexible
electronic	components	or	devices	that	is	often	based	on	polymers	or	thin	metal	foils	(or
on	both).

Frenkel	defect:	A	 defect	 caused	 by	 an	 ion	 leaving	 its	 original	 position	 and	 entering	 an
interstitial	site.

Gettering:	 A	 method	 by	 which	 impurities	 in	 a	 semiconductor	 (e.g.,	 transition	 metal
impurities	 like	 Fe	 and	 Ni)	 are	 concentrated	 away	 from	 the	 active	 device	 regions	 by
attracting	them	to	defects,	such	as	precipitates	and	dislocations.

Glass:	An	 amorphous	material	 typically	 obtained	by	 the	 solidification	of	 a	 liquid	under
nonequilibrium	 conditions.	 The	 term	 “glass”	 is	 often	 used	 to	 describe	 ceramic	 or
metallic	amorphous	materials	(or	both).

Grain:	A	small,	single-crystal	region	in	a	polycrystalline	material.
Grain	boundaries:	The	regions	between	the	grains	of	a	polycrystalline	material.
Hexagonal	 close-packed	 (HCP)	 structure:	 A	 crystal	 structure	 in	 which	 atoms	 are
arranged	in	a	hexagonal	pattern	such	that	the	maximum	possible	packing	fraction	(0.74)
is	obtained.

Hydrogen	 bond:	 A	 special	 form	 of	 van	 der	Waals	 bonds	 found	 in	 materials	 based	 on
polar	molecules	or	groups	(e.g.,	water).

Impurity:	Foreign	atoms	introduced	during	the	synthesis	or	fabrication	of	materials	such
as	semiconductors.	Their	effect	usually	is	not	desirable.

Interstitial	atoms:	Atoms	or	ions	added	to	a	material	that	occupy	the	interstitial	sites	of	a
given	crystal	structure.

Interstitial	site:	A	hole	in	the	crystal	structure	that	may	contain	atoms	or	ions.
Kröger–Vink	notation:	A	notation	used	to	indicate	the	point	defects	in	materials.
Lattice:	A	collection	of	points	 in	space.	There	are	only	14	independent	arrangements	of
points	in	space,	known	as	the	Bravais	lattices.

Long-range	order	(LRO):	Atoms	or	ions	arranged	in	a	particular	geometric	arrangement
that	 repeats	 itself	 over	 relatively	 larger	 distances	 (~	 a	 few	micrometers	 up	 to	 a	 few
centimeters).	This	is	seen	in	polycrystalline	and	single-crystal	materials.

Microstructure:	A	term	that	describes	the	average	size	and	size	distribution	of	grains,	in
addition	to	the	grain	boundaries	and	other	phases	(such	as	porosity	and	precipitates)	and
defects	(e.g.,	dislocations).



Microstructure-insensitive	property:	A	property	that	does	not	change	substantially	with
alterations	in	the	microstructure	of	a	material	(e.g.,	Young’s	modulus).

Miller–Bravais	 indices:	A	 four-index	 system	 for	 directions	 and	 planes	 in	 the	 hexagonal
unit	cell.

Miller	indices:	Notation	used	to	designate	specific	crystallographic	directions	and	planes
in	a	unit	cell.

n-Type	semiconductor:	A	semiconductor	 in	which	a	majority	of	 the	charge	carriers	are
negatively	charged	electrons	(e.g.,	phosphorus-doped	silicon).

Nanostructured	materials:	Materials	with	an	ultrafine	particle	or	grain	size	(<10	nm)	that
have	 an	 unusually	 large	 fraction	 of	 atoms	 located	 at	 the	 grain	 boundaries	 (for
nanocrystalline	materials)	or	surfaces	(for	nanoparticles),	causing	them	to	have	unusual
properties.

Noncrystalline	materials:	Same	as	amorphous	materials—these	materials	exhibit	no	long-
range	order	of	atoms	or	ions.

Octahedral	site:	An	interstitial	site	in	which	six	atoms	that	form	an	octahedron	surround
the	interstitial	atom	or	ion—the	coordination	number	is	six.

Octant:	A	smaller	cube	obtained	by	dividing	the	unit	cell	into	eight	smaller	cubes.
Organic	electronics:	A	field	of	research	and	development	based	on	the	use	of	polymeric
materials,	such	as	conductors	and	semiconductors,	for	developing	flexible,	lightweight
microelectronic	devices	such	as	transistors	and	solar	cells.

Packing	fraction:	The	ratio	of	volume	or	space	occupied	by	atoms	to	the	volume	of	the
unit	cell.

Phase:	 Defined	 as	 any	 portion	 of	 a	 system,	 including	 the	 whole,	 that	 is	 physically
homogeneous	and	bounded	by	a	surface	so	 that	 it	 is	mechanically	separable	from	any
other	portion.

Phase	 change	 memory	 (PCM):	 A	 memory	 technology	 in	 which	 the	 amorphous	 and
crystalline	states	of	a	material	are	used	to	store	information	as	“1”	or	“0.”

Phase	diagram:	A	diagram	indicating	the	different	phases	that	can	be	expected	in	a	given
system	of	materials,	assuming	a	condition	of	thermodynamic	equilibrium	exists.

Piezoelectric	effect:	The	development	of	a	voltage	across	a	material	when	it	is	stressed.
Plastic:	 A	 polymer-based	 material	 formulated	 with	 one	 or	 many	 polymers	 and	 other
additives	(e.g.,	carbon	black	and	glass	fibers).

Polymorphs:	Different	crystal	structures	exhibited	by	a	compound.
p-type	semiconductor:	A	semiconductor	 in	which	a	majority	of	 the	charge	carriers	 are
positively	charged	holes	(e.g.,	boron-doped	silicon).

Quantum	dots:	 Nanocrystals	 of	 semiconductors	 that	 exhibit	 a	 change	 in	 the	 band	 gap,
which	in	turn	causes	changes	in	their	optical	properties,	such	as	color.

Radius	ratio:	The	ratio	of	the	radius	of	a	cation	to	that	of	an	anion.
Schottky	defect:	A	defect	 in	which	a	certain	number	of	cations	and	a	stoichiometrically
equivalent	number	of	anions	are	missing—for	example,	the	absence	of	one	sodium	ion
and	one	chlorine	ion	in	NaCl.



Short-range	order	(SRO):	Atoms	and	ions	in	amorphous	and	crystalline	materials	exhibit
a	short-range	(up	to	a	few	Å)	order	 in	 the	arrangement	of	atoms	or	 ions	in	a	specific
geometrical	fashion.

Simple	 cubic	 (SC)	 structure:	 A	 crystal	 structure	 in	 which	 atoms	 are	 positioned	 at	 the
corners	of	a	unit	cell	(the	packing	fraction	is	0.52).

Solid	solution:	A	new	phase	of	 a	material	obtained	by	dissolving	atoms	of	one	element
into	another;	this	phase	strengthens	metallic	materials	and	can	increase	conductivity.

Stacking	fault:	A	planar	 defect	 in	which	one	of	 the	planes	 from	a	 stacking	 sequence	 is
missing.

Substitutional	 atoms:	 Atoms	 or	 ions	 added	 to	 a	 material.	 They	 occupy	 sites	 that	 are
usually	occupied	by	the	atoms	or	ions	of	the	host	material.

Tetrahedral	site:	An	interstitial	site	in	which	four	atoms	that	form	a	tetrahedron	surround
the	interstitial	atom	or	ion;	the	coordination	number	is	four.

Unit	cell:	The	basic	unit	that	represents	an	arrangement	of	atoms	(or	ions)	repeating	in	all
three	dimensions.

Vacancy:	The	 absence	 of	 an	 atom	or	 an	 ion	 from	 its	 crystallographic	 location	within	 a
crystal	structure.

van	der	Waals	bond:	A	secondary	bond	 that	 is	present	 in	all	materials	and	 is	caused	by
interactions	between	induced	dipoles.	It	is	functionally	important	in	materials	with	polar
ions,	atoms,	or	groups	(e.g.,	water,	PVC,	PVDF).	One	special	 type	of	 this	order	 is	 the
hydrogen	bond.

Yield	stress	(σYS):	A	level	of	stress	that	initiates	a	permanent	or	plastic	deformation.	Yield
strength	depends	on	the	grain	size	of	materials.	In	general,	a	decrease	in	the	grain	size
increases	the	yield	strength.

Young’s	modulus:	Also	known	as	 the	elastic	modulus,	 this	 is	a	measure	of	 the	difficulty
with	which	elastic	strain	can	be	 introduced	 in	a	material.	 It	depends	on	 the	strength	of
bonds	within	the	material	and	the	ratio	of	the	elastic	stress	to	the	strain.
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2 Electrical	Conduction	in	Metals	and
Alloys

KEY	TOPICS

The	fundamentals	of	what	causes	a	material	to	be	a	conductor	of	electricity
Different	types	of	conducting	materials	based	on	metals	and	alloys	and	their	“real-world”	technological	applications
The	classical	theory	of	conductivity
The	band	theory	of	solids	and	its	use	for	examining	the	differences	among	conductors,	semiconductors,	and	insulators
The	effects	of	chemical	composition,	microstructure,	and	temperature	on	the	conductivity	of	metals	and	alloys
Real-world	applications	of	conductive	materials

2.1 INTRODUCTION

Metals	are	conductors	of	electricity;	that	is,	they	offer	relatively	little	resistance	to	the	flow	of
electricity.	In	metals,	each	atom	donates	one	or	more	electrons	and	therefore	becomes	more
stable.	 This	 process	 leads	 to	 a	 large	 sea	of	 electrons	 (Figure	 2.1).	A	 high	 concentration	 of
these	donated	electrons,	which	are	free	to	move	around	within	a	metallic	material,	leads	to	a
higher	level	of	conductivity	in	metals.

Figure	 2.2	 shows	 one	 way	 to	 classify	 electronic	 materials	 based	 on	 the	 nature	 of	 their
interatomic	bonds.	 In	Section	2.8,	we	will	 see	 that,	 compared	 to	pure	metals,	 alloys	offer	 a
higher	resistance	to	the	flow	of	electricity.	In	contrast	to	metals,	most	ceramic	materials	(e.g.,
silica	 [SiO2],	 zirconia	 [ZrO2],	 alumina	 [Al2O3],	 and	 silicon	 carbide	 [SiC])	 exhibit	 strong
ionic	or	covalent	bonds	(or	both).	Many	polymers	(polyethylene,	polystyrene,	epoxies,	etc.)
also	 primarily	 exhibit	 covalent	 bonds	within	 the	 chains	 of	 atoms	 and	 van	 der	Waals	 bonds
among	 the	 chains	 of	 atoms.	Therefore,	 ceramics	 and	 polymers	 are	 usually,	 but	 not	 always,
electrical	 insulators	 and	are	also	 referred	 to	as	dielectrics.	The	use	of	 the	 term	 insulator	 is
sometimes	preferred	when	emphasizing	the	ability	of	a	material	to	withstand	a	strong	electric
field—as	opposed	to	offering	only	a	high	electrical	resistance.	For	example,	porcelain	can	be
described	more	appropriately	as	an	insulator	rather	than	as	a	dielectric.

Covalent	bonds	are	formed	by	the	sharing	of	electrons	from	different	atoms	participating
in	bond	formation.	Therefore,	the	valence	electrons	in	covalent	or	ionic	bonds	are	localized
in	dielectric	and	insulating	materials;	that	is,	they	are	trapped	inside	the	bonds	(Figure	2.1).	In
solids	with	strong	ionic	bonds,	the	electropositive	elements	donate	their	valence	electrons	to
electronegative	elements	to	form	ionic	bonds.	In	Section	3.2.1,	we	will	see	that	many	ceramics
and	some	polymers	can	be	made	to	exhibit	a	useful	level	of	conductivity	through	deliberate
modification	 of	 their	 composition	 and	 microstructure.	 The	 conducting	 ability	 of	 some
materials	(e.g.,	silicon	[Si],	germanium	[Ge],	and	gallium	arsenide	[GaAs])	is	in	between	that
of	insulators	and	conductors.	These	materials	are	known	as	semiconductors	(Figure	2.2).	The



ranges	for	the	values	of	a	parameter	known	as	the	resistivity	(ρ),	discussed	in	Section	2.2,	are
also	shown	in	Figure	2.2.

FIGURE	2.1 Illustration	of	(a)	ionic	bonds,	such	as	those	in	sodium	chloride	and	many	other	ceramics;	(b)	covalent	bonds,
such	as	those	in	silicon,	many	ceramics,	and	polymers;	and	(c)	metallic	bonds.	(From	Groover,	M.P.,	Fundamentals	of	Modern
Manufacturing:	Materials,	Processes,	and	Systems,	Wiley,	New	York,	2007.	With	permission.)

FIGURE	2.2 Classification	of	materials	based	on	the	nature	of	bonding.	Typical	ranges	of	resistivity	are	also	shown.

Some	materials,	known	as	superconductors,	exhibit	zero	electrical	resistance	under	certain
conditions	(e.g.,	low	temperatures	and	low	magnetization).	If	the	critical	conditions	for	zero
electric	 conductivity	 are	 not	 met,	 the	 superconductors	 turn	 to	 highly	 conductive	 metals.
Examples	of	superconducting	materials	include	elements	such	as	mercury	(Hg),	intermetallic
compounds	 such	 as	 niobium	 tin	 (Nb3Sn),	 and	 ceramic	 materials	 such	 as	 yttrium	 barium
copper	 oxide	 (YBa2Cu3O7−x)	 and	 magnesium	 diboride	 (MgB2).	 Superconductors	 are	 not



shown	in	Figure	2.2	because	the	bonding	in	these	materials	is	complex,	and	other	additional
mechanisms	play	a	role	in	the	superconductivity	of	these	materials.

The	ability	of	a	material	 to	conduct	electricity	usually	depends	on	its	 temperature	and	its
microstructure.	 In	 some	 instances,	 such	 as	 in	 the	 cases	 of	 semiconductors	 and	 insulators,	 a
relatively	higher	 temperature	will	promote	a	higher	 level	of	electrical	conductivity	because
more	 electrons	 are	 available	 for	 the	 electrical	 conduction.	 In	 other	 cases,	 such	 as	 for
essentially	pure	metals	(which	already	have	enough	electrons	for	 the	electrical	conduction),
the	 ability	 to	 conduct	 electricity	 decreases	 with	 an	 increase	 in	 temperature	 because	 the
probability	of	electrons	colliding	with	lattice	atoms	is	increased	at	a	higher	temperature.

Similarly,	a	material’s	structure	has	a	significant	effect	on	its	ability	to	conduct	electricity.
For	 example,	 polymers	 such	 as	 polyethylene	 are	 usually	 considered	 to	 be	 nonconducting.
However,	 some	 polymers	 possessing	 conjugated	 characteristics	 (i.e.,	 alternation	 of	 double
bonds	and	single	bonds	in	a	carbon	chain	of	the	polymers)	exhibit	a	semiconducting	property.
An	example	of	a	polymeric	material	that	shows	a	useful	level	of	conductivity	is	polyaniline.
The	 advantage	 of	 conducting	 polymers	 is	 that	 they	 are	 flexible	 and	 lightweight—unlike
metals	and	semiconductors.	Thus,	novel	and	flexible	electronic	components	can	be	developed
using	conducting	and	semiconducting	polymeric	materials.

An	important	point	is	that,	although	we	can	associate	a	general	trend	in	conductivity	with	a
particular	 class	 of	materials,	 there	 are	 always	 exceptions.	Most	 polymers	 and	 ceramics	 are
dielectrics	or	insulators	but	not	all.	Similarly,	most	metals	are	good	conductors	but	not	all.

In	 some	 cases,	 it	 is	 advantageous	 to	 use	 conductive	 materials	 based	 on	 composites.
Composites	are	materials	made	up	of	 two	or	more	materials	or	phases,	often	positioned	 in
unique	 geometrical	 arrangements	 to	 achieve	 desired	 properties.	 For	 example,	 silver	 (Ag)-
filled	 epoxies	 are	 used	 in	microelectronics	 as	 conductive	 adhesives.	 These	 composites	 are
prepared	by	dispersing	fine	silver	powder	particles	in	an	epoxy	matrix.	The	silver	provides
the	 electrical	 conductivity.	 Epoxy	 provides	 a	 means	 of	 applying	 a	 paint-like	 material	 that
eventually	hardens	into	a	solid	plastic.

Certain	 aspects	 of	 electrical	 conductivity	 in	 materials	 can	 be	 explained	 by	 considering
electrons	as	particles	and	treating	them	using	the	principles	of	classical	mechanics.	However,
certain	 other	 aspects	 related	 to	 electrical	 conductivity	 can	 be	 explained	 only	 through	 a
quantum	mechanical–based	 explanation	 in	which	 electrons	 are	 considered	waves.	We	begin
the	discussion	of	these	topics	with	Ohm’s	law	and	follow	this	with	a	discussion	of	the	classical
and	quantum	mechanical	theories	of	conductivity.

2.2 OHM’S	LAW

The	geometry	of	a	resistor	with	resistance	R	is	shown	in	Figure	2.3.	A	resistor	is	a	component
included	in	an	electrical	circuit	to	offer	a	predetermined	value	of	electrical	resistance.
Ohm’s	law	is	an	empirical	relationship	that	states	the	following:

where	 V	 is	 applied	 voltage	 in	 volts	 (V),	 I	 is	 electrical	 current	 in	 amperes	 (A),	 and	 R	 is
electrical	 resistance	 in	 ohms	 (Ω).	 In	 this	 chapter,	 unless	 stated	 otherwise,	we	will	 assume	 a



direct	 current	 (DC)	 voltage.	 This	 is	 in	 contrast	 to	 alternating	 current	 (AC)	 voltage,	 which
cycles	with	time.

FIGURE	2.3 Geometry	of	a	resistor	used	in	describing	Ohm’s	law.

The	resistance	(R)	of	an	electrical	resistor	of	length	L	and	cross-sectional	area	A	 (Figure
2.3)	is	given	by

The	inverse	of	electrical	resistance	is	known	as	conductance,	which	has	units	of	Siemens
or	Ω−1.

In	Equation	2.3,	ρ	 (rho)	 is	defined	as	 the	electrical	resistivity,	bulk	resistivity,	 or	 volume
resistivity.	 A	 commonly	 used	 unit	 for	 resistivity	 is	 Ω	 cm.	 The	 inverse	 of	 ρ	 is	 known	 as
conductivity	(σ).

A	commonly	used	unit	for	conductivity	is	a	Siemens/centimeter	(S/cm).	When	looking	up
the	 properties	 of	 materials	 or	 performing	 related	 calculations,	 it	 is	 important	 to	 check
whether	 a	value	of	 conductivity	or	 resistivity	 is	being	 stated	and	what	units	 are	being	used.
Different	sources	quote	values	in	different	units.	For	example,	resistivity	values	may	be	listed
as	Ω	·	cm,	Ω	·	m,	μΩ	·	cm	(micro-ohm-centimeter),	nΩ	·	m	(nano-ohm–meter),	and	so	on.

Most	 conductors	 obey	 Ohm’s	 law:	 As	 the	 applied	 voltage	 is	 increased,	 the	 current
increases	linearly.	The	resistance	does	not	depend	on	the	voltage.	There	are,	however,	certain
materials	(e.g.,	zinc	oxide–based	formulations)	and	devices	that,	under	certain	conditions,	do
not	obey	Ohm’s	law.	For	these	materials,	resistance	remains	independent	of	the	voltage	up	to
a	certain	value.	However,	beyond	a	certain	critical	value	of	the	electric	field	(E),	the	material
undergoes	an	electrical	breakdown,	and	the	resistance	decreases	by	orders	of	magnitudes.	The
electric	 field	 is	 defined	 as	 the	 voltage	 divided	 by	 the	 distance	 across	 which	 the	 voltage	 is
applied.	Materials	that	do	not	obey	Ohm’s	law	are	sometimes	described	as	variable	resistors
or	varistors.	Varistors	are	useful	as	current-limiting,	surge-protection	devices.

The	 magnitude	 of	 resistivity	 allows	 us	 to	 delineate	 the	 approximate	 boundaries	 among
different	classes	of	materials,	as	shown	in	Figure	2.2.	Materials	with	a	resistivity	in	the	range
of	 ~10−6−10−4	 Ω	 ·	 cm	 (1−102	 μΩ	 ·	 cm)	 usually	 are	 considered	 conductors.	 Insulators	 are



materials	with	resistivity	greater	than	~1010	Ω	·	cm.	Resistivity	values	between	~1010	and	1022
Ω	·	cm	are	 typical	of	electrically	nonconducting	or	 insulating	materials.	Materials	 that	have
resistivity	 ranging	 between	 ~10−4	 and	 103	 Ω	 ·	 cm	 (i.e.,	 102	 109	 μΩ	 ·	 cm)	 are	 considered
semiconductors.	Materials	with	resistivities	 from	103	 to	1010	Ω	 ·	cm	are	classified	as	semi-
insulators.	The	values	associated	with	these	ranges	of	resistivities	are	not	rigid.

Table	2.1	shows	 the	 typical	 resistivity	values	 for	some	metals.	The	values	 listed	 in	Table
2.1	 are	 based	 on	T0	 =	 300	K	 (see	Equation	2.25).	 The	 values	 of	 a	 parameter	 known	 as	 the
temperature	coefficient	of	resistivity	(αR;	TCR)	are	also	included.	We	will	define	αR	in	Section
2.8.	In	Table	2.1,	we	see	that	silver	is	the	element	with	the	highest	level	of	conductivity.	Copper
(Cu)	and	gold	(Au)	are	also	very	good	conductors	of	electricity.	Note	that	the	conductivity	of
tungsten	(W)	is	higher	than	that	of	platinum	(Pt).

The	αR	values	for	magnetic	metals	are	higher	than	those	for	other	metals	(see	Section	2.8).
Examples	2.1	through	2.4	illustrate	some	applications	of	the	concepts	discussed	in	this	section.

Example	2.1: Resistivity	and	Conductivity—Units	and	Conversion

The	resistivity	of	a	Cu	sample	is	1.673	μΩ	·	cm.

1.	 What	is	the	value	of	this	resistivity	in	Ω	·	cm?	What	is	the	value	in	nΩ	·	m?
2.	 The	 conductivity	 of	 an	 Ag	 sample	 is	 listed	 as	 62.9	 ×	 104	 S/cm.	What	 is	 the

resistivity	in	μΩ	·	cm?



TABLE	2.1

Conductivity/Resistivity	Values	for	Selected	Metals

Solution

1.	 The	Cu	sample	 resistivity	 in	Ω	 ·	cm	=	1.673	μΩ	·	cm	×	10−6	Ω/μΩ	=	1.673	×
10−6	Ω	·	cm.	The	Cu	sample	resistivity	in	nΩ	·	m	=	1.673	×	10−6	Ω	·	cm	×	109
nΩ/Ω	×	10−2	m/cm	=	16.73	nΩ	·	m.

2.	 The	conductivity	of	the	Ag	sample	=	62.9	×	104	S/cm.	Therefore,	the	resistivity
of	the	Ag	sample	=	(62.9	×	104)−1	Ω	·	cm	=	1.589	×	10−6	Ω	·	cm.



We	want	 the	 answer	 in	μΩ	 ·	 cm;	 therefore,	 the	 resistivity	of	 the	Ag	 sample	=
1.589	×	10−6	Ω	·	cm	×	106	μΩ/Ω	=	1.589	μΩ	·	cm.

Example	2.2: Antennae	for	Radio	Frequency–Identification	Technology

Radio	frequency–identification	(RFID)	technology	is	used	for	applications	such	as	automatic	highway	toll-payment
systems	(e.g.,	EZ-Pass®),	smart	cards	for	access	control,	 libraries,	livestock	tracking,	and	many	other	inventory-
control	applications	(Figure	2.4).
A	 passive	 RFID	 tag	 comprises	 a	 conductive	 antenna,	 typically	 made	 from	 Cu,	 with	 a	 small	 computer	 chip

attached	to	it.	The	computer	chip	holds	the	stored	information.	In	one	process	for	manufacturing	antennae,	we	begin
with	a	thin	foil	of	solid	Cu.	A	pattern	is	then	created	by	etching	away	excess	Cu	to	form	the	antenna.	Other	methods
of	 manufacturing	 antennae	 include	 using	 conductive	 inks	 (made	 from	 powders	 of	 Cu	 or	 Ag)	 or	 conductive
polymers.	These	approaches	offer	the	possibility	of	lowering	the	cost	of	RFID	tags.

FIGURE	2.4 Typical	passive	radio	frequency–identification	(RFID)	tag	showing	the	antenna	made	from	copper.	(Courtesy	of
Pavel	Nikitin,	Intermec	Technologies	Corporation,	Everett,	WA.)

1.	 An	 antenna	 is	made	 by	 etching	 solid	 Cu	with	 σ	 =	 5.8	 ×	 107	 S/m.	What	 is	 its
electrical	resistance	(R)?	(Assume	that	the	antenna	is	in	the	form	of	a	strip	that	is
20	cm	long,	5	mm	wide,	and	25	μm	thick.)

2.	 What	will	be	the	resistance	of	a	similar	antenna	made	by	screen	printing	silver
paste	with	σ	=	1.6	×	106	S/m?

3.	 Why	do	you	think	the	conductivity	of	Ag	ink	is	lower	than	that	of	solid	Cu?

Solution
1.	 Let	us	assume	that	the	current	flows	along	the	direction	of	the	length.	Thus,	the

cross-sectional	area	will	be	5	mm	×	25	μm	or	0.5	cm	×	25	μm	×	10−4	cm/μm	=
125	×	10−5	cm2.	Using	Equation	2.2,	the	resistance	of	the	Cu	antenna	will	be:



(Note	 the	 conversions	 of	 resistivity	 to	 conductivity	 and	 of	 meters	 and
micrometers	to	centimeters.)

2.	 If	we	use	Ag	ink	that	has	σ	=	1.6	×	106	S/m,	then

This	 value	 of	 resistance	 is	 almost	 36	 times	 higher	 than	 that	 calculated	 for	 an
antenna	made	by	etching	solid	Cu.

3.	 An	Ag	conductive	ink	is	a	liquid	paint-like	material	obtained	by	dispersing	Ag
particles	in	a	carrier	 liquid.	When	screen-printed	Ag	ink	is	used,	 the	electrical
contact	 among	 Ag	 particles	 is	 not	 as	 good	 as	 that	 among	 grains	 of	 a
polycrystalline	solid,	even	after	the	ink	“cures”	subsequent	to	when	the	solvent
medium	 is	 removed.	 This	 makes	 it	 harder	 for	 the	 current	 to	 flow	 from	 one
particle	 to	 another.	 Thus,	 although	 solid	 silver	 has	 the	 highest	 conductivity
among	all	metals	(Table	2.1),	in	this	case,	silver	ink	has	a	higher	resistivity	than
that	of	solid	Cu.

Example	2.3: Resistance	of	a	Long	Cu	Wire

Calculate	the	resistance	of	1000	m	of	American	wire	gauge	(AWG)	#18	Cu	wire	(see	Table	2.2).	Assume	σCu	=	5.8

×	107	S/m.

Solution
From	Table	2.2,	for	AWG	#18,	the	wire	diameter	(d)	is	0.040303	in	(1.023696	mm).

Therefore,	the	resistance	of	the	1000-meter-long	wire	will	be	as	follows	(according	to	Equation	2.2):

Example	2.4: Resistance,	Mass,	and	Length	(in	Feet)	per	Pound	of	Cu	and	Aluminum	(Al)	Wires

1.	 Calculate	the	mass	and	electrical	resistance	of	1000	feet	of	Al	and	Cu	wires	of
AWG	#3	(see	Table	2.2).

2.	 What	is	the	footage	per	pound	of	Cu	and	Al	wire?	Assume	that	the	mass	of	any
insulation	can	be	ignored.
The	densities	of	Cu	and	Al	are	8930	and	2700	kg/m3,	respectively.	Assume	σCu
=	5.8	×	107	and	σAl	=	3.8	×	107	S/m.



TABLE	2.2

American	Wire	Gauge	Diameter	Conversion

Solution
1.	 For	AWG	gauge	#3,	the	diameter	is	0.22942	in	(5.827268	mm).	Thus,	the	area

of	cross	section	is

According	to	Equation	2.2,	the	resistance	of	a	1000-foot	Cu	wire	will	be:

Similarly,	the	resistance	of	a	1000-foot	Al	wire	(AWG	#3)	will	be

2.	 The	volume	of	1000	feet	of	AWG	#3	Cu	wire	is



The	density	of	Cu	 is	8930	kg/m3;	 therefore,	 the	mass	of	 a	1000-foot	Cu	wire
will	be

Thus,	for	a	Cu	AWG	gauge	#3	wire,	the	length	per	pound	will	be	~1000/160	or
6.25	feet.

Because	the	geometry	is	the	same,	the	volume	of	the	Al	wire	is	the	same	as
that	of	the	Cu	wire.	The	density	of	aluminum	is	2700	kg/m3.	Thus,	the	mass	of
1000	feet	of	Al	wire	of	AWG	gauge	#3	will	be	8.129	×	10−3	m3	×	2700	kg/m3	=
21.948	kg	or	~48.27	lb.

Therefore,	for	an	Al	wire	of	gauge	AWG	#3,	the	length	(in	feet)	per	pound
will	be	~1000/48.27	=	20.71.

2.3 SHEET	RESISTANCE

In	 some	 microelectronic	 applications,	 it	 is	 customary	 to	 use	 a	 parameter	 known	 as	 sheet
resistance	 (Rs)	 instead	 of	 resistivity	 (ρ).	 Sheet	 resistance	 is	 measured	 more	 easily	 than
resistivity.	As	shown	in	Figure	2.3,	let	t	be	the	thickness	of	the	resistor.	The	length	and	width
are	L	and	w,	respectively.	The	cross-sectional	area	A	=	t	×	w.	We	can	rewrite	Equation	2.2	as
follows:

In	the	fabrication	of	resistors	that	are	used	in	integrated	circuits	(ICs),	the	designer	usually
works	with	a	material	that	has	certain	values	of	the	ratio	L/w.	Usually,	these	are	chosen	such
that	 a	 large	 number	 of	 small	 components	 fit	 within	 a	 given	 area	 (i.e.,	 miniaturization).
Typically,	the	resistivity	(ρ)	and	thickness	(t)	are	maintained	the	same	for	resistors	in	a	given
layer	 of	 an	 IC.	 Consider	 a	 square	 resistor,	 that	 is,	 L	 =	w.	 According	 to	 Equation	 2.4,	 the
resistance	will	be	equal	to	the	sheet	resistance	(Rs),	defined	as	follows:

The	unit	for	sheet	resistance	(Rs)	is	ohms	(Ω)	only.	We	write	it	as	Ω/□	and	read	it	as	ohms
per	square	to	indicate	that	Rs	represents	the	resistance	of	a	square	resistor.	From	Equations	2.4
and	2.5,	we	can	derive	an	expression	for	R	as	follows:

Example	2.5	illustrates	the	use	of	the	concept	of	sheet	resistance.

Example	2.5: Cu	Interconnects	for	Integrated	Circuits



Because	of	its	high	conductivity	(σ	=	58	×	104	S/cm),	Cu	is	widely	used	in	modern-day	ICs	as	a	conductor	material
that	 provides	 connections	 among	 different	 components,	 known	 as	 interconnects.	 If	 the	 thickness	 of	Cu	 is	 80	 nm,
what	is	its	sheet	resistance	(Rs)?	If	 the	width	of	this	Cu	conductor	is	0.5	μm	and	the	length	is	300	μm,	what	is	 the
resistance?

Solution
The	sheet	resistance	can	be	calculated	as	follows:

From	this,	we	can	calculate	the	resistance	as	follows:

Note	that,	 in	this	example,	 the	thickness	of	the	interconnect	is	very	small	(80	nm).	In	Section	2.10,	we	will	 see
that,	at	such	a	low	thickness,	the	resistivity	of	metals	is	actually	higher	than	the	“bulk”	value.

Sheet	resistance	often	is	measured	using	what	is	known	as	the	four-point	probe	or	Kelvin
probe	 technique	 (Figure	 2.5).	 In	 this	 method,	 we	 apply	 an	 external	 voltage	 that	 leads	 to	 a
predetermined	value	of	current	(I)	between	two	terminals.	The	decrease	in	voltage	(V)	across
the	 other	 two	 probes	 separated	 by	 a	 distance,	 s,	 is	 measured,	 and	 the	 resistivity	 is	 then
calculated	using	the	following	formula:

In	Equation	2.7,	V	is	the	measured	voltage	in	volts,	I	is	the	source	current	in	amperes,	s	is
the	spacing	between	probes	(in	cm),	and	ρ	is	the	resistivity	in	Ω	·	cm.	Note	that	if	t	<	5	mm,	a
correction	factor	is	needed.

The	 sheet	 resistance	 (Rs),	 measured	 for	 films	 and	 wafers	 using	 the	 four-point	 probe
method,	is	given	by	Equation	2.8.

The	factor	4.532	is	the	value	of	π/ln(2).	A	correction	factor	(k),	whose	value	depends	on	the
ratio	of	probe	spacing	(s)	to	sample	diameter	(d)	and	the	ratio	of	wafer	thickness	(t)	to	probe
spacing	(s),	may	be	needed.



FIGURE	 2.5 A	 schematic	 of	 the	 four-point	 probe	 used	 to	 measure	 resistivity.	 The	 spacing	 between	 probes	 is	 s,	 and	 the
sample	thickness	is	t	(not	to	scale).

For	thin	films	and	wafers	(e.g.,	semiconductors	such	as	germanium	[Ge]	or	silicon	[Si]),
the	bulk	resistivity	is	obtained	by	dividing	the	resistivity	(ρ)	by	the	thickness	(t)	and	is	given
by	Equation	2.9:

When	measuring	 the	 resistivity	 values	 of	 good	 conductors,	 the	 current	 values	 used	 are
limited	to	~10	mA.	This	avoids	sample	heating	and	limits	the	current	density	at	the	probe	tips.
For	measuring	 high-resistivity	materials,	 lower	 currents	 are	 used	 (~1	 μA).	 This	 limits	 the
voltage	measured	to	~200	mV.

Using	 the	 four-point	 probe	 technique,	 we	 can	 measure	 the	 spatial	 variations	 in	 the
electrical	 conductivity	 of	 semiconductor	 crystals	 or	 other	 materials.	 For	 example,	 in	 the
fabrication	of	 ICs,	 large	 crystals	 of	 silicon	 (12-in.	 diameter)	 are	used	 as	 starting	materials.
These	crystals	are	then	sliced	into	silicon	wafers	on	which	ICs	are	fabricated.	Often,	we	need
to	measure	the	variation	in	conductivity	from	one	wafer	to	another.	However,	in	some	cases,
we	need	to	measure	the	variation	in	conductivity	(either	deliberate	or	intrinsic	to	processing)
across	 different	 parts	 of	 the	 same	wafer.	 Local	 conductivity	measurement	 can	 be	 achieved
using	the	four-point	probe	method.

This	method	works	well	 for	both	 conductors	 and	 semiconductors.	A	different	 technique,
known	as	the	van	der	Pauw	method,	is	useful	for	materials	with	high	resistivity	values.

2.4 CLASSICAL	THEORY	OF	ELECTRICAL	CONDUCTION

A	 German	 scientist	 named	 Paul	 Drude	 (1863–1906)	 proposed	 the	 classical	 theory	 of
conduction	 in	 metals.	 In	 this	 theory,	 electrons	 are	 considered	 particles,	 and	 an	 atom	 is



considered	 to	 be	 a	 nucleus	 surrounded	by	 core	 electrons	 and	 the	 valence	 electrons	 (Figure
2.6).	The	valence	electrons,	which	are	the	outermost	electrons,	are	relatively	weakly	bound	to
the	nucleus	and	become	available	for	conduction.	Thus,	it	is	assumed	that	the	electron–nucleus
interaction	 and	 the	 electron–electron	 interaction	 are	 negligible	 for	 valence	 electrons.	 This
leads	 to	 the	 formation	 of	 a	 sea	 of	 electrons	 (see	 Section	 2.1),	 which	 is	 also	 described	 as
electron	gas.	In	the	classical	theory	of	electron	conduction,	the	valence	electrons	in	the	sea	of
electrons	that	can	freely	move	within	the	solid	are	a	source	of	the	electrical	conductivity.	The
concentration	of	valence	electrons	in	this	sea	of	electrons	is	quite	high	and	is	comparable	to
the	atomic	density	of	the	solid.	In	most	solids,	the	atomic	density	ranges	from	1	×	1022/cm3	to
1	×	1023/cm3.	For	example,	for	sodium	(Na),	there	is	one	valence	electron	per	atom,	and	each
sodium	atom	donates	this	valence	electron	to	the	sea	of	electrons.	Therefore,	the	free	electron
density	 of	Na	 is	 the	 same	 as	 the	 atomic	 density	 of	Na	metal	 (=	 density	 ÷	 [atomic	mass]	 ×
[Avogadro’s	 number])	 is	 2.54	 ×	 1028/m3.	 Because	 of	 this	 high	 free	 electron	 concentration,
pure	metals	would	be	expected	to	be	good	conductors	of	electricity.

FIGURE	2.6 The	structure	of	a	 sodium	atom	(atomic	number	11),	 showing	 the	nucleus	 surrounded	by	core	electrons	and
valence	 electrons.	 (From	 Askeland,	 D.,	 The	 Science	 and	 Engineering	 of	 Materials,	 3rd	 ed.,	 Thomson,	 Washington,	 DC,
1989.	With	permission.)

Although	classical	theory	provides	a	good	start	for	understanding	the	electrical	properties
of	 solids,	 it	 does	 not	 explain	 several	 features	 associated	 with	 electrical	 conduction	 in
materials.	The	limitations	of	classical	theory	in	explaining	electrical	conduction	in	materials
are	 discussed	 in	 Section	 2.7.	 These	 limitations	 are	 overcome	 using	 a	 quantum	mechanical
approach,	which	is	discussed	in	Section	2.13.	We	will	now	begin	a	more	detailed	discussion	of
the	classical	theory	of	conductivity.

2.5 DRIFT,	MOBILITY,	AND	CONDUCTIVITY



We	can	rewrite	Ohm’s	law	(Equation	2.1)	as	follows:

Instead	of	the	electrical	current	(I),	consider	the	current	density	(J),	which	is	defined	as	the
current	per	unit	area.	The	commonly	used	units	for	current	density	are	A/m2	and	A/cm2.

Another	 way	 of	 writing	 Ohm’s	 law	 is	 by	 applying	 the	 relationship	 between	 the	 current
density	(J)	and	the	applied	electric	field	(E),	as	shown	here:

This	is	known	as	the	point	form	of	Ohm’s	law.	Note	that	J	and	E	are	vector	quantities	and
conductivity	(σ)	is	a	tensor	quantity.	In	this	discussion,	however,	we	treat	all	of	these	as	scalar
quantities.	We	use	resistivity	or	conductivity	instead	of	resistance	or	conductance	because	the
resistance	 (R)	 depends	 on	 the	 geometry	 of	 the	 resistor,	 whereas	 the	 resistivity	 (or
conductivity)	 is	 an	 intrinsic	 property	 of	 a	 particular	 material.	 If	 we	 have	 a	 material	 of	 a
certain	composition	and	microstructure,	then	the	resistivity	value	is	fixed.	An	exception	to	this
occurs	when	we	examine	 the	properties	of	materials	or	devices	at	a	nanoscale	 (~1−100	nm
length;	Section	2.10).

The	distinction	between	resistance	and	resistivity	is	also	important	in	situations	where	the
resistivity	of	a	material	or	a	component	changes	across	the	thickness	of	the	component.	Thus,
if	we	know	the	resistivity	values	and	the	geometry	for	different	regions,	we	can	calculate	the
total	resistance	of	a	component	or	a	device.

Let	us	now	derive	the	point	form	of	Ohm’s	law	(Equation	2.11).
The	conduction	electrons	 in	metals	move	at	very	high	speeds	 (~106	m/s).	We	can	expect

that,	 as	 temperature	 increases,	 the	kinetic	 energy	of	 electrons	 should	also	 increase,	 causing
the	electrons	to	move	at	higher	speeds.	However,	as	we	will	see	in	Section	2.7,	 this	speed	 is
largely	independent	of	the	temperature.	When	no	electric	field	is	applied,	the	motions	of	the
conduction	electron	are	in	random	directions	and	do	not	result	in	an	electrical	current	(Figure
2.7).	 This	 is	 similar	 to	 ions	 drifting	 around	 in	 an	 electroplating	 solution.	 A	 less-technical
analogy	 is	 that	 of	 small	 schoolchildren	 running	 around	 without	 the	 supervision	 of	 their
teacher!

Now	consider	a	voltage	V	applied	across	the	length	(L)	of	a	conductor.	The	electric	field	is
given	by

When	we	apply	a	DC	electric	field	to	a	conductor,	the	electrons	in	the	material	flow	from
the	negative	to	the	positive	terminal	of	the	voltage	supply	(Figure	2.7b).	This	current	is	known
as	the	electron	current.	As	a	matter	of	convention,	we	state	that	the	current	or	the	conventional
current	flows	from	the	positive	to	the	negative	terminal	of	the	battery	(Figure	2.7c).

The	force	(F)	exerted	on	an	electron	by	the	electric	field	(E)	is	given	by

The	force	results	in	acceleration	a,	given	by



Thus,	the	acceleration	experienced	by	the	electrons	is	given	by

Because	 of	 this	 externally	 applied	 driving	 force	 (i.e.,	 the	 electric	 field),	 conduction
electrons	begin	to	show	a	net	movement	in	the	direction	opposite	to	that	of	the	electric	field
(E).	This	motion	of	charge	carriers	(electrons,	in	this	case)	due	to	an	applied	electric	field	is
known	as	drift.	The	drift	of	the	carriers	is	characterized	by	an	average	drift	velocity	(vx).	This
movement	of	conduction	electrons	results	in	an	electrical	current	density	(Jx)	in	the	positive
direction	“x.”	Because	electrons	are	negatively	charged,	the	electrical	currents	and	their	drift
are	in	opposite	directions	(Figure	2.7c).

If	 an	 electron	 accelerates	 and	 then	 collides	 with	 an	 atom	 after	 time	 τ,	 it	 stops.	 From
Newton’s	 laws	 of	 motion,	 we	 know	 that	 v	 =	 u	 +	 at,	 where	 v	 is	 final	 velocity,	 u	 is	 initial
velocity,	a	is	acceleration,	and	t	is	time.	Applying	this	law	here,	assuming	the	initial	speed	is
zero,	we	get	v	=	aτ.	Thus,	 the	average	velocity	of	an	electron	between	collisions	will	be	as
follows:

We	 should	 not,	 however,	 consider	 the	 average	 time	 between	 collisions	 to	 calculate	 the
average	velocity;	we	should	calculate	the	actual	velocities	and	then	obtain	the	average.	If	this
is	done,	we	can	show	that	the	average	velocity	or	drift	velocity	(vdrift)	is	given	by



FIGURE	2.7 (a)	Random	motion	of	electrons	due	to	thermal	energy	is	similar	to	the	movement	of	ions	in	an	electroplating
solution.	(b)	The	drift	of	conduction	electrons	in	a	pure	metal;	note	that	the	applied	electric	field	(E)	and	drift	are	opposite,	and
overall,	the	electrons	move	within	the	material	toward	the	anode.	(c)	The	conventional	current	is	said	to	flow	from	the	positive
to	 the	negative	 terminal.	The	electron	current	 (i.e.,	 the	actual	motion	of	electrons)	 is	 in	 the	opposite	direction.	 (From	Minges,
M.L.,	Electronic	Materials	Handbook,	Vol.	1,	ASM,	Materials	Park,	OH,	1989.	With	permission.)



Inserting	the	acceleration	(Equation	2.15)	into	Equation	2.16,	we	get

According	 to	Equation	2.17,	 the	drift	velocity	of	 electrons	 is	proportional	 to	 the	applied
electric	 field	 (E).	 The	 proportionality	 constant	 is	 known	 as	 the	mobility	 (μ)	 of	 the	 charge
carriers.	We	 use	 the	 subscript	 “n”	 (to	 reflect	 the	 negative	 charge);	 therefore,	 μn	 is	 used	 to
describe	 the	 mobility	 of	 electrons.	 The	 term	 mobility	 refers	 to	 the	 ability	 with	 which	 the
charge	carriers	drift	under	the	influence	of	an	external	electric	field	(E).

The	commonly	used	units	for	mobility	are	cm2	·	s−1	·	V−1	and	m2	·	s−1	·	V−1.
The	mean	 free-path	 length	 (λ)	of	conduction	electrons	 is	defined	as	 the	average	distance

that	 the	 electrons	 travel	 between	 two	 consecutive	 collision	 events,	 and	 it	 is	 obtained	 by
multiplying	the	average	speed	(vavg)	by	the	time	between	collisions	(τ).

We	 can	 calculate	 the	 number	 of	 electrons	 flowing	 across	 the	 unit	 area	 per	 unit	 time	 by
multiplying	 the	drift	 velocity	 by	 the	carrier	concentration	 (n).	 In	 this	 case,	 the	 carriers	 are
conduction	 electrons.	 To	 obtain	 the	 electrical	 current	 density,	 we	 must	 also	 multiply	 the
carrier	concentration	by	the	charge	q	on	each	electron.

Thus,	the	current	density	(J)	is	given	by

Substituting	for	vdrift	from	Equation	2.17,	we	get

or

This	is	a	modified	form	of	Ohm’s	law	(Equation	2.11).
Therefore,	in	Equation	2.21,	the	bracketed	term	represents	the	conductivity	(σ)	and	is	given

by

or

This	equation	is	very	important	because	it	tells	us	that	the	conductivity	of	a	metal	will	be
proportional	to	the	carrier	concentration	(n)	and	the	carrier	mobility	(μn)	 that	 is	determined



by	the	time	between	consecutive	collision	events.	The	longer	the	time	between	the	scattering
events	or	collisions	(i.e.,	higher	τ),	the	higher	the	mobility	of	the	electrons	will	be	in	a	metal.
Note	 that	 higher	 mobility	 does	 not	 automatically	 guarantee	 a	 high	 conductivity	 because
conductivity	also	depends	on	the	carrier	concentration	of	conduction	electrons.

Thus,	according	 to	classical	 theory,	 the	electrical	conductivity	of	a	metal	depends	on	 (a)
the	concentration	of	carriers	transporting	the	electrical	current	(that	is,	how	many	carriers	are
available	 per	 unit	 volume	 of	 the	material),	 (b)	 the	mobility	 (μ)	 of	 the	 carriers,	 and	 (c)	 the
electrical	 charge	 on	 each	 carrier.	 Consider	 a	 package-delivery	 service	 as	 an	 analogy.	 The
number	of	packages	delivered	in	a	day	depends	on	the	following:	(a)	the	number	of	delivery
trucks	available,	(b)	the	speed	with	which	the	trucks	can	move	in	traffic,	and	(c)	the	number	of
packages	 each	 truck	 can	 carry.	 In	 some	 materials,	 the	 electrical	 current	 is	 carried	 by	 the
motion	of	species	other	than	electrons.	We	discuss	these	materials	in	Section	2.6.

2.6 ELECTRONIC	AND	IONIC	CONDUCTORS

In	semiconductors	and	certain	 types	of	ceramics,	 the	motion	of	species	other	 than	electrons
(e.g.,	 ions)	can	generate	an	electrical	current.	 In	 this	case,	we	also	need	 to	account	for	 their
contributions	to	conductivity.	Materials	 in	which	a	significant	part	of	 the	conductivity	arises
from	 the	movement	 of	 ions	 are	 known	 as	 ionic	 conductors.	An	 example	 of	 a	 ceramic	 that
exhibits	 a	 good	 electrical	 conductivity	 from	 the	 ion	 movement	 is	 yttria	 (Y2O3)-stabilized
zirconia	(ZrO2),	known	as	YSZ.	This	material	is	used	as	a	solid	electrolyte	in	solid	oxide	fuel
cells	 (Chapter	 1).	 Oxygen	 gas	 sensors	 used	 in	 automotive	 and	 other	 applications	 are	 also
based	 on	 YSZ.	 Similarly,	 transparent	 and	 conductive	 coatings	 based	 on	 indium–tin–oxide
(ITO)	are	used	as	electrodes	 in	 touch-screen	displays	and	solar	cells.	Electronic	conductors
are	defined	as	materials	 in	which	electrical	conduction	occurs	mostly	due	to	the	motions	of
electrons	or	holes.	A	hole	 is	an	 imaginary	particle	 that	signifies	 the	absence	of	an	electron.
Thus,	 metals,	 alloys,	 and	 semiconductors	 are	 examples	 of	 electronic	 conductors.	 If	 the
conductivity	is	due	to	movement	of	ions	and	electrons	or	holes,	then	the	material	is	known	as
a	mixed	conductor.	We	now	know	one	more	way	to	classify	electrical	conductors	based	on	the
types	of	charge	carriers.

Note	 that	 the	 concept	 of	 sea	 of	 electrons	 is	 applied	 only	 to	 electronic	 conductors	 of
metallic	bonding.	In	other	type	of	materials,	a	small	portion	of	valence	electrons	participate	in
electronic	conduction.	The	following	examples	illustrate	the	applications	of	these	concepts.

Example	2.6: Carrier	Concentrations	in	Al	and	Si

Calculate	the	concentration	of	conduction	electrons	in	(a)	Al	and	(b)	Si.	Assume	that	the	densities	of	Al	and	Si	are
2.7	and	2.33	g/cm3,	respectively.	Assuming	that	the	electron	mobility	values	are	similar,	what	will	be	the	expected
concentration	of	electrons	in	terms	of	the	values	of	conductivity	of	Al	and	Si?	The	atomic	masses	for	Al	and	Si	are
~27	and	28,	respectively.

Solution
1.	 Because	 Al	 has	 a	 valence	 of	 +3,	 we	 assume	 that	 each	 Al	 atom	 donates	 three

conduction	electrons.
The	atomic	mass	of	Al	is	27	g;	this	means	that	the	mass	of	6.023	×	1023	atoms	(Avogadro’s

number)	is	27	g.



A	volume	of	1	cm3	is	2.7	g	of	Al.	The	number	of	atoms	in	this	volume	will	be

The	concentration	of	conduction	electrons	will	be	expected	to	be	three	times	the	concentration
of	atoms	because	each	Al	atom	is	assumed	to	donate	three	electrons.
Thus,	the	concentration	of	conduction	electrons	in	Al	will	be

The	conduction	electron	concentrations	for	Al	and	other	metals	are	listed	in	Table	2.3.
2.	 Si	has	a	valence	of	+4;	therefore,	the	concentration	of	valence	electrons	(that	is,

the	number	of	valence	electrons	in	1	cm3	of	Si)	will	be

TABLE	2.3

Atomic	Mass,	 Density,	 Experimentally	Measured	 Electron	Mobility,	 and	 Electron
Concentration	for	Selected	High-Purity	Metals

Metal
Atomic
Mass
(g/mol)

Density
(g/cm3)

Mobility	of
Electrons
(μn)	(cm2/V	·
s)

Calculated	Number	of
Carrier	Particles	(n)	#
(electrons/cm3)

Silver 107.868 10.5 57 5.86	×	1022

Copper 63.546 8.92 32 8.43	×	1022	(assumes
one	electron	per	atom)

Gold 196.965 19.32 31 5.91	×	1022

Aluminum 26.981 2.7 13
1.807	×	1023	(assumes
three	electrons	per
atom)

Source: Webster,	 J.G.,	Wiley	 Encyclopedia	 of	 Electrical	 and	 Electronics	 Engineering,
Vol.	4,	Wiley,	New	York,	2002;	other	sources.

Experimentally,	we	know	that	 the	electrical	conductivity	of	Al	is	very	high	compared	to	that
of	Si.	However,	as	we	can	see,	the	calculated	concentration	of	valence	electrons	in	Si	is	higher
than	 that	 in	 Al.	 Furthermore,	 as	 we	 will	 see	 in	 Chapter	 3,	 a	 very	 low	 concentration	 of	 some
elements	 has	 a	 huge	 effect	 on	 the	 conductivity	 of	 Si.	 These	 observations	 show	 that	 classical
theory	does	not	explain	the	higher	level	of	conductivity	in	some	metals	compared	to	that	of	Si.

Example	2.7: Calculating	the	Conductivity	of	Al	from	the	Mobility	Values



Assume	that	the	mobility	of	electrons	(μn)	in	Al	is	13	cm
2/V	·	s.	The	carrier	concentration	for	Al	is	1.807	×	1023

electrons	(assuming	three	electrons	are	donated	per	Al	atom).	Calculate	the	expected	conductivity	of	Al.

Solution
From	Equation	2.22,	the	conductivity	of	Al	will	be	given	by	the	expression

Because	 this	 value	matches	well	 with	 the	 data	 in	 Table	 2.1,	 our	 assumption	 that	 each	 Al	 atom	 donates	 three
conduction	electrons	appears	reasonable.

Example	2.8: Carrier	Concentration	in	Cu

The	experimentally	measured	mobility	of	electrons	 in	copper	 is	32	cm2/V	·	 s.	Calculate	 the	carrier	concentration
(n)	for	Cu.	Compare	this	with	the	values	listed	in	Table	2.3.	What	does	this	show	about	 the	number	of	conduction
electrons	contributed	per	Cu	atom?

Solution
We	use	the	value	of	Cu	conductivity	(σ)	provided	in	Table	2.1.
From	Equation	2.22,

This	gives	us	a	concentration	of	conduction	electrons	n	=	1.16	×	1023	electrons/cm3.

In	Table	2.3,	the	calculated	free	electron	concentration	for	Cu	is	=	8.43	×	1022	electrons/cm3.	In	arriving	at	this
value	 in	Table	2.3,	we	had	 assumed	 that	 each	Cu	 atom	donates	 one	 conduction	 electron.	Because	we	have	 now
estimated	that	the	actual	value	of	conduction	electrons	is	1.16	×	1023	electrons/cm3,	we	know	that	each	Cu	atom
must	be	donating	more	than	one	electron.	The	average	number	of	electrons	donated	per	Cu	atom	will	be

Thus,	in	Cu,	the	average	number	of	electrons	donated	per	atom	is	1.38.	This	is	expected	because	Cu	does	exhibit
valences	of	+1	and	+2.

Example	2.9: Resistivity	of	a	Semiconductor

A	 particular	 single	 crystal	 of	 a	 semiconducting	 Si	 sample,	 containing	 a	 small	 but	 deliberately	 added	 level	 of
phosphorus	 (P),	 provides	 conductivity	with	 electrons	 as	 the	majority	 carriers.	Assume	 that	 the	 concentration	 of	 P
added	is	1018	atoms/cm3	and	that	each	P	atom	provides	one	electron.	Ignore	any	other	possible	contributions	to	the
conductivity	of	this	P-doped	Si	sample.	If	μn	=	700	cm

2/V	·	s,	what	is	the	resistivity	(ρ)	of	this	semiconductor?

Solution
Because	 each	 P	 atom	 contributes	 only	 one	 conduction	 electron,	 the	 concentration	 of	 P	 atoms	 and	 that	 of	 the
conduction	electrons	donated	by	P	atoms	are	equal;	therefore,	n	=	1018	electrons/cm3.
(In	the	next	chapter,	we	will	learn	that	our	assumption	about	the	concentration	of	conduction	electrons	contributed

by	the	P	atoms,	as	opposed	to	those	from	the	Si	atoms,	is	correct.)	From	Equation	2.22,



Therefore,	σ	=	112	S/cm.	Compared	 to	metals	 (Table	2.1),	 this	 value	of	 conductivity	of	Si	 containing	P	 is	 still
relatively	small.	The	conductivity	of	essentially	pure	Si	containing	no	added	elements	is	even	smaller.

We	have	been	asked	to	calculate	the	resistivity	(ρ),	which	is	equal	to	1/σ.	Therefore,	ρ	=	8.9	×	10−3	Ω	·	cm.	As
we	will	see	in	Chapter	3,	the	value	of	the	resistivity	of	Si	is	very	strongly	dependent	on	the	presence	of	trace	levels
of	impurities	or	deliberately	added	elements.

2.7 RESISTIVITY	OF	METALLIC	MATERIALS

Which	 factors	 have	 the	 greatest	 influence	 on	 the	 resistivity	 of	 metallic	 materials?	 In	 this
section,	we	focus	on	metallic	materials	containing	small	concentrations	of	other	elements.

We	must	 consider	 the	 following	 three	 processes	 (Figure	 2.8):	 First,	 atoms	 in	 a	metallic
material	vibrate.	We	refer	to	the	vibrations	of	atoms	in	a	material	as	phonons.	The	conduction
electrons	 carrying	 the	 electrical	 current	 bump	 into	or	 scatter	 off	 vibrations	of	 these	 atoms.
The	process	of	electron	scattering	of	a	phonon	is	temperature	dependent.	As	the	temperature
increases,	the	number	of	electrons	scattering	off	due	to	the	vibrations	of	atoms	also	increases.
Thus,	 the	 resistivity	of	a	pure	metal	 increases	with	 increasing	 temperature.	This	 increase	 in
resistivity	 due	 to	 the	 scattering	 of	 electrons	 by	 lattice	 vibrations	 is	 linear.	We	 refer	 to	 this
temperature-dependent	component	as	resistivity	(ρT;	Figure	2.9).

The	 second	 factor	 that	 affects	 the	 resistivity	 of	metals	 is	 the	 scattering	 of	 electrons	 off
defects	 such	 as	 vacancies,	 dislocations,	 and	 grain	 boundaries	 (Chapter	 1).	 If	 you	 are
unfamiliar	with	these	terms	related	to	the	microstructure	of	materials,	it	may	be	worthwhile	to
review	these	concepts	(see	Askeland	and	Fulay	2006).	The	concentrations	of	different	defects
will	depend	on	 the	microstructure	of	 the	material.	However,	we	can	assume	 that,	 at	 a	given
temperature	 or	 within	 a	 small	 temperature	 range,	 the	 microstructure,	 and	 therefore	 the
concentrations	of	these	defects	(which	serve	as	scattering	centers),	essentially	is	constant.

FIGURE	2.8 Schematic	showing	the	sources	of	the	scattering	of	conduction	electrons	in	a	metallic	material.



FIGURE	2.9 The	temperature	dependence	of	the	conductivity	of	a	typical	metal	and	a	superconductor.

The	 third	 factor	 that	 influences	 the	 resistivity	 of	 metallic	 materials	 is	 the	 presence	 of
impurities	or	other	elements	deliberately	or	accidentally	added.	Impurities	cause	an	increase
in	 electrical	 resistivity	 because	 the	 atoms	 of	 the	 added	 elements	 act	 as	 scattering	 centers,
regardless	of	whether	 they	 are	 smaller	 or	 larger	 than	 the	host	 atoms.	Because	 the	 impurity
concentrations	 should	 be	 independent	 of	 temperature,	 the	 effect	 due	 to	 the	 presence	 of
impurities	is	generally	not	very	sensitive	to	temperature	changes.

We	designate	the	effect	of	(a)	microstructural	defects	and	(b)	impurities	or	added	elements
as	 the	 residual	 resistivity	 (ρR;	 Figure	 2.9).	 These	 are	 temperature-independent	 effects.
Resistance	due	 to	 these	 effects	will	 remain	 even	 if	we	 somehow	eliminate	 the	 scattering	of
electrons	 due	 to	 the	 vibrations	 of	 atoms.	 The	 electrical	 resistance	 of	most	metals	 does	not
become	zero	after	cooling	to	extremely	low	temperatures	(Figure	2.9).

Whenever	a	heat	treatment	or	any	other	process	causes	a	change	in	the	microstructure	of	a
material,	we	can	expect	a	change	in	its	resistivity.	For	example,	annealing	metals	and	alloys
probably	 will	 increase	 their	 electrical	 conductivity	 because	 dislocations,	 a	 type	 of	 atomic-
level	defect	 in	 the	arrangement	of	atoms,	are	annihilated.	Similarly,	 if	we	bend	an	annealed
copper	wire	or	deform	a	metal	or	an	alloy	in	some	manner,	the	resistivity	will	increase.	This
is	because	of	an	increase	in	the	dislocation	density	(see	Section	2.11).

The	conductivity	of	pure	metals	decreases	with	rising	temperature	because	of	the	increased
scattering	 of	 electrons	 off	 the	 phonons.	 Adding	 alloying	 elements	 or	 the	 presence	 of
impurities	 causes	 a	 disruption	 in	 the	 periodic	 order	 of	 atoms	 and	 introduces	 a	 strain	 (see
Section	2.11).	This	causes	a	sudden	change	in	the	potential	energy	of	conduction	electrons	as
they	approach	 the	atoms	of	 foreign	elements	 (the	alloying	elements	and/or	 impurities).	The
scattering	 of	 electrons	 from	 these	 foreign	 atoms	 then	 increases,	 thereby	 causing	 increased
resistance.	Therefore,	we	expect	the	conductivity	of	alloys	generally	to	be	lower	than	that	of
essentially	pure	metals.	The	conductivity	of	alloys	 is	controlled	by	extrinsic	 factors,	 that	 is,
the	 concentration	 and	 nature	 of	 the	 added	 alloying	 elements	 (see	 Section	 2.12).	 Thus,	 in
alloys,	mobility	is	 limited	by	the	scattering	of	electrons	off	 impurity	atoms.	We	refer	 to	the
mobility	that	is	limited	by	this	effect	as	impurity-scattering	limited	drift	mobility.	Conductivity
(σ)	 in	 essentially	 pure	 metals	 largely	 is	 limited	 by	 the	 scattering	 of	 electrons	 from	 the
vibrations	of	atoms.	The	value	of	mobility	that	is	limited	by	these	effects	is	known	as	lattice-



scattering	 limited	mobility.	 The	 conductivity	 of	 pure	 metals	 limited	 by	 lattice	 scattering	 is
known	as	lattice-scattering	limited	conductivity.

Furthermore,	because	 the	 scattering	of	 conduction	electrons	 is	 controlled	by	a	 relatively
large	concentration	of	atoms	of	other	alloying	elements,	 the	conductivity	of	alloys	will	not
vary	significantly	with	temperature.

For	metals,	we	can	write	the	resistivity	(ρ)	as	a	sum	of	two	components	ρT	and	ρR:

This	equation	is	also	known	as	Matthiessen’s	rule,	where	ρT	 is	the	temperature-dependent
part	of	resistivity,	representing	the	scattering	of	electrons	due	to	the	vibrations	of	the	atoms.
The	part	ρR	represents	scattering	due	to	the	presence	of	impurities,	added	alloying	elements,
and	microstructural	defects	in	the	arrangement	of	atoms	within	a	material	(Figure	2.9).

If	we	assume	that	ρT	changes	linearly	with	temperature,	we	can	rewrite	the	dependence	of
resistivity	(ρ)	with	temperature	as	follows:

Instead	of	listing	the	values	of	A	and	B	for	different	metals	(Equation	2.24),	we	will	define
the	TCR,	designated	as	αR	(Section	2.1).

In	Equation	2.25,	ρ0	 is	 the	resistivity	at	some	reference	temperature	(T0	=	273	or	300	K),
and	ρ	 is	 the	value	of	 resistivity	at	 some	other	 temperature	T.	Note	 that	 the	value	of	αR	 will
depend	on	what	we	use	as	the	reference	temperature.

From	Equation	2.25,	we	can	show	that

Note	that	this	can	be	rewritten	as	follows:

The	values	of	αR	for	different	metals	were	listed	in	Table	2.1.	The	values	of	αR	for	some
alloys	are	shown	in	Tables	2.4	and	2.5	(see	Section	2.12).

The	relative	change	in	the	resistivity	of	some	metals	over	a	wider	range	of	temperatures	is
shown	in	Figure	2.10.	Note	that	nickel	(Ni)	and	iron	(Fe)	are	magnetic,	and	the	change	in	the
resistivity	of	these	materials	is	not	linear.	In	addition,	aluminum	melts	at	~657°C;	thus,	there
may	 be	 some	 changes	 in	 its	 microstructure	 as	 it	 approaches	 higher	 temperatures.	 If	 the
duration	of	a	material’s	exposure	to	higher	temperatures	causes	microstructural	changes,	the
resistivity	of	 the	material	can	change.	For	example,	 in	 the	case	of	metals	such	as	aluminum
and	 copper,	 annealing	 the	 material	 at	 higher	 temperatures	 will	 cause	 the	 annihilation	 of
dislocations	and	thus	cause	an	increase	in	the	conductivity.

The	following	example	explains	how	a	change	in	the	resistivity	of	platinum	can	be	used	to
make	precise	and	accurate	temperature	measurement	devices.



TABLE	2.4

Properties	of	Some	Heating-Element	Materials



TABLE	2.5

Resistivity	and	Temperature	Coefficient	Values	for	Selected	Materials

FIGURE	 2.10 Relative	 change	 in	 resistivity	 with	 temperature	 (relative	 to	 0°C)	 for	 Al,	 Cu,	 Ni,	 and	 Fe.	 (Reprinted	 from
Electrical	Engineer’s	Reference	Book,	Laughton,	M.	A.,	and	D.	F.	Warne,	Copyright	2003,	with	permission	from	Elsevier.)



FIGURE	 2.11 Commercially	 available	 resistance–temperature	 detector	 devices.	 (Courtesy	 of	 Omega	 Corporation,	 San
Diego,	CA.)

Example	2.10: Pt	Resistance–Temperature	Detectors

A	resistance–temperature	detector	(RTD)	makes	use	of	a	metal	wire	(e.g.,	that	of	Pt;	Figure	2.11)	and	can	operate
at	 temperatures	in	the	range	of	−200°C	to	+700°C.	As	the	temperature	changes,	 the	electrical	resistance	changes;
thus,	by	measuring	the	change	in	resistance,	we	can	measure	the	temperature.	Assume	that	the	αR	for	the	Pt	material

used	 is	3.93	×	10−3	Ω/Ω	 ·	 °C.	The	RTD	wire	 is	designed	 so	 that	 the	 resistance	at	0°C	 is	100	Ω.	 (a)	What	 is	 the
temperature	if	the	resistance	measured	is	200	Ω?	(b)	Why	is	Pt	preferred	for	making	RTDs,	in	comparison	to	W,	Cu,
Ag,	or	Au?	(c)	In	Europe,	Pt	compositions	with	αR	=	0.00385	Ω/Ω	·	°C	are	often	used.	For	R	=	200	Ω,	what	is	the
predicted	temperature	if	we	use	an	RTD	made	from	this	Pt	composition?

Solution
1.	 	

Thus,	the	variation	in	resistance	is	0.393	Ω/°C.
Because	the	resistance	measured	by	the	RTD	is	200	Ω,	we	rewrite	this	as



2.	 We	could	use	Cu	instead	of	Pt,	but	Cu	has	a	lower	resistivity.	This	means	that	we
will	 have	 to	 use	 a	 longer	 wire.	 Cu	 will	 also	 oxidize	 at	 high	 temperatures.
Although	 it	 can	 be	 used	 at	 high	 temperatures,	 it	 is	 brittle.	Au	 and	Ag	 exhibit
much	higher	levels	of	conductivity,	and	we	would	need	longer	wires.

3.	 If	we	used	a	Pt	composition	with	αR	=	0.00385	Ω/Ω	·	°C,	then	for	a	wire	whose
resistance	is	100	Ω,	the	change	in	resistance	will	be

Note	that	a	seemingly	small	change	in	the	TCR,	from	0.00393	to	0.00385	Ω/Ω	·
°C,	causes	a	considerable	change	 in	 the	value	of	 the	predicted	 temperature.	 In
practice,	 the	 exact	 coefficient	 of	 the	 resistivity	 of	 the	 RTD	 element	 must	 be
known.	Also,	the	data	for	a	range	of	temperatures	must	be	fitted	to	a	polynomial
and	not	to	the	equation	of	a	straight	line.

2.7.1 EFFECT	OF	THERMAL	EXPANSION

In	Example	2.10,	when	calculating	the	resistance	as	a	function	of	temperature,	we	ignored	the
change	 in	 resistance	 of	 the	 platinum	 wire	 due	 to	 changes	 in	 its	 length	 caused	 by	 thermal
expansion.	If	a	copper	wire	is	heated	from	25°C	to	75°C,	the	length	of	the	copper	wire	will
increase.	The	thermal	expansion	coefficient	for	copper	is	(αCu)	~17	×	10−6/°C.	The	increase	in
length	will	cause	an	increase	in	the	resistance.

Note	that,	in	some	applications,	this	change	in	length—caused	by	a	change	in	temperature
or	the	presence	of	stress—may	be	important	and	may	have	to	be	accounted	for,	for	example,
if	 a	 type	 of	 strain	 gauge	 makes	 use	 of	 the	 change	 in	 electrical	 resistance	 to	 calculate	 the
magnitude	of	strain.

2.8 JOULE	HEATING	OR	I2R	LOSSES

When	a	material	offers	resistance	to	the	flow	of	an	electric	current,	the	energy	lost	during	the
collisions	 of	 electrons	 with	 vibrations	 of	 atoms	 or	 other	 defects	 appears	 as	 heat.	 This	 is
known	as	Joule	heating	or	I2	R	losses.	The	power	dissipated	by	a	material	with	resistance	(R)
carrying	a	current	(I)	is	given	by	the	following	equation:

Obviously,	 Joule	 heating	 is	 not	 useful	 when	 the	 goal	 is	 to	 carry	 current	 with	 the	 least
possible	 resistance.	 Thus,	 in	 ICs	 used	 to	make	 computer	 chips,	we	 try	 to	minimize	 the	 I2R



losses.	Heat	sinks	are	designed	and	built	into	the	computer	chip	packaging	to	conduct	the	heat
away	 from	 the	 chip.	 The	 main	 concern	 regarding	 the	 use	 of	 ICs	 is	 not	 that	 the	 energy	 is
wasted	but	 that	 the	 electrical	 performance	of	 components	 is	 usually	 reduced	with	 increased
temperatures.

In	many	 applications,	 however,	 Joule	 heating	 can	 be	 useful.	 One	 of	 the	most	 important
applications	of	alloys	such	as	Nichrome	and	Kanthal,	and	ceramic	resistor	materials	is	their
use	as	heating	elements	 (Table	2.4).	This	 includes	heating	elements	used	 in	small	consumer
appliances,	such	as	toaster	ovens,	hair	dryers,	and	immersion	water	heaters.	Incandescent	light
bulbs	use	tungsten	filaments	that	produce	light	after	being	heated	to	high	temperatures.	Many
materials,	 such	 as	molybdenum	 disilicide	 (MoSi2),	 are	 used	 to	 make	 heating	 elements	 for
laboratory	furnaces.	Many	of	the	metallic	materials	used	as	heating	elements	are	oxidized	by
heating	them	in	air.	Though	a	dense	and	adherent	oxide	layer	such	as	Cr2O3,	Al2O3,	and	SiO2
protects	base	metals	from	further	oxidation,	the	oxide	layer	also	increases	electric	resistance.
Another	application	where	Joule	heating	is	useful	is	in	the	manufacturing	of	electrical	fuses.
In	an	electrical	circuit,	when	a	certain	value	of	current	 is	exceeded,	 the	material	 in	 the	 fuse
melts	as	a	result	of	Joule	heating.	This	creates	an	open	circuit	and	prevents	current	flow.

Example	2.11: Calculation	of	Joule	Power	Losses	in	a	Cu	Bus	Bar	and	the	Cost	of	Electricity

A	Cu	bus	bar,	or	a	conductor	used	 in	power	 transmission,	 is	300	ft	 long	and	has	a	cross	section	of	¼	×	4	 in.	 (a)
What	is	 the	resistance	of	 this	bar	at	room	temperature?	(b)	Calculate	the	Joule	losses	in	kilowatts	 if	 the	current	 is
1000	A.	Assume	that	the	current	is	DC.	(c)	What	is	the	energy	lost	(in	kW	·	h)	if	the	current	is	carried	for	24	hours?
(d)	Assuming	electricity	costs	12	cents/kW	·	h,	calculate	the	dollar	value	of	the	energy	wasted	due	to	Joule	losses
on	a	per-year	basis.	Assume	that	the	conductivity	of	the	Cu	bar	is	5.8	×	107	S/m.

Solution
1.	 	

2.	 Now,	we	can	calculate	the	Joule	losses	as	follows:

Power	lost	=	V	×	I	=	I2	×	R	=	(1000)2	×	0.00244366	Ω	=	2443.66	W

Thus,	the	power	lost	is	2.433	kW.
3.	 The	energy	lost	in	24	hours	will	be

Energy	lost	=	power	×	time	=	2.443	kW	×	24	h	=	58.6	kW	·	h

As	a	reference,	the	total	electric	power	production	in	the	United	States	in	2015	was	~4	×	1012	kW	·	h
or	4	trillion	kW	·	h.

4.	 If	the	cost	of	electricity	is	12	cents/kW	·	h,	the	total	cost	of	electricity	wasted	due
to	Joule	 losses	will	be	$7.03	each	day.	 In	a	year,	 the	cost	of	electricity	wasted
due	to	Joule	losses	will	be	365	days	×	$7.03/day	=	$2566.



2.9 DEPENDENCE	OF	RESISTIVITY	ON	THICKNESS

So	 far,	 we	 have	 assumed	 that	 the	 resistivity	 (ρ)	 of	 a	 material	 does	 not	 change	 with	 its
geometric	 dimensions.	 However,	 there	 is	 one	 exception—if	 the	 thickness	 of	 the	 film	 is
comparable	 to	 the	mean	 free-path	 length	 (λ)	 for	 the	 conduction	electrons	 (see	Section	 2.5),
then	the	resistivity	of	the	material	does	depend	on	its	thickness	(Gupta	2003).	For	bulk	copper
(e.g.,	a	 large	piece	of	copper	or	copper	wire),	 the	mean	free-path	 length	(λ)	for	conduction
electrons	is	~400	Å	(40	nm).	As	the	thickness	(t)	of	a	resistor	approaches	the	mean	free-path
length	(λ),	 the	scattering	of	electrons	from	the	film	surface	increases.	In	addition	to	surface
scattering,	the	resistivity	can	also	increase	due	to	the	presence	of	surface	contaminants	or	due
to	 higher	 resistivity	 phases	 formed	 as	 a	 result	 of	 surface	 oxidation	 or	 other	 chemical
reactions.	 These	 effects	 tend	 to	 be	more	 pronounced	 as	 the	 thickness	 of	 the	 film	 is	 in	 the
nanoscale	 region.	Therefore,	 a	considerable	 scatter	 in	 the	data	concerning	 the	 resistivity	of
very	thin	films	is	often	observed.	For	bulk,	nearly	pure,	and	annealed	copper,	the	resistivity	is
~1.7	 μΩ	 ·	 cm	 (Table	 2.1).	 For	 copper	 films	 with	 a	 thickness	 of	 t	 ~	 50	 nm,	 the	 room-
temperature	resistivity	value	is	~2.5	μΩ	·	cm.	For	copper	films	of	20	nm	thickness,	the	copper
resistivity	 is	 ~5	 μΩ	 ·	 cm.	 If	 we	 include	 the	 dependence	 of	 resistivity	 on	 thickness,	 then
Matthiessen’s	rule	(Equation	2.23)	can	be	modified	and	rewritten	as	follows:

Copper	is	a	very	important	conducting	material.	As	a	result,	 there	is	a	special	measuring
unit	 based	 on	 the	 conductivity	 of	 copper,	 known	 as	 the	 International	 Annealed	 Copper
Standard	(IACS).	We	define	100%	IACS	as	a	conductivity	of	57.4013	×	106	S/m,	or	57.4013	×
104	S/cm	(or	ρ	=	1.74212	×	10−6	Ω	·	cm).	This	unit	is	based	on	an	annealed	1-m-long	copper
wire,	with	 a	 cross-sectional	 area	 of	 1	mm2	 and	 a	 resistance	 of	 0.174212	Ω	 (Laughton	 and
Warne	2003).

We	can	calculate	the	percentage	of	IACS	for	any	material	using	Equation	2.30.

The	conductivity	of	the	so-called	electrolytic	tough	pitch	(ETP,	or	just	TP)	copper,	which	is
99.0%	pure	(~100–600	ppm	oxygen),	is	~100.2%	IACS.	The	conductivity	of	99.999%	copper
is	 102.5%	 IACS.	The	 IACS	 standard	was	 developed	 in	 1913	 and	was	 based	 on	 the	 highest-
conductivity	copper	available	at	that	time.	Many	compositions	that	have	been	developed	since
then	 have	 conductivity	 higher	 than	 57.4013	×	 104	 S/cm.	As	 a	 result,	we	 have	 several	 high-
purity	copper	samples	on	the	IACS	scale	with	conductivity	greater	than	100%	(Table	2.6).



TABLE	2.6

Conductivity	of	Different	Materials	(at	20°C)	Based	on	the	IACS	Scale

2.10 	 CHEMICAL	 COMPOSITION–MICROSTRUCTURE–CONDUCTIVITY
RELATIONSHIPS	IN	METALS

2.10.1 INFLUENCE	OF	ATOMIC-LEVEL	DEFECTS

We	will	now	compare	the	conductivities	of	pure,	annealed	copper	to	that	of	pure,	cold-worked
copper.	The	term	cold-working	refers	to	a	deformation	process	carried	out	at	a	relatively	low
temperature	(such	as	bending,	wire-drawing,	or	extrusion	carried	out	at	 temperatures	below
the	so-called	recrystallization	temperature).	Cold-working	annealed	metals	and	alloys	leads	to
an	increase	in	the	density	of	dislocations.	This	will	cause	the	resistivity	of	the	annealed	metals
to	increase.	For	example,	the	decrease	in	the	conductivity	of	sterling	silver	(92.5%	Ag−7.5%
Cu)	as	a	 function	of	percentage	of	cold	work	after	 the	drawing	process	 is	 shown	 in	Figure
2.12a.	 The	 increased	 dislocation	 density	 caused	 by	 the	 cold-working	 process	 causes	 a
simultaneous	 increase	 in	 the	 tensile	 strength	 (Figure	 2.12b).	 These	 data	 are	 for	 a	 2.3-
millimeter	wire	that	was	cold-drawn	after	annealing.	The	percentage	of	cold	work	is	defined
as	follows:

where	A0	is	the	original	cross-sectional	area	and	Af	is	the	final	cross-sectional	area	after	cold
working.

In	metals	and	alloys,	the	annealing	heat	treatment	leads	to	the	annihilation	of	dislocations.
Because	 the	 cold-worked	 pure	 copper	 has	 a	 higher	 dislocation	 density,	 we	 expect	 its



resistivity	to	be	higher	than	that	of	annealed	pure	copper.

FIGURE	2.12 (a)	 Electrical	 conductivity	 of	 sterling	 silver	 (92.5%	Ag−7.5%	Cu),	 shown	 as	%IACS,	 and	 (b)	 increase	 in
tensile	strength	(solid	line)	and	decrease	in	percentage	of	elongation	(dotted	line)	as	a	function	of	%	cold	work.	The	data	are
for	 a	 2.3-mm	 wire,	 which	 was	 cold-drawn	 after	 annealing.	 (From	 ASM	 International	 (1990).	 Properties	 and	 Selection:
Nonferrous	Alloys	and	Special	Purpose	Materials,	Vol.	2,	ASM,	Materials	Park,	OH.	With	permission.)



FIGURE	2.13 Effects	of	different	impurities	on	the	conductivity	of	copper.	(Courtesy	of	Copper	Development	Association,
New	York,	NY.)

2.10.2 INFLUENCE	OF	IMPURITIES

The	 conductivity	 of	 pure	 metals	 is	 also	 very	 sensitive	 to	 the	 presence	 of	 impurities.	 This
effect	does	not	come	out	as	a	prediction	of	the	classical	theory	of	conductivity.	The	change	in
the	 conductivity	 of	 copper	 as	 a	 function	 of	 different	 alloying	 elements	 is	 shown	 in	 Figure
2.13.

The	 impurities	 that	 have	 the	 most	 dramatic	 effect	 on	 the	 conductivity	 of	 copper	 are
phosphorous,	titanium	(Ti),	cobalt	(Co),	iron,	arsenic	(As),	and	antimony	(Sb).	Elements	such
as	 silver,	 cadmium	 (Cd),	 and	 zinc	 (Zn)	 produce	 relatively	 less	 of	 an	 increase	 in	 resistivity.
You	 may	 also	 know	 that	 the	 addition	 of	 alloying	 elements	 in	 very	 small	 concentrations
usually	 causes	 an	 increase	 in	 the	 strength	 of	 a	 metal.	 This	 is	 known	 as	 solid-solution
strengthening	(Chapter	1).

When	alloys	form,	up	to	a	certain	concentration	of	one	metal	often	completely	dissolves	in
another—similar	to	sugar	or	salt	dissolving	in	water.	The	resultant	alloy	is	said	to	be	a	solid
solution.	For	example,	nickel	can	be	added	to	copper	to	form	a	solid	solution.

Thus,	 silver,	 cadmium,	 and	 zinc	 are	 good	 choices	 for	 strengthening	 annealed	 copper
without	 causing	 an	 adverse	 effect	 on	 its	 electrical	 conductivity.	Also	 note	 that,	 as	 shown	 in
Figure	2.14,	the	effect	of	oxygen	on	the	resistivity	of	copper	is	smaller	than	expected.	This	is
because	oxygen	 is	usually	present	as	a	 fine	precipitate	of	copper	and	other	oxides.	Oxygen
does	not	appear	as	an	impurity	dissolved	in	a	solid	solution.

The	most	widely	used	copper–alloy	conductor	is	known	as	electrolytic	tough	pitch	(ETP)
copper,	which	contains	 about	100–650	ppm	 (or	1	mg/kg)	oxygen.	Note	 that	 “ppm”	 is	not	 a
scientific	 unit.	 The	 oxygen	 present	 in	 copper	 scavenges	 the	 dissolved	 hydrogen	 and	 sulfur



during	 copper	 refining.	 Moreover,	 oxygen	 reacts	 with	 the	 other	 metal	 impurities	 that	 are
originally	 dissolved	 in	 copper	 and	 causes	 them	 to	 precipitate	 as	 oxides.	 By	 adding	 an
optimum	 concentration	 of	 oxygen,	 we	 cause	 an	 increase	 in	 the	 electrical	 conductivity	 of
copper	 (Figure	 2.14).	 Thus,	 instead	 of	 having	 a	 small	 level	 of	 an	 impurity	 distributed
throughout	 the	 material	 (as	 in	 a	 solid	 solution),	 we	 can	 concentrate	 that	 impurity	 in	 the
precipitate	particles	of	a	second	phase;	in	this	way,	we	can	increase	the	conductivity	without
changing	the	nominal	chemical	composition.	In	some	cases,	where	intricate	castings	need	to
be	made	or	joining	processes	such	as	welding	or	brazing	need	to	be	used,	we	cannot	make	use
of	 ETP	 copper.	 For	 these	 applications,	 oxygen-free	 high-conductivity	 copper	 (OFHC)	 is
utilized.	This	copper	has	less	than	0.001%	oxygen	and	is	more	expensive.	The	conductivity	of
OFHC	and	ETP	copper	is	~101%	IACS.	ETP	and	OFHC	are	the	most	widely	used	varieties	of
copper.	Their	applications	include	windings	for	motors,	generators,	bus	bars,	and	so	on.

FIGURE	2.14 Effect	of	oxygen	concentration	on	the	conductivity	of	copper.	(Courtesy	of	Copper	Development	Association,
New	York,	NY.)



FIGURE	2.15 Effects	of	additions	of	various	alloying	elements	on	 the	resistivity	of	platinum.	(From	Vines,	R.F.	and	Wise,
E.M.,	The	Platinum	Metals	and	Their	Alloys,	International	Nickel	Co.,	New	York,	1941.	With	permission.)

The	effect	of	 the	addition	of	different	alloying	elements	on	 the	 resistivity	of	platinum	 is
shown	 in	 Figure	 2.15.	Adding	 alloying	 elements	 also	 strengthens	 platinum;	 the	 consequent
increase	in	strength,	as	represented	by	increased	hardness,	is	shown	in	Figure	2.16.

2.11 RESISTIVITY	OF	METALLIC	ALLOYS

Alloys	are	metallic	materials	that	are	characterized	by	the	presence	of	more	than	one	element.
The	 dominant	 element	 or	 matrix	 element	 is	 what	 is	 used	 when	 referring	 to	 the	 alloy.	 For
example,	 the	 term	copper	alloy	means	 that	 copper	 is	 the	 dominant	 element.	Other	 elements
present	in	considerable	concentrations	are	added	deliberately	to	improve	the	properties	of	the
alloy.	For	example,	 in	copper–beryllium	(Cu–Be)	alloys,	beryllium	is	added	 to	 increase	 the
Young’s	modulus	 of	 the	 alloy.	The	 electrical	 properties	 of	 some	 alloys	 are	 summarized	 in
Table	2.5.



FIGURE	2.16 Increase	in	the	hardness	of	platinum	due	to	the	addition	of	various	alloying	elements.	(From	Lampman,	S.R.
and	Zorc,	T.B.,	eds.,	Metals	Handbook:	Properties	and	Selection:	Nonferrous	Alloys	and	Special	Purpose	Materials,	ASM,
Materials	Park,	OH,	1990.	With	permission.)

FIGURE	2.17 Variation	in	the	resistivity	of	copper	as	a	function	of	nickel	concentration.	(From	Neelkanta,	P.,	Handbook	of
Electromagnetic	Materials,	CRC	Press,	Boca	Raton,	FL,	1995.	With	permission.)

When	 alloys	 form	 a	 solid	 solution,	 we	 can	 relate	 the	 resistivity	 of	 the	 alloy	 to	 the
resistivity	of	the	pure	metal	using	Nordheim’s	rule:

where	ρalloy	is	the	resistivity	of	the	alloy,	ρmatrix	is	the	resistivity	of	the	base	metal	without	any
alloying	 elements,	C	 is	 Nordheim’s	 coefficient,	 and	 x	 is	 the	 atom	 fraction	 of	 the	 alloying



element	added.	The	first	term,	that	is,	ρmatrix,	accounts	for	the	resistivity	of	the	base	or	matrix
material.	 If	 an	 alloy	 system	 forms	 a	 solid	 solution	over	 a	 complete	 range	of	 compositions
(i.e.,	 from	0%	to	100%	of	solute),	 then	we	expect	a	parabolic	variation	 in	 the	 resistivity,	as
predicted	by	Equation	2.32.	This	is	seen	in	the	copper–nickel	system	(Figure	2.17).

Alloys	 of	 platinum	 and	 palladium	 (Pd)	 are	 often	 used	 as	 electrodes	 in	 devices	 such	 as
multilayer	 capacitors	 and	 electrical	 contacts.	This	 is	 another	 example	 of	 a	 system	 in	which
solid	solutions	are	formed	over	the	entire	range	of	compositions.	The	electrical	resistivity	of
platinum–palladium	alloys	 as	 a	 function	of	 the	palladium	concentration	 is	 shown	 in	Figure
2.18.

FIGURE	2.18 Electrical	 resistivity	 (in	nΩ	m)	and	 temperature	 coefficient	of	 resistivity	 (%/K)	 for	platinum–palladium	 (Pt–
Pd)	alloys.	(From	Lampman,	S.R.	and	Zorc,	T.B.,	eds.,	Metals	Handbook:	Properties	and	Selection:	Nonferrous	Alloys	and
Special	Purpose	Materials,	ASM,	Materials	Park,	OH,	1990.	With	permission.)



FIGURE	2.19 The	change	in	tensile	strength	(in	MPa	on	the	left	y-axis	and	in	ksi	on	the	right	y-axis)	of	annealed	platinum–
palladium	 alloys	 as	 a	 function	 of	 palladium	 concentration.	 (From	 Lampman,	 S.R.	 and	 Zorc,	 T.B.,	 eds.,	Metals	 Handbook:
Properties	 and	 Selection:	 Nonferrous	 Alloys	 and	 Special	 Purpose	 Materials,	 ASM,	 Materials	 Park,	 OH,	 1990.	 With
permission.)

When	 palladium	 is	 added	 to	 platinum	 or	 vice	 versa,	 the	 tensile	 strength	 increases;	 this
effect	is	shown	in	Figure	2.19.

Note	that	most	alloy	systems	do	not	show	the	formation	of	solid	solutions	over	the	entire
composition	 ranges.	 Instead,	 different	 phases	 are	 often	 formed,	 or	 the	 solubility	 of	 one
component	into	another	is	limited.	In	some	alloys,	heat	treatments	can	lead	to	the	ordering	of
atoms.	Processes	such	as	ordering,	clustering,	and	precipitation	of	different	phases	can	have	a
significant	effect	on	the	observed	resistivity	values.	For	example,	in	the	copper–gold	system,
the	formation	of	ordered	phases	 leads	 to	an	 increase	 in	conductivity.	Both	composition	and
microstructure	have	a	major	effect	on	the	resistivity	of	alloys.

Example	2.12: Resistivity	of	a	Cu	Alloy	Using	Nordheim’s	Rule

Pure	Au	and	Ag	are	 too	soft	 for	most	applications.	As	a	result,	Cu	is	added	as	an	alloying	element	 to	strengthen
these	metals	using	solid-solution	strengthening.	What	is	the	resistivity	of	an	Au	alloy	containing	1.5	weight	%	Cu?
Assume	that	Nordheim’s	coefficient	(C)	for	Cu	dissolved	in	Au	is	450	nΩ	·	m	(Equation	2.32).

Solution
From	Table	2.1,	we	see	that	the	resistivity	of	Au	is	2.35	μΩ	·	cm	or	23.5	nΩ	·	m.	Note	that,	 in	Equation	2.32,	the
concentration	of	the	alloy-forming	element	has	to	be	expressed	as	an	atom	fraction,	which	is	achieved	by	applying
the	following	equation:

where	x	 is	the	atom	fraction	of	Cu,	w	 is	the	weight	fraction	of	Cu,	MCu	is	the	atomic	mass	of	Cu,	and	MAu	 is	 the
atomic	mass	of	Au.	In	our	case,	the	wt%	of	Cu	is	given	as	1.5;	thus,	the	weight	fraction	of	Cu	is	1.5/100	=	0.015.
From	the	periodic	table,	MAu	=	197	g/mol,	MCu	=	63.5	g/mol.	Thus,



The	concentration	of	Cu	as	an	atom	fraction	is	x	=	0.045.
Therefore,	using	Nordheim’s	rule,	we	get:

We	can	 see	 that	 a	 small	 concentration	of	Cu	 increases	 the	 resistivity	of	Au	 substantially.	Also,	 note	 that	Cu	 is
actually	a	better	conductor	than	Au.	However,	when	we	add	Cu	to	Au	as	an	alloying	element,	the	Cu	atoms	disrupt
the	arrangement	of	the	Au	atoms.	This	increases	the	scattering	of	conduction	electrons	in	Au	and	causes	an	increase
in	resistivity.

As	discussed	in	Section	2.8,	we	typically	expect	alloys	to	have	low	electrical	conductivities;
moreover,	the	conductivity	of	metallic	alloys	does	not	change	much	with	temperature	(Figure
2.20).

FIGURE	2.20 The	resistivity	of	some	copper	alloys	as	a	function	of	temperature.	The	data	for	resistivity	change	of	copper	is
also	 shown.	 (From	 Neelkanta,	 P.,	 Handbook	 of	 Electromagnetic	 Materials,	 CRC	 Press,	 Boca	 Raton,	 FL,	 1995.	 With
permission.)

The	 elements	 added	 to	 the	 alloys	 or	 those	 present	 as	 impurities	 in	 raw	 materials	 or
processing	 may	 remain	 dissolved	 in	 the	 alloy	 and	 form	 a	 solid	 solution.	 Alternatively,
impurities	can	react	with	one	another	or	with	other	elements	present	to	form	various	separate
phases.	Both	 the	concentration	and	 the	manner	 in	which	 the	 impurities	are	distributed	 in	 the
microstructure	influence	the	observed	values	of	resistivity.



2.12 LIMITATIONS	OF	THE	CLASSICAL	THEORY	OF	CONDUCTIVITY

The	classical	 theory	based	on	 the	delocalization	of	valence	electrons,	although	useful,	does
not	 explain	 several	 key	 features	 associated	with	 the	 electrical	 conductivity.	For	 example,	 in
some	covalent	bonding	materials,	 such	as	 silicon	or	diamond	 (a	 form	of	carbon	 [C]),	 each
atom	has	four	valence	electrons,	but	their	free	charge	carrier	concentration	is	much	smaller
than	 the	 valence	 electron	 concentration.	 Furthermore,	 the	 conductivity	 of	 Si	 is	 extremely
sensitive	to	the	presence	of	even	very	small	 levels	of	other	elements	(i.e.,	 impurities)	rather
than	 the	 density	 of	 valence	 electrons.	 Classical	 theory	 also	 has	 a	 difficulty	 in	 explaining	 a
change	in	the	mean	velocity	of	electrons	(i.e.,	electron	motion	by	thermal	energy).	According
to	classical	 theory,	 if	 no	electric	 field	 is	 applied,	we	would	expect	 the	mean	electron	 speed
with	which	conduction	electrons	move	to	increase	with	increasing	temperature,	similar	to	the
situation	encountered	in	the	kinetic	theory	of	gases.	However,	it	has	been	shown	that	the	mean
electron	speed	with	which	conduction	electrons	move	 in	a	material	 at	 zero	electric	 field,	 is
fairly	 constant	with	 the	 temperature.	 This	means	 that	 electrons	 cannot	 be	 simply	 treated	 as
particles	 of	 classical	 physics.	 Moreover,	 classical	 theory	 cannot	 accurately	 predict	 the
relationship	between	the	 thermal	conductivity	and	 the	electrical	conductivity	of	metals.	 If	all
electrons	 in	 the	 sea	 of	 electrons	 move	 freely	 and	 are	 responsible	 for	 the	 high	 electric
conductivity	of	metals,	these	free	electrons	should	also	contribute	to	the	thermal	conductivity.
In	fact,	Wiedemann	and	Franz	experimentally	found	that	there	is	a	linear	correlation	between
the	 thermal	 conductivity	 and	 the	 electric	 conductivity	 (i.e.,	 good	 electrical	 conductors	 are
good	thermal	conductors).	However,	the	following	quantitative	studies	show	that	the	thermal
conductivity	 predicted	 by	 classical	 theory	 is	 two	 orders	 of	 magnitude	 lower	 than	 the
experimentally	 observed	 thermal	 conductivity.	Unless	 the	 heat	 capacity	 of	 free	 electrons	 is
two	orders	 of	magnitude	higher	 than	 the	measured	value,	 classical	 theory	 cannot	 explain	 a
correlation	between	the	thermal	conductivity	and	the	electric	conductivity.

Thus,	classical	theory	is	inadequate	in	explaining	a	number	of	experimental	observations.
This	is	because	the	interactions	of	a	valence	electron	with	nucleuses,	other	valence	electrons,
and	impurities	are	ignored	in	the	classical	theory.	For	rigorous	calculation,	we	cannot	apply	a
classical	 particle	 model	 to	 describe	 the	 movement	 of	 free	 electrons.	 A	 more	 elaborate
quantum	 mechanics–based	 explanation	 of	 the	 electron	 configuration	 can	 help	 to	 better
understand	 the	physics	 and	 explain	 the	 experimental	 observations	of	 electron	motion	under
the	electric	field	or	the	thermal	gradient.

2.13 QUANTUM	 MECHANICAL	 APPROACH	 TO	 THE	 ELECTRON	 ENERGY
LEVELS	IN	AN	ATOM

We	will	now	turn	our	attention	to	the	quantum	mechanical	approach	to	explain	variations	in
the	electrical	conductivity	of	different	solids.	This	approach	leads	to	the	band	theory	of	solids.
Quantum	 mechanics	 provides	 a	 powerful	 approach	 for	 explaining	 a	 number	 of	 features
related	to	the	conductivity	of	materials	that	are	not	explained	by	classical	theory.

We	will	start	with	a	short	discussion	on	the	wave-like	behavior	and	quantized	energy	levels
of	 electrons.	 In	 quantum	mechanics,	 electrons	 are	 treated	 as	waves	 rather	 than	 as	 particles.
(The	particle–wave	duality	will	be	explained	further	in	Chapter	8,	which	discusses	the	photon



as	 a	basic	 element	of	 light.)	Here,	we	will	 focus	on	 the	 effect	 of	 the	wave-like	property	of
materials	called	de	Broglie	waves	or	matter	waves.	According	to	this	theory,	matters	exhibit
wave	characteristics.	The	wavelength	(λ)	of	matter	waves	is	equal	to

where	h	 is	 the	Planck	constant,	p	 is	momentum,	m	 is	mass,	 and	v	 is	velocity.	Equation	 2.33
indicates	that	the	wavelength	of	matter	is	inversely	proportional	to	the	momentum.	If	the	mass
of	the	matter	is	large,	the	wavelength	of	the	matter	wave	is	too	small	to	detect.	This	is	the	case
with	 a	 soccer	 ball	 or	 an	 apple.	 However,	 in	 matter	 with	 a	 very	 small	 mass—such	 as	 an
electron—the	wavelength	of	the	matter	wave	is	measurable	and	has	a	real	physical	effect	on
the	matter ’s	motion.	This	explains	why	the	wave-like	property	becomes	important	in	electrons
with	such	a	small	mass.

Note	 that	 these	wave	 characteristics	make	 the	 electrons	 in	 atoms	 have	 quantized	 energy
levels	instead	of	continuous	energy	levels.	Quantization	means	that	electrons	in	an	atom	can
have	only	certain	levels	of	energy.	Readers	can	imagine	a	guitar	string	that	is	tied	at	two	ends.
The	 long-lasting	acoustic	vibration	of	 the	string	 is	allowed	only	when	 the	standing	wave	 is
formed	 through	 the	 string.	 In	 other	 words,	 the	 boundary	 conditions	 of	 the	 string	 limit	 the
wavelength	of	the	string	for	the	stable	vibration.	The	wave	of	electrons	orbiting	a	nucleus	is
analogous	 to	 the	 standing	 waves	 of	 the	 vibrating	 guitar	 ring	 in	 that	 only	 certain	 modes
(energy	 levels)	 of	 the	wave	 are	 allowed.	We	 have	 briefly	 reviewed	 the	 basic	 hypothesis	 of
quantum	mechanics—the	electron	energy	levels	are	quantized	due	to	the	wave-like	properties
of	the	electron.

Four	kinds	of	quantum	numbers	(n,	l,	m,	and	s)	are	used	 to	express	 the	quantized	energy
levels	of	electrons	and	the	electron	configuration	in	atoms	and	solids.	The	principal	quantum
number	(n)	accounts	 for	 the	Coulombic	 interactions	between	 the	positively	charged	nucleus
and	an	electron.	A	value	of	n	=	1	corresponds	to	the	K	shell,	n	=	2	corresponds	to	the	L	shell,
and	so	on	(Figure	2.6).	Another	quantum	number	is	related	to	the	angular	momentum	of	the
electrons.	This	is	known	as	the	orbital	angular	momentum	quantum	number	(l),	or	azimuthal
quantum	number,	which	 relates	 the	 shape	 of	 electron	 orbitals	 (e.g.,	 sphere	 shape,	 dumbbell
shape,	etc.).	For	a	given	value	of	the	principal	quantum	number	n,	there	are	subshells	that	are
characterized	 by	 different	 values	 of	 the	 orbital	 angular	momentum.	 In	 a	 description	 of	 the
electronic	configuration,	a	value	of	l	=	0	corresponds	to	the	letter	for	subshell	“s.”	Similarly,
a	value	of	l	=	1	corresponds	to	the	letter	for	subshell	“p,”	and	so	on.	As	an	example,	for	an
energy	 level	 of	 n	=	 3	 (that	 is,	 the	M	 shell),	 there	 will	 be	 3s,	 3p,	 and	 3d	 subshells.	 Thus,
different	 combinations	of	 the	quantum	numbers	n	 and	 l	 represent	 different	 electron	 energy
levels.

The	different	allowed	values	of	these	and	other	quantum	numbers	are	shown	in	Table	2.7.
In	addition	to	n	and	l,	an	electron	has	a	magnetic	quantum	number	(m	or	m1)	that	represents	the
component	 of	 orbital	 angular	 momentum	 along	 an	 external	 magnetic	 field.	 The	 magnetic
quantum	number	matters	when	materials	are	exposed	 to	magnetic	 field.	Finally,	an	electron
also	has	a	quantum	number	that	quantizes	the	spin,	known	as	spin	quantum	number	(s	or	ms).
This	quantum	number	becomes	especially	important	in	understanding	the	magnetic	properties
of	 materials	 (Chapter	 11).	 According	 to	 the	 principles	 of	 quantum	 mechanics,	 the	 energy
states	available	to	electrons	in	atoms	are	discrete	or	quantized.	There	are	certain	energy	levels



that	electrons	within	atoms	are	not	allowed	to	have.	For	example,	electron	energy	levels	are
not	allowed	in	between	the	1s	and	2s	levels,	between	the	2s	and	3p	levels,	and	so	on.

A	complete	set	of	quantum	numbers,	 that	 is,	n,	 l,	m,	and	s,	 describes	 the	unique	quantum
state	of	an	electron.	A	set	of	quantum	numbers	represents	what	is	described	as	a	wave	function
associated	with	 an	 electron.	A	wave	 function	 is	 equivalent	 to	 an	orbital	 or	 an	 energy	 level.
One	 important	 principle	 from	 quantum	mechanics	 is	 known	 as	Pauli’s	 exclusion	 principle.
This	principle	 states	 that	no	 two	electrons	 in	a	given	 system,	 such	as	an	atom,	can	have	all
four	identical	quantum	numbers.	If	two	electrons	have	the	same	values	of	n,	l,	and	m,	 then—
according	 to	 Pauli’s	 exclusion	 principle—their	 spins	must	 be	 opposite.	 Such	 electrons	 are
said	to	be	spin-paired	electrons.	The	possible	values	of	quantum	numbers	are	summarized	in
Table	2.7.

The	maximum	number	of	electrons	allowed	in	a	shell	with	a	given	value	of	n	is	2n2.	Thus,
for	 values	 of	n	=	 1,	 2,	 and	 3,	 the	maximum	 number	 of	 electrons	 allowed	 is	 2,	 8,	 and	 18,
respectively.	 For	 the	 s,	 p,	 d,	 f,	 and	 g	 sublevels,	 the	maximum	 number	 of	 states	 or	 energy
levels	allowed	are	2,	6,	10,	14,	and	18,	respectively.	The	order	in	which	the	different	energy
levels	are	filled	is	as	follows:

1s,	2s,	2p,	3s,	3p,	4s,	3d,	4p,	5s,	4d,	5p,	6s,	5d,	4f,	6p,	7s,	6d,	5f	….

TABLE	2.7

Quantum	Numbers	for	Electrons



FIGURE	 2.21 The	 order	 and	 number	 of	 electrons	 for	 different	 elements.	 (From	 Minges,	 M.L.,	 Electronic	 Materials
Handbook,	Vol.	1,	ASM,	Materials	Park,	OH,	1989.	With	permission.)

Note	 that	 in	 this	 filling	order,	 there	are	 some	 inversions.	For	example,	we	use	up	 the	4s
level	before	3d.	A	complete	description	of	reasons	for	this	is	beyond	the	scope	of	this	book.
However,	 it	 is	 important	 to	note	 that	 these	 inversions	do	occur.	They	play	a	key	 role	 in	 the
determination	 of	 both	 the	 electronic	 configuration	 of	 transition	 elements	 and	 the	magnetic
properties	of	ceramic	ferrites	and	iron-	and	nickel-based	magnetic	materials.

Examples	2.13	 and	2.14	 show	how	 these	 concepts	 can	 be	 used	 to	 describe	 the	 electronic
configuration	 for	 different	 elements.	 Figure	 2.21	 contains	 a	 list	 of	 the	 electronic
configurations	for	different	elements.

Example	2.13: Electronic	Configuration	for	Al

Write	down	the	electronic	configuration	for	Al,	whose	atomic	number	(Z)	is	13.	Explain	the	meaning	of	the	different
symbols	used.

Solution
For	Al,	Z	=	13;	this	means	that	there	are	13	electrons	in	one	Al	atom.

We	start	with	n	=	1.	In	this	level,	we	can	have	2(1)2	=	2	electrons.	For	n	=	1,	the	only	possible	value	of	l	is	0.	In
this	s	subshell,	we	can	have	only	two	electron	energy	levels.	Thus,	the	first	part	of	the	configuration	is	1s2	(read	as
“one	s	two”).	Then,	for	n	=	2	(or	the	L	shell),	the	possible	values	of	l	are	0	and	1,	that	is,	s	and	p	sublevels.	The
total	maximum	number	of	electrons	 in	 this	shell	can	be	2(2)2	=	8.	Thus,	when	n	=	 2,	 for	 the	 s	 subshell,	we	 can
have	two	electrons;	and	for	the	p	subshell,	we	can	have	six	electrons.	Thus,	the	configuration	will	read	1s22s22p6.
This	accounts	for	a	total	of	2	+	2	+	6	=	10	electrons.	We	have	only	three	more	electrons	left.	We	move	to	the	n	=3



level	(M	shell).	We	can	have	up	to	2(3)2	=	18	electrons	in	this	level,	where	the	possible	values	of	l	are	0,	1,	and	2
or	s,	p,	and	d	subshells.	We	start	with	the	s	subshell,	place	two	electrons	here,	and	then	move	to	the	p	subshell	and
place	one	more	electron	here.
Thus,	the	electronic	configuration	for	Al	will	be	1s22s22p63s23p1.
The	p	subshell	can	hold	five	more	electrons,	but	these	levels	will	remain	empty	because	the	Al	atom	has	only

13	electrons.	Similarly,	the	3d	and	higher	energy	levels—such	as	4s,	4p,	and	4d—also	will	remain	empty.
The	 electrons	 in	 the	 outermost	 shell	 (n	 =	 3)—that	 is,	 the	 3s	 and	 3p	 electrons—are	 referred	 to	 as	 the	 valence

electrons.	These	electrons	are	particularly	important	because	they	are	available	for	both	electrical	conduction	and
chemical	reactions	in	metallic	materials.

Example	2.14: Electronic	Configuration	for	Fe

Write	down	the	electronic	configuration	of	a	Fe	(Z	=	26)	atom.

Solution

There	are	26	electrons	in	a	Fe	atom.	We	start	with	n	=	1.	This	orbital	can	take	2(n	=	1)2	or	two	electrons.	The	only
possible	value	of	l	is	0,	that	is,	the	s	subshell.	Thus,	the	electronic	configuration	until	this	level	will	be	1s2.	For	n	=
2,	we	can	have	a	maximum	of	2(2)2	or	eight	electrons.	The	possible	values	of	l	are	0	and	1;	or,	we	can	have	s	and
p	subshells.	Now,	the	electronic	configuration	will	read	1s22s22p6.	For	n	=	3,	we	can	have	2(3)2	or	18	electrons.
However,	we	have	only	26	−	2	−	8	=	16	electrons	remaining.	For	n	=	3,	we	can	have	possible	values	of	0,	1,	and	2
for	l;	or	s,	p,	and	d	subshells.	Thus,	the	electronic	configuration	will	read	as	1s22s22p63s23p63d8.
However,	according	to	the	filling	order	stated	earlier,	the	4s	shell	will	fill	before	the	3d	shell.	The	4s	level	will

take	two	electrons.	The	balance	of	six	electrons	will	enter	the	3d	shell.

Therefore,	the	final	electronic	configuration	for	iron	will	be	1s22s22p63s23p64s23d6.
The	d	 subshell	 can	 contain	 a	maximum	of	 10	 electrons	 but	 actually	 contains	 only	 six.	Thus,	 the	 d	 subshell	 is

deficient	by	four	electrons.	Of	the	six	electrons	in	the	3d	sublevel,	 two	are	spin-paired—that	 is,	 they	have	all	 the
same	quantum	numbers,	except	the	spin	quantum	numbers	(which	are	+1/2	and	−1/2;	Table	2.8).
The	 remaining	 four	of	 the	3d	electrons	are	not	 spin-paired.	These	unpaired	electrons	make	 it	 possible	 for	 a	Fe

atom	to	behave	like	a	tiny	bar	magnet.	This	behavior	contributes	to	making	Fe	a	magnetic	material.	We	will	study
this	when	we	discuss	magnetic	materials	(Chapter	9).

2.14 ELECTRONS	IN	A	SOLID

Consider	 that	 the	 electron	 energy	 levels	 or	 associated	 spectrum	 in	 silicon	 that	 has	 four
valence	electrons	per	atom	and	2	electrons	each	are	in	2s	orbital	and	2p	orbitals	(Figure	2.22).
Note	that	the	energy	levels	of	2s	orbitals	and	2p	orbitals	are	not	the	same.	If	Si	atoms	form	the
solid,	how	will	valence	electron	energy	levels	change?

TABLE	2.8

Electron	Spin	States	in	Iron	(Fe)



FIGURE	2.22 Electronic	structure	and	energy	levels	in	a	Si	atom:	(a)	The	orbital	model	of	a	Si	atom	showing	the	ten	core
electrons	(n	=	1	and	2)	and	the	four	valence	electrons	(n	=	3);	(b)	energy	levels	in	the	Coulombic	potential	of	the	nucleus	are
also	 shown	 schematically.	 (From	 Streetman,	 B.G.	 and	 Banerjee,	 S.,	 Solid	 State	 Electronic	Devices,	 5th	 ed.,	 Prentice	 Hall,
Upper	Saddle	River,	NJ,	2000.	With	permission.)

A	solid	material	can	have	billions	of	atoms.	It	is	important	to	know	not	just	the	electronic
structure	of	individual	atoms	but	also	how	different	atoms	interact	with	one	another	when	they
are	in	close	proximity	to	one	another.	When	individual	atoms	are	brought	together	to	form	a
solid	 material,	 the	 atomic	 distance	 decreases	 and	 the	 electron	 orbitals	 begin	 to	 overlap



(Figure	2.23).	The	overlapping	of	the	electron	orbitals	makes	the	wave	characteristics	of	the
electrons	 complicated.	 Then,	 the	 quantized	 and	 discrete	 electron	 energy	 levels	 of	 the	 atom
spread	out	and	the	stable	electron	energy	levels	evolve	to	the	band	in	the	solid.

FIGURE	2.23 Overlap	of	the	electron	energy	levels	or	wave	functions	as	the	atoms	come	closer.	(Adapted	from	Edwards-
Shea,	L.,	The	Essence	of	Solid-State	Electronics,	Prentice	Hall,	Upper	Saddle	River,	NJ,	1996.	With	permission.)

FIGURE	2.24 Formation	of	energy	bands	in	silicon.	(From	Streetman,	B.G.	and	Banerjee,	S.,	Solid	State	Electronic	Devices,
5th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	2000.	With	permission.)

Figure	2.24	 schematically	 illustrates	 the	overlapping	of	 energy	 levels	 of	 different	 atoms
and	 the	 subsequent	 formation	 of	 energy	 bands,	 which	 occur	 in	 silicon.	 As	 the	 interatomic
distance	(or	lattice	spacing)	decreases,	two	discrete	energy	levels	become	two	separate	bands.



A	remaining	question	is,	“What	is	the	physical	origin	of	two	discrete	energy	levels	in	Si	atom
and	 two	 energy	 bands	 in	 Si	 solid?”	 Apparently,	 the	 lower	 band	 and	 the	 upper	 band	 have
different	 physical	 origins.	 We	 will	 start	 with	 two	 energy	 levels	 in	 Si	 atoms.	 The	 lattice
structure	of	Si	 is	 very	 similar	 to	 that	of	diamond	 in	which	C	 atoms	 constitute	 a	 zinc	 blend
structure	 (Figure	1.20).	Thus,	 in	Si	 lattice,	 four	Si	 atoms	 form	a	 face-centered	cubic	 (FCC)
structural	frame.	An	additional	four	Si	atoms	fill	four	out	of	eight	tetrahedral	sites	of	the	FCC
frame	and	four	tetrahedral	sites	remain	empty.	Because	only	half	of	the	tetrahedral	intersitials
are	 filled,	 there	 are	 two	 different	 valence	 electron	 locations.	 The	 first	 type	 of	 valence
electrons	stay	near	the	center	of	Si–Si	bonds,	and	the	Coulombic	interactions	between	valence
electrons	and	the	nucleus	consequently	contribute	to	strengthening	Si–Si	bonds.	This	energy
state	 of	 valence	 electrons	 participating	 in	 Si–Si	 covalent	 bonding	 is	 called	 the	 bound	 state;
most	valence	electrons	are	in	the	bound	state.	The	second	type	of	electron	state	is	known	as
free	 state	 and	 only	 a	 small	 portion	 of	 the	 valence	 electrons	 take	 the	 energy	 levels	 in	 free
states.	Electrons	in	free	states	are	found	around	the	empty	tetrahedral	sites	of	a	Si	lattice.	Due
to	the	lack	of	nearby	Si	atoms,	the	electrons	in	the	free	states	are	not	bound	to	the	atom.	It	is
intuitively	understood	that	the	kinetic	energy	of	valence	electrons	in	the	free	state	is	so	high
that	the	valence	electrons	can	easily	overcome	the	attraction	force	that	would	have	kept	them
bound	to	the	specific	nucleus.	The	energy	at	which	an	electron	becomes	free	is	referred	to	as
E	=	0.

As	the	lattice	spacing	decreases,	two	different	energy	levels	(free	states	and	bound	states)
of	 Si	 atoms	 evolve	 into	 two	 bands	 (Figure	 2.24).	 In	 Si,	 the	 electron	 energy	 band
corresponding	 to	 the	 bound	 states	 is	 called	 the	 valence	 band,	 and	 the	 electron	 energy	 band
related	to	the	free	states	is	called	the	conduction	band.	The	energy	gap	between	the	bottom	of
the	conduction	band	and	 the	 top	of	 the	valence	band	 is	called	band	gap.	This	concept	of	 the
formation	 of	 energy	 bands	 and	 band	 gap	 in	 a	 solid,	 as	 opposed	 to	 the	 energy	 levels	 in
individual	atoms,	 is	 the	foundation	for	describing	the	differences	in	the	electrical	properties
of	insulating,	conducting,	and	semiconducting	materials.

2.15 BAND	STRUCTURE	AND	ELECTRIC	CONDUCTIVITY	OF	SOLIDS

The	band	structure	and	electric	conductivity	of	a	solid	are	closely	related.	We	will	discuss	a
lithium	atom	(Li;	Z	=	3)	first.	The	electronic	configuration	is	1s22s1.	This	means	that	there	are
two	 electrons	 in	 the	 lowest	 energy	 level	 (1s	 level).	 There	 is	 only	 one	 electron	 in	 the	 next
energy	level	for	an	atom,	the	2s	level.	The	2s	and	2p	levels	are	collectively	known	as	the	L
shell.	The	2s	level	can	accept	two	electrons	and	is	thus	only	half-filled	by	a	lithium	atom.

Now	consider	a	lithium	crystal	with	N	atoms.	When	we	have	N	lithium	atoms,	there	are	N
electrons	 that	 belong	 to	 the	 2s	 energy	 band.	When	 lithium	 atoms	 approach	 each	 other,	 the
different	2s	energy	levels	of	the	different	atoms	begin	to	overlap.	This	leads	to	the	formation
of	a	2s	band	(Figure	2.25).	Note	that	each	2s	level	can	take	two	electrons;	thus,	for	N	atoms,
the	2s	band	is	capable	of	taking	2N	electrons.	However,	there	are	only	N	2s	electrons.	Thus,
the	 2s	 band	 is	 only	 half-full	 and	 the	 other	 half	 of	 the	 energy	 state	 in	 the	 2s	 band	 is	 empty.
Moreover,	 the	 higher	 energy,	 empty	 energy	 levels	 for	 the	 individual	 atoms	 also	 begin	 to
overlap.	Thus,	the	2s	band	is	extended	and	overlaps	with	the	2p	and	3s	bands.



When	an	electric	 field	 is	 applied	 to	 lithium,	 the	 electrons	 in	 the	 low	energy–filled	 states
gain	 energy,	move	 into	 the	 empty	 energy	 states	 of	 2s	 band,	 and	 deliver	 an	 electric	 charge.
Therefore,	solids	of	alkali	elements,	such	as	sodium	and	lithium,	are	very	good	conductors	of
electricity.	 This	 indicates	 that	 the	 valence	 band	 partially	 filled	 with	 valence	 electrons	 is	 a
necessary	 condition	 for	 the	 high	 electric	 conductivity	 that	 is	 one	 of	 the	 most	 important
physical	properties	of	metals.

In	Figure	2.25,	readers	may	recognize	that	the	band	width	for	electrons	of	the	1s	level	does
not	 increase,	 even	 though	 the	 interatomic	 distance	 decreases	 to	 the	 equilibrium	 position
(marked	as	a	dotted	vertical	line	in	Figure	2.25).	Since	the	1s	level	electrons	are	closer	to	the
nucleus	and	the	2s	band	electrons	shield	the	1s	level	electrons	from	outside	electrons,	the	1s
level	 electrons	 in	 the	 solid	 are	 less	 affected	 by	 the	 presence	 of	 electrons	 of	 neighboring
atoms.	Hence,	a	decrease	in	the	interatomic	spacing	does	not	result	in	the	significant	splitting
of	 the	 1s	 energy	 level.	 However,	 if	 the	 interatomic	 spacing	 of	 the	 lithium	 atoms	 becomes
much	 smaller	 than	 the	 equilibrium	 spacing,	 the	 1s	 energy	 level	 dramatically	 increases,	 as
shown	in	Figure	2.25.	Also,	note	 that	 the	1s	band	in	 the	 lithium	is	completely	filled	because
there	 are	 two	 electrons	 in	 the	 1s	 energy	 level	 of	 the	 lithium.	When	 the	 band	 is	 completely
filled	(like	the	1s	band	of	 the	lithium),	 there	are	no	empty	energy	states	for	 the	electrons	to
move	 into.	 Thus,	 electrons	 in	 the	 completely	 filled	 band	 do	 not	 contribute	 to	 electrical
conduction.

We	represent	 these	energy	 levels	of	metals	 in	 the	form	of	a	band	diagram	(Figure	2.26).
From	 an	 electrical	 properties	 viewpoint,	 the	 bands	 that	 involve	 the	 outermost	 or	 valence
electrons	 are	 the	 most	 important	 in	 most	 cases.	 Thus,	 it	 is	 customary	 to	 show	 only	 the
outermost	bands	in	a	band	diagram.	This	outermost	band	consisting	of	the	valence	electrons
is	known	as	the	valence	band.	The	band	that	is	in	the	bottom	of	the	band	diagram	typically	is
almost	completely	filled	with	electrons.

Qualitative	band	diagrams	for	different	types	of	materials	are	shown	in	Figure	2.27.	Band
diagrams	and	 the	magnitudes	of	 the	band	gap	energies	provide	an	excellent	way	 to	classify
materials	into	conductors,	semiconductors,	and	insulators	(Figure	2.28).	As	shown	in	Figure
2.27a,	a	partially	filled	valence	band	is	an	important	feature	of	metals.	In	some	metals	such	as
magnesium	(Mg),	the	valence	band	(3s	level	for	Mg)	is	almost	filled,	and	there	is	no	apparent
band	 gap.	 However,	 the	 empty	 3p	 bands	 are	 overlapped	 with	 the	 almost	 filled	 3s	 in	 Mg
(Figure	2.27).	 In	 this	band	 structure,	when	an	electrical	 field	 is	 applied,	 the	 electrons	 in	 the
almost	 3s	 band	 accelerate	 and	 occupy	 the	 empty	 states	 in	 the	 3p	 band	 and	 possibly	 higher
bands.	Hence,	the	electric	conductivity	of	Mg	is	comparable	to	that	of	Na	or	other	metals.	The
excitation	 of	 the	 valence	 electrons	 from	 3s	 band	 to	 3p	 bands	 explains	 why	 alkali	 earth
elements	such	as	Mg	are	classified	as	metal.



FIGURE	2.25 Formation	of	 energy	bands	 in	 lithium	metal.	The	2s	band	 is	 only	half-filled.	Note	 that	 the	1s	 level	 shows
very	little	splitting.	(From	Kasap,	S.O.,	Principles	of	Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	2002.	With
permission.)

FIGURE	2.26 Schematic	of	a	band	diagram	for	a	metal.	(From	Edwards-Shea,	L.,	The	Essence	of	Solid-State	Electronics,
Prentice	Hall,	Upper	Saddle	River,	NJ,	1996.	With	permission.)



FIGURE	2.27 Band	diagrams	for	conductors:	 (a)	an	alkali	metal;	 (b)	magnesium	(Mg),	a	bivalent	metal;	 (c)	diamond,	an
insulator;	 and	 (d)	 germanium	 (Ge),	 a	 semiconductor.	 (From	Mahajan,	 S.	 and	 Sree	 Harsha,	 K.S.,	Principles	 of	 Growth	 and
Processing	of	Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)

FIGURE	2.28 Classification	of	materials	based	on	the	values	of	band	gap	(Eg)	in	electron	volts	(eV).

The	allowed	energy	band	immediately	above	the	valence	band	and	into	which	valence	band
electrons	can	move	by	gaining	sufficient	energy	or	momentum	 is	known	as	 the	conduction
band.	Because	of	 the	overlapping	of	 the	energy	 levels	of	different	atoms,	 the	bound	energy
levels	become	almost,	but	not	completely,	continuous.	In	between	these	energy	bands,	we	find
regions	where	no	electron	energy	states	are	allowed.	Thus,	there	are	forbidden	gaps	between
the	 bands	 of	 allowed	 energy	 levels	 when	 the	 interatomic	 distance	 reaches	 the	 equilibrium
position	(Figure	2.24).	If	there	is	an	energy	gap	between	the	conduction	gap	and	the	valence
band	in	the	material,	the	magnitude	of	the	energy	gap	between	the	conduction	and	the	valence
bands	 is	 known	 as	 the	 band	 gap	 (Eg).	We	 can	 now	 use	 this	 description	 of	 the	 band	 gap	 to
distinguish	between	insulators	and	semiconductors.	A	key	 idea	here	 is	 that	when	the	band	 is
completely	 filled,	 electrons	 cannot	move	 to	 the	higher	 energy	 level	 at	 a	 very	 small	 energy
cost	and	carry	any	current;	hence,	conduction	cannot	take	place.	Thus,	to	make	the	electrical



conduction	occur	in	materials	with	the	band	gap	(not	in	metals),	the	electrons	need	to	acquire
enough	energy	to	jump	into	the	empty	conduction	band	and	flow	through	it.

If	 the	 band	 gap	 is	 larger	 than	 ~4	 eV,	 materials	 are	 classified	 as	 insulators	 (also	 called
dielectrics).	 This	 is	 the	 case	 for	 diamond.	 Materials	 such	 as	 Si	 and	 Ge	 are	 grouped	 as
semiconductors	and	their	band	gap	is	smaller	than	~4	eV	(Figures	2.27	and	2.28).	The	valence
band	 of	 insulators	 is	 separated	 from	 the	 conduction	 band	 by	 a	 relatively	 large	 band	 gap
(Figure	2.28).	For	example,	for	diamond,	the	band	gap	is	5.3	eV	(Figure	2.27).

If	the	temperature	is	low,	the	thermal	energy	is	not	large	enough	to	excite	electrons	from
the	valence	band	 to	 the	conduction.	This	 is	why	 insulators	and	semiconductors	exhibit	very
low	electric	 conductivity	 at	 low	 temperatures	 (T	 <	 100	K).	 If	 the	 temperature	 increases,	 the
electric	conductivities	of	the	insulators	and	the	semiconductors	become	different.	Even	at	high
temperatures,	 the	 valence	 band	 of	 the	 insulator	 again	 is	 completely	 filled	 and	 the	 electric
conductivity	 is	 still	 very	 low.	 For	 example,	 no	 appreciable	 electrical	 conduction	 occurs	 in
diamond	 even	 at	 high	 temperatures.	 However,	 in	 the	 case	 of	 semiconductors	 such	 as
germanium	(Ge),	as	the	temperature	increases,	some	valence	band	electrons	are	able	to	jump
across	 the	 smaller	 band	 gap	 (Eg	 for	 Ge	 is	 ~0.67	 eV)	 and	 enter	 the	 conduction	 band.	 This
means	 that	 the	electrons	 locked	 in	covalent	bonds	among	germanium	atoms	can	break	 free
and	 jump	 from	 one	 bond	 onto	 another.	 Thus,	 unlike	 insulators,	 the	 conductivity	 of
semiconductor	 materials,	 such	 as	 essentially	 pure	 silicon	 or	 germanium,	 increases	 as	 the
temperature	 increases.	 Note	 that	 a	 major	 difference	 between	 semiconductors	 and	metals	 is
how	a	change	 in	 temperature	changes	 the	number	of	electrons	participating	 in	 the	electrical
conduction	 (sometimes	 called	 free	 electrons).	 In	 metals,	 a	 free	 electron	 density	 is	 almost
constant	at	different	temperatures.	In	semiconductors,	however,	an	increase	in	the	temperature
exponentially	increases	the	free	electron	density.	Therefore,	as	the	temperature	increases,	the
electric	 conductivity	 exponentially	 increases	 for	 semiconductors	 and	 slightly	 decreases	 for
metals.	 Though	 the	 free	 electron	 concentration	 is	 almost	 constant	 in	 metals,	 the	 electron
mobility	is	inversely	proportional	to	temperature,	and	high-temperature	electric	conductivity
is	smaller	than	low-temperature	conductivity.

When	the	temperature	increases	in	the	semiconductor,	the	electrons	jump	to	the	conduction
band	and	 the	valence	band	becomes	 lack	of	electrons.	We	described	 this	 situation	 that	holes
are	 created	 in	 the	 valence	 band.	 As	 mentioned	 before,	 a	 hole	 is	 an	 imaginary	 positively
charged	 particle	 that	 represents	 an	 electron	missing	 from	 the	 valence	 band.	When	 electric
field	 is	 applied,	 holes	 created	 in	 the	 valence	 band	 can	 move	 around	 in	 the	 valence	 band
similarly	to	the	free	electrons	in	the	conduction	band.	Thus,	the	motions	of	both	electrons	and
holes	 contribute	 to	 the	 conductivity	 of	 a	 semiconductor,	 and	 the	 sum	 of	 the	 electron
conductivity	and	the	hole	conductivity	equals	the	electrical	conductivity	of	the	semiconductor.
The	level	of	conductivity	in	materials	such	as	silicon	and	germanium	typically	is	lower	than
that	 of	 pure	 metals	 but	 higher	 than	 that	 of	 insulators	 (Figure	 2.2).	 Therefore,	 we	 refer	 to
materials	such	as	germanium	and	silicon	as	semiconductors.

2.16 FERMI	ENERGY	AND	FERMI	LEVEL

Now,	we	discuss	a	new	concept,	 the	Fermi	level,	which	represents	 the	energy	of	an	electron
that	is	the	least	tightly	bound	to	the	lattice.	Strictly	speaking,	the	Fermi	level	at	0	K	is	called



the	Fermi	energy;	however,	Fermi	level	and	Fermi	energy	are	used	interchangeably	in	many
cases.	 For	 convenience,	 we	 will	 use	 the	 term	 Fermi	 energy	 level	 and	 display	 it	 as	 EF
throughout	this	textbook.	The	Fermi	energy	level	(EF)	can	be	explained	in	two	different	ways.
First,	EF	means	the	highest	energy	level	that	electrons	occupy	at	T	=	0	K.	Thus,	energy	levels
below	EF	are	fully	taken,	and	those	above	EF	are	fully	empty	at	T	=	0	K.	Second,	we	can	use
the	probability	of	electrons	to	describe	EF.	When	the	temperature	is	higher	than	0	K,	thermal
energy	helps	electrons	move	from	the	energy	levels	below	EF	to	the	empty	energy	above	EF.
Thus,	EF	 is	 not	 the	 highest	 energy	 level	 that	 the	 electrons	 occupy.	 The	 energy	 level	EF	 is
partially	 empty	 at	 T	 >	 0	 K.	 Since	 electrons	 jump	 sequentially	 from	 the	 highest	 occupied
energy	 levels	 to	 the	 lowest	unoccupied	energy	 levels,	 the	distribution	of	 the	partially	 filled
energy	states	above	EF	and	that	of	partially	empty	energy	states	below	EF	 is	symmetric	 (see
Figures	4.3	and	4.11).	This	indicates	that	we	view	EF	as	the	energy	level	that	is	occupied	with	a
chance	of	50%	at	T	>	0	K.	Other	 important	concepts	 related	 to	Fermi	energy	 level	 (EF)	 are
work	 function	 (qϕ)	 and	 electron	 affinity	 (qχ).	Work	 function	 (ϕ)	 is	 the	 energy	 required	 to
remove	 the	 electrons	 at	 the	 Fermi	 energy	 level	 (EF)	 to	 the	 vacuum	 level.	 In	 addition,	 the
energy	needed	to	free	the	electron	at	the	bottom	of	the	conduction	band	to	the	vacuum	level	is
called	electron	affinity	(χ).

Now,	we	will	 consider	 a	metal	 such	 as	 lithium	 in	 order	 to	 understand	 the	 new	 concepts
added	in	this	section.	All	of	the	2s	electrons	occupy	energy	levels	beginning	from	the	bottom
of	the	2s	band	(EB)	to	an	energy	level	called	the	Fermi	energy,	at	0	K	(EF0).	As	noted	earlier,
if	we	define	the	bottom	of	the	valence	band	as	zero,	then	the	highest	energy	level	filled	is	the
Fermi	energy	level	(EF),	as	shown	in	Figure	2.29(a).	The	Fermi	energy	level	(EF)	of	a	metal	is
the	highest	energy	level	occupied	by	electrons,	which	is	at	0	K.	The	Fermi	energy	level	(EF)
of	 semiconductors	 and	 insulators	 looks	 a	 bit	 different	 from	 that	 of	 metals.	 At	 very	 low
temperatures,	 the	 valence	 band	 is	 completely	 filled.	 As	 a	 result,	 there	 is	 no	 electrical
conduction.	When	 the	 temperature	 increases,	 electrons	 can	acquire	 enough	energy	 that	 they
may	be	able	to	jump	across	the	band	gap	and	into	the	conduction	band	to	occupy	energy	levels
to	which	they	are	allowed	access.	If	the	electrons	have	any	levels	to	move	into,	they	would	be
above	 the	valence	band.	Consequently,	 the	Fermi	energy	 level	 (the	energy	 level	with	a	50%
chance	of	being	filled)	for	semiconductors	and	insulators	will	be	somewhere	above	the	top	of
the	valence	band	and	below	the	bottom	of	the	conduction	band.	However,	this	is	the	band	gap
region	into	which	electrons	are	not	allowed	(see	Figure	2.29b)!



FIGURE	 2.29 A	 schematic	 of	 band	 structure	 for	 (a)	 a	 typical	 metal	 and	 (b)	 a	 semiconductor.	 The	 work	 function	 is	 the
energy	qϕ.	The	electron	affinity	for	a	metal	is	shown	as	the	energy	qχ.	In	a	pure	semiconductor,	the	Fermi	energy	level	(EF)	is
located	at	the	center	of	the	forbidden	gap	and	(EC	−	EF)	is	the	same	as	(EF	−	EV).	(Adapted	from	Singh,	J.,	Semiconductor
Devices:	Basic	Principles,	Wiley,	New	York,	2001.	With	permission.)

In	 the	 case	 of	 semiconductors,	 the	 valence	 band	 either	 is	 completely	 filled	 (at	 low
temperatures)	 or	 is	 almost	 completely	 filled	 (at	 about	 room	 temperature).	 Thus,	 the
probability	of	finding	an	electron	in	the	valence	band	is	very	close	to	1.	The	conduction	band
either	 is	 completely	 empty	 (at	 low	 temperatures)	 or	 is	 almost	 completely	 empty	 (at	 about
room	temperature).	Thus,	the	probability	of	finding	an	electron	in	the	conduction	band	is	very
small	but	finite.	Somewhere	between	the	top	edge	of	the	valence	band	and	the	bottom	edge	of
the	conduction	band,	the	probability	of	finding	an	electron	will	be	0.5	(Figure	2.29).	For	pure
semiconductors	 (no	 impurities),	 the	 Fermi	 energy	 level	 (EF)	 is	 located	 at	 the	 center	 of	 the
forbidden	gap	and	(EC	−	EF)	is	the	same	as	(EF	−	EV)	(Figure	2.29).	Thus,	the	location	of	EF
for	semiconductors	at	T	>	0	is	different	from	that	of	metals	(see	Figure	4.3).	Further	details
about	 the	 Fermi	 energy	 level	 in	 semiconductors	 will	 be	 discussed	 in	 Chapter	 4	 with	 the
introduction	of	the	Fermi–Dirac	function.

The	representation	of	EF	for	a	dielectric	material	is	the	same	as	that	for	a	semiconductor;
the	only	difference	is	that	the	Eg	of	dielectrics	is	larger	than	that	of	semiconductors.

The	work	 function	 (qϕ)	and	 the	electron	affinity	 (qχ)	 also	 are	 schematically	 illustrated	 in
Figure	2.29.	The	energy	needed	to	excite	an	electron	from	EF	to	the	vacuum	level,	where	it	is



essentially	freed	from	the	solid,	is	marked	as	qϕ	(where	q	is	the	charge	on	the	electron).	The
energy	required	 to	 remove	an	electron	from	the	bottom	of	 the	conduction	band	edge	 to	 the
vacuum	is	known	as	the	electron	affinity	(qχ)	and	is	usually	expressed	in	electron	volts	(eV).
Sometimes,	electron	affinity	is	also	described	as	χ,	and	its	units	are	volts.	Note	that	the	work
function	and	the	electron	affinity	are	different	in	semiconductors.

2.17 COMPARISON	OF	CLASSICAL	THEORY	AND	THE	QUANTUM	MECHANICAL
APPROACH	FOR	ELECTRICAL	CONDUCTION

Before	 finishing	 this	 chapter,	we	will	 study	 the	 differences	 in	 how	 classical	 theory	 and	 the
quantum	 mechanical	 approach	 explain	 electric	 conductivity.	 We	 can	 explain	 the	 electric
conductivity	 of	 a	 semiconductor	 using	 the	 band	 structure	 that	 is	 derived	 from	 quantum
mechanical	considerations.	The	quantum	mechanical	approach	assumes	that	a	limited	number
of	 electrons	 are	 responsible	 for	 electrical	 conduction,	 even	 in	 metals.	 This	 says	 that	 only
valence	electrons	occupying	EF	or	higher	energy	states	contribute	to	the	electric	conductivity
(refer	to	Section	3.7).

In	classical	 theory,	 all	 electrons	 in	 the	partially	 filled	band	 (the	valence	band)	contribute
equally	to	electric	conductivity.	In	this	view,	all	valence	electrons	start	moving	only	after	an
electric	 field	 is	 applied,	 and	 the	 motion	 of	 all	 valence	 electrons	 under	 an	 electric	 field	 is
statistically	the	same.	However,	when	we	studied	the	evolution	of	the	discrete	energy	levels	of
the	band,	we	learned	that	a	decrease	in	interatomic	distance	splits	the	energy	levels	in	a	band
and	that	electrons	occupying	the	different	energy	levels	have	different	energies.	According	to
quantum	mechanics,	electrons	in	the	valence	band	of	metals	are	not	frozen	even	at	T	=	0	K,
and	the	speed	with	which	valence	electrons	move	depends	on	the	electron	energy	levels.	The
higher	the	energy	level,	the	faster	the	electron	motion.	When	an	electric	field	is	applied,	fast
moving	 electrons	 contribute	 to	 electric	 conductivity	 more	 than	 slow	 moving	 electrons.
Therefore,	 the	 classical	 theory	 of	 electric	 conductivity	 needs	 to	 be	 modified.	 From	 the
viewpoint	 of	 quantum	 mechanics,	 only	 a	 portion	 of	 valence	 electrons	 possessing	 higher
energy	 levels	 in	 the	valence	band	 (in	other	words,	valence	electrons	near	 the	Fermi	energy
level)	participate	in	the	electrical	conduction	of	metals,	with	the	moving	velocity	much	higher
than	the	average	velocity	of	the	valence	electrons.

PROBLEMS

Introduction
2.1 What	are	the	typical	ranges	of	resistivity	for	metals,	plastics,	and	ceramics?
2.2 What	is	the	nature	of	bonding	among	atoms	for	most	ceramics	and	plastics?
2.3 Compared	 to	 metals,	 what	 is	 the	 advantage	 in	 using	 conducting	 or	 semiconducting

plastics?
2.4 Which	one	of	these	elements	shows	superconductivity—Ag,	Au,	or	Al?

Ohm’s	Law



2.5 What	is	the	difference	between	resistance	and	resistivity?
2.6 Do	all	materials	obey	Ohm’s	law?	Explain.
2.7 Calculate	the	resistance	of	an	AWG	#20	Cu	wire	one	mile	in	length.
2.8 What	is	the	length	of	an	AWG	#16	Cu	wire	whose	resistance	is	21	Ω?
2.9 If	the	wire	in	Problem	2.8	carries	a	current	of	5	A,	what	is	the	current	density?
2.10 Al	can	handle	current	densities	of	~105	A/cm2	at	about	150°C	(Gupta	2003).	What	will

be	the	maximum	current	allowed	in	an	Al	wire	of	AWG	#18	operating	at	150°C?
2.11 A	circuit	breaker	connects	an	AWG	#0000	Cu	conductor	wire	300	feet	in	length.	What

is	the	resistance	of	this	wire?	If	the	wire	carries	150	A,	what	is	the	decrease	in	voltage
across	this	wire?

2.12 You	may	 know	 that	 a	 conductor	 carrying	 an	 electrical	 current	 generates	 a	magnetic
field.	 A	 long	 wire	 carrying	 a	 current	 generates	 a	 magnetic	 field	 similar	 to	 that
generated	 by	 a	 bar	magnet.	 This	magnet	 is	 known	 as	 an	 electromagnet.	 Consider	 a
meter	of	magnetic	wire	AWG	#2.	Such	wires	are	usually	made	from	high-conductivity
soft-drawn	 electrolytic	 Cu,	 and	 the	 conductor	 is	 coated	 with	 a	 polymer	 to	 provide
insulation.	What	will	be	the	electrical	resistance	(in	ohms)	of	this	wire?

2.13 Ground	rods	are	used	for	electrical	surge	protection	and	are	made	from	materials	such
as	Au,	Au-clad	steel,	or	galvanized	mild	steel.	The	resistance	of	the	actual	rod	itself	is
small;	 however,	 the	 soil	 surrounding	 the	 rod	 offers	 electrical	 resistance	 (Paschal
2001).	The	resistance	of	a	ground	rod	is	given	by:

where	R	is	the	resistance	in	ohms,	ρ	is	the	resistivity	of	soil	surrounding	the	ground
rod	(in	Ω	·	cm),	L	is	the	length	of	the	ground	rod	in	centimeters,	and	a	is	the	diameter
of	the	ground	rod.	(a)	Assuming	that	the	resistivity	of	a	particular	soil	is	104	Ω	·	cm,
the	 length	 of	 the	 rod	 is	 10	 feet,	 and	 the	 diameter	 is	 0.75	 inches,	 what	 will	 be	 the
resistance	(R)	of	the	ground	rod	in	ohms?	(b)	Assuming	that	the	ground	rod	is	made
from	Cu,	prove	that	the	resistance	of	the	rod	itself	is	actually	very	small.	(c)	What	will
happen	to	the	resistance	of	the	metallic	material	as	it	corrodes	over	a	period	of	many
years?

2.14 The	electrical	resistance	of	pure	metals	increases	with	temperature.	In	many	ceramics,
the	electrical	current	is	carried	predominantly	by	ions	(such	as	oxygen	ions	in	YSZ).
Based	on	the	data	shown	in	Figure	2.30,	calculate	the	electrical	resistance	of	a	50-μm-
thick	YSZ	element	at	500°C	and	800°C.	Assume	that	the	cross-sectional	area	is	1	cm2

and	the	length	is	1	m.



FIGURE	 2.30 The	 conductivity	 of	 different	materials	 used	 as	 electrolytes	 in	 the	 development	 of	 solid	 oxide	 fuel	 cells.
(From	Haile,	S.M.,	Acta	Mater.,	51,	5981−6000,	2003.	With	permission.)

2.15 Consider	 the	 material	 calcium	 oxide–stabilized	 ZrO2	 (Figure	 2.30).	 Calculate	 the
electrical	 resistance	 of	 a	 50-μm-thick	YSZ	 element.	 Assume	 that	 the	 cross-sectional
area	is	1	cm2	and	the	length	is	1	m	at	500°C	and	800°C.

2.16 If	 a	 high	 conductivity	 at	 temperatures	 above	 700°C	 was	 the	 only	 consideration	 in
selecting	a	material	for	a	solid	oxide	fuel	cell	electrolyte,	what	material	(Figure	2.30)
would	 you	 choose?	 Besides	 cost,	 what	 additional	 factors	must	 be	 considered	 in	 the
selection	of	this	material?

2.17 What	is	unusual	about	the	change	in	resistivity	as	a	function	of	temperature	for	bismuth
oxide	(Bi2O3)?

Classical	Theory	of	Electrical	Conduction

2.18 Calculate	 the	mobility	of	 the	electrons	 in	Zn	 in	cm2/V	·	s.	Assume	that	each	Zn	atom
contributes	 two	conduction	electrons.	The	atomic	mass	of	Zn	is	65.	The	resistivity	 is
5.9	μΩ	·	cm,	and	the	density	is	7.130	g/cm3.

2.19 If	the	mobility	of	electrons	in	Au	is	31	cm2/V	·	s,	calculate	the	time	between	collisions
(τ).	Assume	that	the	mass	of	electrons	in	Au	is	9.1	×	10−31	kg.	Calculate	the	mean	free-
path	length	(λ)	of	electrons	in	Au	if	the	average	electron	speed	is	106	m/s.

2.20 The	thermal	speed	of	electrons	is	about	106	m/s.	However,	 the	drift	velocity	 is	rather
small	 because	 electrons	 are	 scattered	 by	 the	 vibrations	 of	 atoms.	 Calculate	 the	 drift
velocity	of	electrons	in	Cu	for	an	electric	field	of	1	V/m.	Assume	that	the	mobility	of
electrons	in	Cu	is	32	cm2/V	·	s.



2.21 If	the	density	of	Ag	is	10.5	g/cm3,	what	is	the	concentration	of	conduction	electrons	in
Ag?

2.22 From	the	information	provided	in	Table	2.3,	calculate	the	expected	conductivity	of	Ag.
2.23 Au	is	a	face-centered	cubic	metal	with	a	lattice	constant	of	4.080	Å.	If	the	atomic	mass

of	 Au	 is	 196.9655,	 calculate	 the	 number	 of	 conduction	 electrons	 per	 unit	 volume.
Express	your	answer	as	number	of	electrons/cm3.	Assume	that	each	Au	atom	donates
one	conduction	electron.

2.24 A	semiconductor	is	made	so	that	it	carries	electrical	current	primarily	from	the	flow	of
electrons.	 If	 the	 mobility	 of	 electrons	 (μn)	 is	 1350	 cm2/V	 ·	 s	 and	 the	 conduction
electron	concentration	is	1021	cm−3,	what	is	the	electrical	conductivity	of	this	material?

Joule	Heating

2.25 A	heating	element	for	a	flat	iron	is	rated	at	1000	W.	If	the	iron	works	at	220	V,	what	is
the	resistance	of	this	heating	element?

2.26 Electronic	components	and	devices	are	often	tested	at	125°C	and	−55°C	to	check	their
high-	 and	 low-temperature	 performances.	 They	 can	 then	 be	 compared	 with	 the
properties	 observed	 at	 room	 temperature,	 25°C.	 For	 example,	 using	 25°C	 as	 the
reference	 temperature	 and	 +125°C	 as	 the	 other	 temperature,	 α125	 can	 be	 written	 as
follows:

Write	an	equation	to	express	the	temperature	coefficient	of	resistance	with	T	=	−55°C
(note	the	negative	sign)	as	the	other	temperature,	using	25°C	as	the	base	or	reference
temperature	(T0).

2.27 In	a	circuit,	the	TCR125	value	for	a	resistor	is	100	ppm/°C.	If	the	resistance	(R)	at	25°C
is	1000	Ω,	what	is	the	resistance	at	125°C?

2.28 Assume	that	the	bus	bar	discussed	in	Example	2.11	is	heated	due	to	the	Joule	losses	and
now	operates	 at	 70°C.	Calculate	 the	 resistance,	 power	 loss,	 and	 energy	 consumption
for	24	hours	and	the	total	energy	costs	per	year.	Ignore	the	change	in	the	length	of	the
Cu	bus	bar	because	of	thermal	expansion.

2.29 Nichrome	 wire	 is	 used	 for	 cutting	 materials	 such	 as	 polystyrene	 (Styrofoam®)	 into
different	shapes,	including	large	facades	or	insulation	boards.	(a)	Calculate	the	length
of	an	AWG	#20	wire	that	needs	to	have	a	resistance	of	R	=	8	Ω.	(b)	What	will	be	the
resistance	of	this	wire	if	it	gets	heated	to	a	temperature	of	200°C?	(See	Tables	2.2	and
2.5.)

Resistivity	of	Metallic	Alloys

2.30 In	the	nanoscale	region,	why	does	the	resistivity	of	thin	films	depend	upon	thickness?
2.31 What	elements	most	affect	the	resistivity	of	high-purity	Cu?



2.32 Why	 does	 the	 addition	 of	 oxygen	 in	 limited	 concentrations	 actually	 increase	 the
conductivity	of	high-purity	Cu?

2.33 Why	 does	 the	 resistivity	 of	 pure	 metals	 increase	 with	 temperature,	 whereas	 that	 of
alloys	is	relatively	stable	with	temperature?

2.34 Nordheim’s	coefficient	for	Au	dissolved	in	Cu	is	C	=	5500	nΩ	·	m.	If	the	resistivity	of
Cu	at	300	K	is	16.73	nΩ	·	m,	calculate	the	resistivity	of	an	Au–Cu	alloy	containing	1
weight	%	Au.

Band	Structure	of	Solids

2.35 What	is	the	electronic	configuration	for	an	Mg	atom	(Z	=	12)?
2.36 Draw	a	 schematic	of	 the	band	diagrams	 for	 a	 typical	metal,	 a	 semiconductor,	 and	an

insulator.

GLOSSARY

Annealing:	A	heat	treatment	for	metals	and	alloys	in	which	a	material	is	heated	to	a	high
temperature	 and	 then	cooled	 slowly;	 after	 annealing,	 dislocations	 are	 annihilated,	 and
the	material	exhibits	a	higher	level	of	conductivity.

Azimuthal	quantum	number	(l):	See	Orbital	angular	momentum	quantum	number.
Band	diagram:	A	diagram	showing	 the	electron	energy	 levels	 that	 represent	 the	valence
and	conduction	bands.

Band	gap	(Eg):	The	energy	difference	between	the	top	of	the	valence	band	and	bottom	of
the	conduction	band,	which	must	be	overcome	to	transfer	an	electron	from	the	valence
band	to	the	conduction	band.

Bulk	resistivity	(ρ):	See	Resistivity.
Bus	bar:	A	conductor	used	in	power	transmission.
Carrier	concentration:	A	concentration	of	species	responsible	for	electrical	conduction.
Cold-working:	 A	 process	 conducted	 at	 temperatures	 below	 the	 recrystallization
temperature	 in	 which	 a	metallic	material	 is	 deformed	 or	 shaped,	 usually	 causing	 the
resistivity	of	a	material	to	increase.

Composites:	 Formed	 when	 two	 or	 more	 materials	 or	 phases	 are	 blended	 together,
sometimes	arranged	in	unique	geometrical	arrangements,	to	achieve	desired	properties.

Conductance:	Inverse	of	resistance,	whose	units	are	Siemens,	or	Ω−1.
Conduction	band:	The	higher	band	on	a	band	diagram,	separated	from	the	valence	band
by	 the	 band	 gap,	 which	 shows	 the	 energy	 levels	 associated	 with	 the	 conduction
electrons.

Conductivity:	A	microstructure-,	composition-,	and	temperature-dependent	property	 that
conveys	 the	 ability	 of	 a	 material	 to	 carry	 electrical	 current	 and	 is	 the	 inverse	 of
resistivity.

Conductors:	Materials	with	resistivity	in	the	range	of	~10−6	to	10−4	Ω	·	cm	(1	to	102	μΩ	·
cm).



Conventional	current:	As	a	matter	of	convention,	the	current	that	flows	from	the	positive
to	 the	negative	 terminal	 of	 the	battery,	 although	 the	 electrons	 themselves	move	 in	 the
reverse	direction.

Current	density	(J):	Current	per	unit	cross-sectional	area	perpendicular	 to	the	direction
of	the	current	flow.

Dielectrics:	Materials	that	do	not	allow	any	significant	current	to	flow	through	them.
Drift:	Motion	 of	 charged	 carriers,	 such	 as	 electrons,	 holes,	 or	 ions,	 in	 response	 to	 an
electric	field.

Electric	 field	 (E):	 Voltage	 divided	 by	 the	 distance	 across	 which	 the	 voltage	 is	 being
applied.

Electrolytic	 tough-pitch	 (ETP	 or	 TP)	 copper:	 High-conductivity	 copper	 containing
about	100–650	ppm	(or	1	mg/kg)	oxygen.

Electron	affinity	(qχ):	The	energy	required	to	remove	an	electron	from	the	bottom	of	the
conduction	band	edge	to	the	vacuum,	sometimes	also	designated	as	χ	(in	volts).

Electron	current:	The	movement	of	electrons	from	the	negative	to	the	positive	terminal
of	the	voltage	supply	when	a	DC	electrical	field	is	applied	to	a	material.

Electronic	conductors:	Materials	 in	which	a	dominant	part	of	conductivity	 is	due	 to	 the
motion	of	electrons	or	holes.

Four-point	 probe:	 A	 setup	 used	 for	 making	 conductivity	 measurements,	 typically
involving	 a	 fixed	 current	 being	 applied	 using	 two	 outer	 probes,	with	 the	 decrease	 in
voltage	measured	using	two	inner	probes;	also	known	as	a	Kelvin	probe.

Hole:	An	imaginary	positively	charged	particle	that	represents	an	electron	missing	from	a
bond.

I2R	losses:	The	heating	of	a	material	due	to	resistance	to	electrical	current,	with	the	power
dissipated	(for	DC	voltages)	given	by	the	term	I2R	(see	also	Joule	heating).

IACS	conductivity:	Conductivity	of	International	Annealed	Copper	Standard;	100%	IACS
is	defined	as	σ	=	57.4013	×	106	S/m	or	57.4013	×	104	S/cm	(or	ρ	=	1.74212	×	10−6	Ω	·
cm),	which	is	based	on	the	conductivity	of	an	annealed	1-m-long	copper	wire	that	has	a
cross-sectional	area	of	1	mm2	and	a	resistance	of	0.17421	Ω.

Impurity-scattering	 limited	 drift	mobility:	 The	mobility	 of	 carrier	 particles	 in	 alloys,
which	 is	 limited	 by	 the	 scattering	 of	 impurities	 or	 alloying	 elements	 and	 not	 by	 the
thermal	vibrations	of	the	host	atoms.

Indium–tin	 oxide	 (ITO):	 A	 transparent	 ionic	 conductor-based	 material	 used	 in	 touch-
screen	displays,	solar	cells,	and	other	devices.

Insulators:	 Materials	 that	 neither	 conduct	 electricity	 (similar	 to	 dielectrics)	 nor	 easily
break	down	electrically	even	in	the	presence	of	a	strong	electric	field.

Integrated	 circuits	 (ICs):	 Electrical	 circuits	 typically	 fabricated	 on	 semiconductor
substrates,	such	as	silicon	wafers,	comprising	resistors,	transistors,	and	so	on.

Interconnects:	Conductive	paths	between	components	of	an	IC.
Ionic	conductors:	Materials	in	which	movement	of	ions	constitutes	the	major	portion	of
the	total	conductivity	(e.g.,	ITO	or	yttria-stabilized	zirconia).



Joule	heating:	The	heating	of	 a	material	 due	 to	 resistance	 to	 electrical	 current;	 for	DC
voltages,	the	power	dissipated	is	given	by	I2R	(same	as	I2R	losses).

Kelvin	probe:	See	Four-point	probe.
Lattice-scattering	limited	conductivity:	The	conductivity	(σ)	in	essentially	pure	metals;	it
is	largely	limited	by	the	scattering	of	electrons	by	the	vibrations	of	atoms.

Lattice-scattering	limited	mobility:	The	mobility	of	carriers	in	essentially	pure	metals;	it
is	limited	by	scattering	due	to	phonons	and	other	defects	in	arrangements	of	atoms.

Magnetic	quantum	number	 (m	 or	m1):	The	 electron	quantum	number	 representing	 the
component	of	orbital	angular	momentum	along	an	external	magnetic	field.

Mean	free-path	length	(λ):	The	mean	free-path	length	(λ)	of	conduction	electrons,	that	is,
the	average	distance	that	electrons	travel	before	colliding	again.

Mixed	conductors:	Materials	 in	which	conductivity	occurs	because	of	 the	movement	of
ions	as	well	as	that	of	electrons	or	holes.

Mobility	(μ):	The	speed	of	carriers	under	the	influence	of	a	unit	of	external	electric	field
(E).

Nanoscale:	Length	of	scale	between	~1	and	100	nm	in	which	unusual	effects	are	seen	on
properties	of	materials,	devices,	or	structures.

Nordheim’s	coefficient	(C):	See	Nordheim’s	rule.
Nordheim’s	rule:	The	resistivity	of	a	solid-solution	alloy	is	given	by	the	equation

ρalloy	=	ρmatrix	+	Cx(1	−	x)

where	 ρalloy	 is	 the	 resistivity	 of	 the	 alloy,	 ρmatrix	 is	 the	 resistivity	 of	 the	 base	 metal
without	any	alloying	elements,	C	is	Nordheim’s	coefficient,	and	x	is	the	atom	fraction	of
alloying	element	added.

Orbital	 angular	 momentum	 quantum	 number	 (i):	 A	 quantum	 number	 related	 to	 the
angular	momentum	of	the	electrons	(the	same	as	azimuthal	quantum	number).

Oxygen-free	 high-conductivity	 copper	 (OFHC):	 A	 high-conductivity	 copper	 material
that	has	less	than	0.001%	oxygen.	It	is	used	when	electrolytic	tough–pitch	copper	cannot
be	used	because	of	potential	welding	or	brazing	problems.

Pauli’s	exclusion	principle:	No	two	electrons	in	a	given	system	(such	as	an	atom)	can	have
all	four	quantum	numbers	identical.

Phonons:	In	pure	metals,	the	vibrations	of	conduction	electrons	from	phonons	leads	to	a
resistivity	component	that	increases	with	rising	temperature.

Principal	 quantum	number	 (n):	 A	 quantum	 number	 that	 quantizes	 the	 electron	 energy,
with	values	of	n	=	1,	2,	and	3,	corresponding	to	the	K,	L,	and	M	shells,	respectively.

Residual	 resistivity	 (ρR):	 The	 part	 of	 total	 resistivity	 arising	 from	 the	 effects	 of
microstructural	defects	and	impurities	or	added	elements.

Resistance	(R):	The	difficulty	with	which	electrical	current	flows	through	a	material.	For
a	material	with	 length	L,	 cross-sectional	 area	A,	 and	 resistivity	 ρ,	 the	 resistance	R	 is
given	by	ρ	·	L/A.



Resistance-temperature	detector	(RTD):	A	temperature-measuring	device	based	on	the
measurement	of	change	in	the	resistivity	of	a	metallic	wire	as	a	function	of	temperature.

Resistivity	(ρ):	The	electrical	resistance	of	a	resistor	with	a	unit	length	and	a	unit	cross-
sectional	 area.	 This	 is	 a	 microstructure-	 and	 temperature-dependent	 property	 the
magnitude	of	which	is	the	inverse	of	conductivity.

Resistor:	A	component	included	in	an	electrical	circuit	to	offer	a	predetermined	value	of
electrical	resistance.

Semiconductors:	Materials	 that	have	a	 resistivity	 ranging	between	10−4	 and	103	Ω	 ·	 cm
(i.e.,	102−109	μΩ	·	cm).

Semi-insulators:	Materials	with	resistivity	values	ranging	from	103	to	1010	Ω	·	cm.
Sheet	 resistance	 (Rs):	 The	 resistance	 of	 a	 square	 resistor	 of	 a	 certain	 resistivity	 and
thickness.

Solid	solution:	A	solid	material	in	which	one	component	(e.g.,	Cu)	is	completely	dissolved
in	another	(e.g.,	Ni)—similar	to	the	complete	dissolution	of	sugar	in	water.

Solid-solution	strengthening:	An	effect	 in	which	 the	 formation	of	a	solid	solution	 (i.e.,
the	 complete	 dissolution	 of	 one	 element	 into	 another)	 causes	 an	 increase	 in	 the	 yield
stress.	For	example,	a	small	concentration	of	Be	in	Cu	increases	the	yield	stress	of	Cu.

Spin-paired	 electrons:	 Electrons	 whose	 quantum	 numbers	 are	 identical,	 other	 than	 the
spin	quantum	number,	 and	 that	 have	 spin	directions	opposite	 of	 each	other	 (to	 satisfy
Pauli’s	exclusion	principle).

Spin	quantum	number	(s	or	ms):	An	electron	quantum	number	that	quantizes	the	spin;	its
values	are	±½.

Superconductors:	 Materials	 that	 can	 exhibit	 zero	 electrical	 resistance	 under	 certain
conditions.

Temperature	coefficient	of	resistivity	(TCR):	A	coefficient	designated	as	αR	and	defined
as

where	ρ	is	 the	resistivity,	T	 is	 the	 temperature,	and	ρ0	 is	 the	resistivity	at	 the	 reference
temperature	(T0).

Temperature-dependent	component	of	resistivity	 (ρT):	The	portion	of	 total	 resistivity
originating	 from	 the	 scattering	 of	 conduction	 electrons	 off	 vibrations	 of	 atoms
(phonons).

Valence	band:	The	 lower	band	on	a	band	diagram	showing	 the	energy	 levels	associated
with	the	valence	electrons.	This	band	is	usually	completely	or	nearly	completely	filled
for	metals	and	semiconductors.

Varistors:	Materials	or	devices	with	voltage-dependent	resistance.
Volume	resistivity:	See	Resistivity.



Wave	 function:	 A	 set	 of	 quantum	 numbers	 (i.e.,	n,	 l,	m,	 and	 s)	 that	 represent	 the	 wave
function	associated	with	an	electron.

Work	function	(qϕ):	The	energy,	in	electron	volts	(eV),	needed	to	excite	an	electron	from
EF	to	the	vacuum	level,	where	it	is	essentially	freed	from	the	solid.	Sometimes	measured
in	ϕ	(volts).

Yttria	(Y2O3)-stabilized	zirconia	(ZrO2)	(YSZ):	A	zirconia	ceramic	doped	with	yttrium
oxide;	it	has	a	cubic	crystal	structure	and	is	an	ionic	conductor	used	in	solid	oxide	fuel
cells	and	oxygen	gas	sensors.
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3	Fundamentals	of	Semiconductor
Materials

KEY	TOPICS

Origin	of	semiconductivity	in	materials
Differences	 between	 elemental	 versus	 compound,	 direct	 versus	 indirect	 band	 gap,	 and	 intrinsic	 versus	 extrinsic
semiconductors
Band	diagrams	for	n-type	and	p-type	semiconductors
Conductivity	of	semiconductors	in	relation	to	the	majority	and	minority	carrier	concentrations
Factors	that	affect	the	conductivity	of	semiconductors
Device	applications	such	as	light-emitting	diodes	(LEDs)
Changes	in	the	band	gap	with	temperature,	dopant	concentrations,	and	crystallite	size	(quantum	dots)
Semiconductivity	in	ceramic	materials

3.1 INTRODUCTION

Semiconductors	are	defined	as	materials	with	resistivity	(ρ)	between	~10−4	and	~103	Ω	·	cm.
An	 approximate	 range	 of	 sensitivities	 exhibited	 by	 silicon	 (Si)-based	 semiconductors	 is
shown	in	Figure	3.1.	Elements	showing	semiconductivity	are	called	elemental	semiconductors
(e.g.,	silicon),	and	the	compounds	that	show	semiconducting	behavior	are	known	as	compound
semiconductors	(e.g.,	gallium	arsenide	[GaAs]).	A	band	diagram	of	a	typical	semiconductor	is
shown	in	Figure	3.2.	For	most	semiconductors,	the	band	gap	energy	(Eg)	is	between	~0.1	and
4.0	eV.	If	the	band	gap	is	larger	than	4.0	eV,	we	usually	consider	the	material	to	be	an	insulator
or	a	dielectric.	In	this	chapter,	we	will	learn	that	the	composition	of	such	dielectric	materials
can	be	altered	so	that	they	exhibit	semiconductivity	(see	Section	3.21).	As	shown	in	Figure	3.2,
the	 top	 of	 the	 valence	 band	 is	 known	 as	 the	valence	band	 edge	 (Ev),	 and	 the	 bottom	 of	 the
conduction	band	 is	known	as	 the	conduction	band	edge	 (Ec).	Recall	 from	Chapter	2	 that	 the
band	diagram	shows	the	outermost	part	of	the	overall	electron	energy	levels	of	a	solid.	The
vertical	 axis	 shows	 the	 increasing	 electron	 energy.	 Thus,	 the	 magnitude	 of	 the	 band	 gap
energy	(Eg)	is	given	by

3.2 INTRINSIC	SEMICONDUCTORS

Let	us	consider	the	origin	of	the	semiconducting	behavior	in	semiconductors	such	as	silicon.
Silicon	 has	 covalent	 bonds;	 each	 silicon	 atom	 bonds	with	 four	 other	 silicon	 atoms,	 which
leads	 to	 the	 formation	of	a	 three-dimensional	network	of	 tetrahedra	arranged	 in	a	diamond
cubic	crystal	structure	(Figure	3.3).



FIGURE	 3.1 Approximate	 range	 of	 sensitivity	 for	 silicon	 in	 comparison	 with	 other	 materials.	 (From	 Queisser,	 H.J.	 and
Haller,	E.E.,	Science.	281,	945–950,	1998.	With	permission.)

FIGURE	3.2 A	band	diagram	for	a	typical	semiconductor.



FIGURE	 3.3 The	 diamond	 cubic	 crystal	 structure	 of	 silicon,	 showing	 the	 tetrahedral	 arrangement	 of	 silicon	 atoms.	 Each
silicon	 atom	 is	 bonded	 to	 four	 other	 silicon	 atoms.	 The	 lattice	 constant	 is	 a0.	 (From	 Mahajan,	 S.	 and	 Sree	 Harsha,	 K.S.,
Principles	of	Growth	and	Processing	of	Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)

FIGURE	3.4 Two-dimensional	representation	of	silicon	bonding.	(From	Kano,	K.,	Semiconductor	Fundamentals,	 Prentice
Hall,	Upper	Saddle	River,	NJ,	1997.	With	permission.)

FIGURE	3.5 Typical	band	diagram	for	an	intrinsic	semiconductor	at	(a)	low	temperatures	and	(b)	high	temperatures.



Figure	3.4	 shows	a	 two-dimensional	 representation	of	 the	 covalent	bonds	 among	 silicon
atoms.	When	 the	 temperature	 is	 low	(~0	K),	 the	valence	electrons	shared	among	 the	silicon
atoms	remain	 in	 the	bonds	and	are	not	available	 for	conduction.	Thus,	at	 low	temperatures,
silicon	behaves	as	an	insulator	(Figure	3.4).	As	the	temperature	increases,	 the	electrons	gain
thermal	 energy.	 Note	 that	 thermally	 excited	 valence	 electrons	 have	 a	 wide	 distribution	 of
energy	states.	A	small	number	of	 these	electrons	gain	sufficient	energy	to	break	away	from
the	covalent	bonds,	which	is	much	higher	than	the	average	energy	of	valance	electrons,	and
no	 longer	 participate	 in	 the	 Si–Si	 covalent	 bonding.	 Instead,	 they	move	 to	 the	 location	 for
electrons	in	the	free	states	(the	conduction	band)	and	travel	within	that	band.	These	electrons
in	the	conduction	band	(or	holes	in	the	valence	band)	impart	semiconductivity	to	the	material
(Figure	3.4;	also	Section	2.14).

The	 electrons	 breaking	 away	 from	 the	 bonds	 (Figure	3.4)	 can	 also	 be	 shown	 on	 a	 band
diagram	(Figure	3.5).	At	 low	 temperatures,	 the	valence	electrons	 are	 in	 the	 covalent	bonds,
that	is,	the	valence	band	is	completely	filled.	As	the	temperature	increases	to	~>100	K,	a	small
fraction	of	electrons	gain	enough	 thermal	energy	 to	make	a	 jump	across	 the	band	gap	 (Eg)
and	into	the	conduction	band.

When	 an	 electron	 breaks	 away	 from	 a	 covalent	 bond,	 it	 leaves	 behind	 an	 incompletely
filled	band	and	a	hole;	 the	 latter	 is	 an	 imaginary	particle	 that	 represents	 a	missing	electron
from	 a	 bond	 (Figure	 3.6).	 On	 a	 band	 diagram,	 a	 hole	 is	 an	 energy	 state	 left	 empty	 by	 an
electron	 that	moves	 to	 the	conduction	band.	 If	a	hole	 is	present	at	Site	X	in	one	of	covalent
bonds,	 then	another	electron	from	a	neighboring	bond	at	Site	Y	can	move	 into	Site	X.	This
creates	a	hole	at	Site	Y.	Movement	of	an	electron	from	Site	Y	 to	Site	X	 is	equivalent	 to	 the
movement	of	a	hole	from	Site	X	to	Site	Y.	Thus,	the	movement	of	holes	in	the	valence	also
contributes	to	a	semiconductor ’s	electrical	conductivity.

FIGURE	 3.6 Creation	 of	 electron–hole	 pairs	 by	 thermal	 excitation.	 (From	 Kano,	 K.,	 Semiconductor	 Fundamentals,
Prentice	Hall,	Upper	Saddle	River,	NJ,	1997.	With	permission.)

In	materials	such	as	silicon	and	germanium	(Ge),	the	band	gap	energy	at	room	temperature
is	relatively	low	(Eg	of	Ge	and	Si	are	~0.67	and	~1.1	eV,	respectively).	When	we	say	the	band
gap	is	small,	we	are	comparing	the	band	gap	energy	with	the	thermal	energy	given	by	kBT,



where	kB	 is	 the	Boltzmann’s	constant	 (8.617	×	10−5	 eV/K	or	1.38	×	10−23	 J/K)	and	T	 is	 the
temperature.	At	T	=	300	K	(~room	temperature),	the	thermal	energy	kBT	is	~0.026	eV.

Promoting	 an	 electron	 into	 the	 conduction	 band	 creates	 an	 electron–hole	 pair	 (EHP;
Figures	3.5	and	3.6).	Electrons	promoted	into	the	conduction	band	because	of	thermal	energy
and	the	resulting	holes	that	are	created	in	the	valence	band	are	known	as	thermally	generated
charge	carriers.

A	semiconductor	in	which	the	thermal	energy	is	only	a	source	of	charge	carrier	generation
is	known	as	an	intrinsic	semiconductor.	The	word	intrinsic	emphasizes	that	no	other	extrinsic
or	foreign	elements	or	compounds	are	present	 in	significant	enough	concentrations	to	have
any	 effect	 on	 the	 electrical	 properties	 of	 an	 intrinsic	 semiconductor.	 Appropriately,	 a
semiconductor	whose	conductivity	and	other	electrical	properties	are	controlled	by	 foreign
elements	 or	 compounds	 is	 known	 as	 an	 extrinsic	 semiconductor	 (see	 Section	 3.8).	 If	 the
impurity	 concentrations	 and	 defect	 densities	 of	 the	 semiconductor	 are	 negligible,	 the
semiconductor	 remains	 an	 intrinsic	 semiconductor.	Note	 that,	 even	 if	EHPs	are	 created,	 the
material	still	remains	electrically	neutral.	In	an	intrinsic	semiconductor,	the	concentration	of
the	electrons	available	for	conduction	(ni)	is	equal	to	that	of	the	holes	created	(pi).

Therefore,	Figures	3.2	and	3.5	show	that	the	electron	concentration	in	the	conduction	band
and	the	hole	concentration	in	the	valence	band	are	equal.	In	this	case,	the	carrier	concentration
of	 intrinsic	semiconductors	 for	conduction	(Equation	2.22)	 is	controlled	by	 the	 temperature
and	the	band	gap	(Equation	3.5).

The	conductivity	of	the	intrinsic	semiconductor	is	given	by	the	following	equation:

In	this	equation,	q	is	the	magnitude	of	the	charge	on	the	electron	or	hole	(1.6	×	10−19	C),
and	 ni	 and	 pi	 are	 the	 concentrations	 of	 electrons	 and	 holes	 in	 an	 intrinsic	 material,
respectively.	The	terms	μn	and	μp	are	the	mobilities	of	electrons	and	holes,	respectively.	Since
ni	=	pi	for	the	intrinsic	semiconductor,	Equation	3.3	can	be	rewritten	as

For	a	given	intrinsic	semiconductor,	the	electron	or	hole	concentrations	depend	mainly	on
the	temperature.

Example	3.1	illustrates	the	calculation	of	the	resistivity	of	an	intrinsic	semiconductor.

Example	3.1: Resistivity	of	Intrinsic	Germanium

What	is	the	resistivity	(ρ)	of	essentially	pure	Ge?	Assume	that	the	mobilities	of	the	electrons	and	the	holes	in	Ge	at
300	K	are	3900	and	1900	cm2/V	·	s,	respectively.	Assume	T	=	300	K	and	ni	=	2.5	×	10

13	cm−3.

Solution
We	make	use	of	Equation	3.4

Therefore,



σ	=	0.0232	S/cm	at	300	K

The	inverse	of	this	is	the	resistivity	(ρ)	at	300	K	=	43.1	Ω	·	cm.

3.3 TEMPERATURE	DEPENDENCE	OF	CARRIER	CONCENTRATIONS

As	we	can	expect,	at	any	given	temperature,	the	larger	the	band	gap	(Eg)	of	a	semiconductor,
the	 lower	 the	concentration	of	valence	electrons	 (ni)	 that	 can	pass	across	 the	band	gap.	The
relationship	among	the	carrier	concentration,	the	band	gap,	and	the	temperature	is	given	by

We	 will	 derive	 Equation	 3.5	 in	 Section	 4.3	 using	 a	 correlation	 between	 the	 electron
concentration	and	the	Fermi	energy	level.	The	exponential	term	dominates;	hence,	the	plot	of
ln(ni)	with	1/T	is	essentially	a	straight	line.	Note	that	even	though	the	increase	is	exponential,
only	 a	 very	 small	 fraction	 of	 the	 total	 number	 of	 valence	 electrons	 actually	 gets	 into	 the
conduction	band.	In	Figure	3.7,	a	plot	of	ni	on	a	logarithmic	scale	is	shown	as	a	function	of	the
inverse	of	 the	 temperature.	The	slope	of	 the	 line	essentially	 is	proportional	 to	 the	band	gap
(Eg).	In	fact,	measuring	the	carrier	concentration	as	a	function	of	temperature	is	one	way	to
find	out	Eg	 of	 semiconductors.	The	band	gaps	of	germanium,	 silicon,	 and	GaAs	are	~0.67,
1.1,	 and	 1.43	 eV,	 respectively.	 From	 Equation	 3.5,	 we	 expect	 the	 concentration	 of	 free
electrons	at	a	given	temperature	to	be	the	highest	for	germanium	because	it	has	the	smallest
band	 gap	 of	 the	 three.	 On	 the	 other	 hand,	 GaAs	 will	 have	 the	 lowest	 concentration	 of
thermally	generated	 conduction	electrons	because	 it	 has	 the	 largest	band	gap	of	 these	 three
materials	 (Figure	 3.7).	 The	 band	 gap	 values	 and	 some	 of	 the	 other	 properties	 of
semiconductors	 are	 shown	 in	 Table	 3.1.	 The	 terms	 direct	 and	 indirect	 band	 gap
semiconductors,	used	in	Table	3.1,	are	defined	in	Section	3.5.



FIGURE	3.7 Intrinsic	carrier	concentration	plotted	on	a	log	scale	as	a	function	of	the	inverse	of	temperature	for	germanium,
silicon,	 and	 gallium	 arsenide.	 (From	Grove,	 A.S.,	Physics	 and	 Technology	 of	 Semiconductor	 Devices,	 Wiley,	 New	 York,
1967.	With	permission.)



TABLE	3.1

Properties	of	Selected	Semiconductors

3.4 BAND	STRUCTURE	OF	SEMICONDUCTORS

In	 previous	 sections,	we	 learned	 that	 the	 energy	 levels	 are	 quantized	 and	 that	 each	 electron
energy	state	is	taken	by	one	electron	(Pauli’s	exclusion	principle).	What	we	will	study	here	is
the	effect	of	the	energy	levels	on	the	wave-like	and	particle-like	properties	of	electrons.

We	will	start	from	the	standpoint	of	the	particle-like	properties.	In	the	classical	theory	of
conductivity,	 electrons	 are	 considered	 particles.	 The	 energy	 (E)	 of	 a	 free	 electron	 can	 be
written	as:

where	m	is	the	mass	of	a	free	electron,	and	v	is	the	velocity	of	the	electron.	Here,	momentum
(p)	 is	 defined	 as	mass	×	 velocity	 (p	 =	mv).	 Therefore,	we	 can	 also	 rewrite	Equation	 3.6	 in
terms	of	momentum	(p)	and	mass	as	follows:

Note	 that	we	have	also	used	 the	symbol	“p”	 to	designate	 the	concentration	of	holes.	The
meaning	 of	 Equations	 3.6	 and	 3.7	 is	 that	 electrons	 taking	 different	 energy	 levels	 move	 at
different	velocity	and	have	different	momentum.

The	next	question	is	whether	this	difference	in	the	velocity	and	the	momentum	influences
the	wave-like	properties	of	electrons.	As	discussed	in	Section	2.13,	in	a	quantum	mechanics–
based	 approach,	 an	 electron	 is	 considered	 a	plane	wave.	According	 to	Equation	2.33	 on	 de



Broglie	waves,	the	wavelength	of	the	electron	wave	is	related	to	the	momentum	and	velocity
of	the	electron	(λ	=	h/p	=	h/mv).	This	suggests	that	electrons	occupying	different	energy	levels
have	different	electron	wavelengths	as	well	as	different	momentum.	To	quantitatively	express
the	 wave-like	 properties	 of	 the	 electron	 including	 the	 wavelength,	 a	 new	 propagation
parameter,	wave	vector	(k)	is	introduced.	The	absolute	magnitude	of	k	and	the	wavelength	(λ)
of	the	electron	wave	are	related	as	|k|	=	(2π)/λ,	which	indicates	that	the	wave	vector	(k)	shows
the	moving	direction	and	the	wavelength	of	the	propagating	electron	wave.

Using	quantum	mechanics,	we	can	also	show	that	the	electron	momentum	(p)	is	related	not
only	to	the	velocity	of	the	particle-like	electron	but	also	to	the	wave	vector	(k)	of	the	wave-
like	electron.	If	you	combine	Equation	2.33	(λ	=	h/p)	and	a	definition	of	wave	vector	(k	=	2π/
λ),	 you	 get	 the	 following	 relation	 that	 connects	 the	 momentum	 and	 wave	 vector	 of	 the
electron:

where	ℏ	=	h/2π	=	1.054	×	10−34	J	·	s,	and	h	is	the	Planck’s	constant	(=	6.626	×	10−34	J	·	s).
From	Equations	3.7	and	3.8,	we	can	write	the	energy	of	an	electron	as:

This	shows	how	the	wave	vector	(or	wavelength)	of	the	free	electron	wave	determines	the
electron	energy.	For	a	free	electron	that	does	not	experience	any	other	force	due	to	internal	or
external	electric	or	magnetic	fields,	the	relationship	between	its	energy	(E)	and	wave	vector
(k)	 is	a	parabola	with	a	minimum	energy	of	zero	and	V0	 (Figure	3.8).	The	plot	of	electron
energy	 as	 a	 function	 of	 the	wave	 vector	 (k)	 is	 known	 as	 the	band	 structure	 of	 a	 material,
which	shows	 that	each	energy	 level	 (E)	 is	connected	 to	 two	wave	vectors	 (k,	−k).	 In	Figure
3.8b,	the	electron	energy	at	k	=	0	is	not	zero.	However,	because	V0	is	constant	for	all	k	values,
the	electron	of	Figure	3.8b	is	still	considered	an	essentially	free	electron	with	starting	energy
V0.	(i.e.,	it	is	not	a	bound	electron).

In	Equations	3.6,	3.7,	3.8	and	3.9,	we	reviewed	the	relation	between	the	energy	level	and	the
wave	vector	(or	wavelength)	for	free	electrons.	However,	truly	free	electrons	are	only	in	the
vacuum	states,	and	even	valence	electrons	are	still	exposed	to	the	influence	of	the	nucleus	and
the	neighbor	electrons	(recall	 the	learnings	from	Section	2.12	and	Section	2.17).	Therefore,
we	need	to	take	into	account	attractive	and	repulsive	interactions	that	electrons	meet	when	they
travel	 inside	materials.	Since	 the	major	source	 is	 the	electron–nucleus	 interaction,	electrons
moving	 inside	materials	 experience	 a	 periodic	 interaction	 that	 is	 determined	 by	 the	 atomic
arrangement	 (i.e.,	 crystal	 structure).	 To	 describe	 the	 quantum	 mechanical	 analysis	 of	 this
periodic	interaction,	we	can	use	a	wave	function	that	Schrödinger	introduced	to	describe	the
electron	wave.



FIGURE	3.8 The	band	structure	or	energy	 (E)	versus	wave	vector	 (k)	 for	 (a)	 a	 free	 electron	 and	 (b)	 an	 essentially	 free
electron	in	a	band	with	starting	energy	V0.	(From	Mahajan,	S.	and	Sree	Harsha	K.S.,	Principles	of	Growth	and	Processing	of
Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)

where	Ψ	 is	 the	wave	 function	 that	 is	 related	 to	 the	probability	of	 finding	an	electron.	 In	 the
quantum	 mechanics–based	 approach,	 Ψ(kxx)Ψ(kxx)

*	 is	 the	 probability	 of	 finding	 an	 electron
with	the	certain	wave	vector	(kx)	at	a	specific	location	(x).	In	Equation	3.10,	note	that	U	is	the
function	that	accounts	for	the	periodicity	of	the	crystal	structure,	j	is	the	imaginary	number,	kx
is	 the	wave	 vector	 in	 the	 x-direction	 along	which	 the	 electron	 (now	 considered	 a	wave)	 is
traveling,	and	x	 represents	 the	electron	 location.	 If	 the	electron	 is	 completely	 free	 from	 the
interactions	with	 the	nucleus,	 there	 is	no	periodic	potential	 influencing	 the	electron	motion,
and	U(kx,	x)	becomes	a	constant.	Then,	the	wave	function	turns	to	Ψ(kxx)	=	A	exp(jkxx),	where
A	is	a	constant.

In	a	perfect	crystal,	 if	we	assume	that	an	electron	moving	 in	a	certain	band	has	 the	wave
vector	k	and	experiences	a	periodic	potential	energy	of	U(x),	then	the	energy	of	the	electron
is	given	by:

Equation	3.11	means	that	electrons	moving	in	the	conduction	band	of	the	semiconductors
are	 not	 completely	 free.	Traveling	 electrons	meet	 built-in	 electric	 fields	 that	 are	 associated
with	other	periodically	arranged	atoms.	Since	the	electron	arrangements	in	the	lattice	are	not
the	same	in	all	directions,	electrons	moving	in	different	directions	experience	different	built-
in	electric	fields	[i.e.,	U(x)].	For	example,	the	interatomic	distance	is	d	for	electrons	moving
along	 the	 <100>	 direction	 of	 a	 simple	 cubic	 cell	 with	 a	 lattice	 constant	 d.	 However,	 if
electrons	 move	 along	 the	 <111>	 direction	 in	 the	 same	 simple	 cubic	 cell,	 the	 interatomic
distance	changes	to	 .



The	 important	 consequence	 of	 the	 dependence	 of	U(x)	 on	 the	 moving	 direction	 is	 that
electrons	 exposed	 to	 different	 U(x)	 move	 around	 in	 a	 material	 as	 if	 they	 have	 different
masses;	this	is	known	as	the	effective	mass	of	an	electron	 .	The	effective	mass	is	the
mass	that	an	electron	would	appear	 to	have	in	a	material	by	responding	to	interactions	with
neighbor	particles	such	as	the	nucleus	and	the	electron.	It	is	different	from	the	mass	of	a	free
electron	 in	 a	 vacuum	 (m0	 =	 9.109	×	10−31	 kg).	 Imagine	 that	 you	measure	 the	weight	 of	 the
object	in	air	or	in	water.	The	object’s	weight	is	much	reduced	in	water	due	to	buoyancy,	which
is	 somewhat	 analogous	 to	 electron–nucleus	 interactions.	 Depending	 on	 the	 buoyance
(analogous	to	the	electron–nucleus	interaction),	the	weight	(analogous	to	the	effective	mass)
will	change.	It	is	important	to	know	that	a	change	in	the	effective	mass	of	an	electron	or	hole
is	reflected	in	an	E	v.	k	curve.	In	other	words,	even	if	the	wave	vectors	of	two	electron	waves
are	 the	 same,	 they	 may	 or	 may	 not	 possess	 the	 same	 energies.	When	 two	 electron	 waves
propagate	along	different	directions,	 they	experience	different	electrostatic	 interactions	with
the	 surrounding	 change	 and	 the	 energies	 of	 the	 electron	 waves	 become	 different.	 The
effective	mass	is	a	parameter	showing	how	strongly	the	electron	or	the	hole	is	bound	to	the
neighbor	nuclei.

The	concept	of	effective	mass	is	illustrated	in	Figure	3.9.	Because	of	the	electron–nucleus
interaction,	 the	acceleration	velocity	of	 the	electron	by	an	external	 force	such	as	an	electric
field	 may	 vary.	 For	 convenience,	 we	 will	 express	 the	 effective	 mass	 as	 a	 dimensionless
quantity,	 .	This	ratio	is	an	indicator	of	the	interactions	of	the	electron	with	the	atoms	of
the	material.	 Similarly,	 holes	 also	 have	 an	 effective	mass.	The	 significance	 of	 the	 effective
mass	 is	as	 follows:	Smaller	effective	masses	 for	carriers	 (electrons	or	holes)	mean	 that	 the
carriers	 can	 move	 faster	 with	 less	 apparent	 inertia.	 This	 means	 materials	 with	 smaller
apparent	electron	or	hole	masses	are	more	useful	for	making	faster	semiconductor	devices.
The	concept	of	effective	mass	is	quantum	mechanical	in	nature,	and	analogies	using	classical
mechanics	must	therefore	be	limited	in	scope.

The	effective	masses	of	electrons	and	holes	for	some	semiconductors	are	 listed	in	Table
3.2.	This	 table	also	 lists	 the	values	of	 the	dielectric	constant	 (εr),	which	 is	a	measure	of	 the
ability	of	a	material	to	store	a	charge	(see	Chapter	7).	The	dielectric	constant	is	defined	as	the
ratio	of	the	permittivity	of	a	material	(ε)	and	the	permittivity	of	the	free	space	(ε0).

As	discussed	before,	the	E–k	relation	in	Figure	3.8	depends	on	the	effective	mass	
of	an	electron	and	a	hole.	This	means	that	 	and	 	can	be	deduced	from	the	E–k	curvature
as	follows	(refer	to	Equation	3.9	and	Figure	3.8):

Since	a	hole	is	an	imaginary	particle	that	represents	a	missing	electron	in	the	valence	band,
the	effective	mass	of	the	hole	is	the	negative	of	the	mass	of	the	missing	electron.	The	effective
mass	of	holes	is	given	by:



FIGURE	3.9 Illustration	 of	 the	 difference	 between	 the	mass	 of	 an	 electron	 in	 a	 vacuum	 (m0)	 and	 its	 effective	mass	 .
(From	Kasap,	S.O.,	Principles	of	Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	2002.	With	permission.)

TABLE	3.2

Effective	Masses	of	Electrons	and	Holes	and	Other	Properties	of	Different	Semiconductors

Note	the	negative	sign	in	Equation	3.13	because	 the	hole	 is	a	missing	electron.	Equations
3.12	and	3.13	also	indicates	that	an	electron	and	a	hole	may	have	the	different	effective	mass.

The	 effective	 mass	 of	 an	 electron	 and	 the	E–k	 curvature	 (Equation	 3.12)	 is	 derived	 as
follows:	Since	the	electron	can	be	expressed	as	a	group	of	waves	(we	will	briefly	cover	this
concept	with	Figure	8.7),	the	electron	velocity	is	equal	to	the	group	velocity	of	the	associated



wave	(vg),	with	which	the	boundary	of	 the	wave	propagates.	The	group	velocity	 is	given	by
the	following	equation:

where	v	is	the	frequency	of	the	wave.
We	rewrite	Equation	3.14	as:

Now,	we	replace	hv	with	E	and	(h/2π)	with	ℏ	and	we	get:

The	acceleration	(a)	of	an	electron	is	given	by:

Substituting	vg	from	Equation	3.16	into	Equation	3.17,	we	get:

Substituting	k	with	p/ℏ,	we	get:

We	rewrite	Equation	3.19	as:

From	 classical	mechanics,	we	 know	 that	F	=	m	×	 a,	 or	a	=	 F/m.	 Comparing	 this	 with
Equation	 3.20,	 we	 obtain	 an	 expression	 for	 the	 effective	 mass	 of	 an	 electron	 as	 given	 in
Equation	 3.12.	 We	 can	 see	 from	 Equation	 3.12	 that	 the	 effective	 mass	 of	 an	 electron	 is
inversely	related	to	the	E–k	curvature.	Note	that	different	E–k	curves	in	Figure	3.11	result	in
different	effective	hole	mass.	The	larger	the	curvature,	the	smaller	the	effective	mass.

For	 the	 conduction	 band	 of	 a	 semiconductor,	 we	 can	write	 the	 relationship	 between	 the
energy	of	an	electron	(E)	and	its	wave	vector	k	as	follows:



FIGURE	3.10 The	relationship	between	electron	effective	mass	(	 )	and	band	gap	(Eg).	 (From	Singh,	J:	Semiconductor
Devices:	Basic	Principles.	2001.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)

where	Ec	is	the	conduction	band	edge	energy	and	 	is	the	effective	mass	of	the	electron.	The
effective	 mass	 of	 an	 electron	 depends	 strongly	 on	 the	 band	 gap	 (Eg).	 Since	 the	 band	 gap
represents	 an	 energy	 difference	 between	 two	 electron	 states	 (the	 free	 state	 and	 the	 bound
state),	 the	 larger	 band	 gap	 means	 a	 stronger	 electron–nucleus	 interaction	 (Section	 2.14).
Therefore,	the	smaller	the	value	of	the	band	gap	(Eg),	the	smaller	the	value	of	 	(Table	3.2
and	Figure	3.10).

3.5 DIRECT	AND	INDIRECT	BAND	GAP	SEMICONDUCTORS

The	E–k	diagrams	provide	one	more	important	way	to	classify	semiconductors.	Figure	3.11
shows	the	band	structure	of	a	direct	band	gap	semiconductor.	In	the	E–k	diagrams	of	Figure
3.11,	readers	need	to	pay	attention	to	flipped	parabolic	curves	at	the	bottom.	These	curves	are
the	 E–k	 diagrams	 of	 holes	 created	 in	 the	 valence	 band.	 Since	 electrons	 and	 holes	 have
opposite	 charge	 signs,	 the	 shapes	 of	 the	E–k	 diagrams	 are	 not	 the	 same	 for	 electrons	 and
holes	 (refer	 to	 Equations	 3.12	 and	 3.13).	 Note	 that	 the	 upper	 states	 in	 the	 E–k	 diagram
correspond	to	higher	energy	levels	for	electrons	(i.e.,	the	farther	from	Ec,	the	higher	electron
energy).	In	contrast	to	electrons,	holes	with	higher	energy	are	found	in	the	lower	states	of	the
valence	band.	 In	 a	group	of	 semiconductors	 called	as	 a	direct	band	gap	 semiconductor,	 the
maximum	electron	energy	state	in	the	valence	band	and	the	minimum	electron	energy	state	in
the	conduction	band	are	 found	at	 the	same	wave	vector	 (k);	an	electron	 in	 the	valence	band
can	move	into	the	conduction	band	if	it	has	sufficient	energy	to	cross	the	band	gap	(Eg).	This



process	does	not	require	a	change	in	the	momentum	of	the	electron,	because	k	of	the	moving
electron	does	not	change.

In	 a	 group	of	 semiconductors	 called	 as	 an	 indirect	 band	 gap	 semiconductor,	 the	 valence
band’s	maximum	electron	energy	state	and	the	conduction	band’s	minimum	electron	energy
state	 do	 not	 coincide	 at	 the	 same	 wave	 vector	 (k).	 Hence,	 an	 electron	 jumping	 from	 the
valence	 band	 to	 the	 conduction	 band	 needs	 to	 change	 its	 wave	 vector	 (or	 momentum)	 in
addition	to	gaining	the	energy	corresponding	to	Eg.	Silicon	and	germanium	are	examples	of
indirect	band	gap	semiconductors.	The	actual	band	structures	of	silicon,	germanium,	GaAs,
and	aluminum	arsenide	(AlAs)	are	more	complex	(Figure	3.12),	and	their	analysis	is	beyond
the	scope	of	this	book.

In	many	materials	based	on	alloys	of	two	or	more	semiconductors,	the	band	structure	can
change	 from	 indirect	 to	 direct	 and	 vice	 versa.	 For	 example,	 GaAs	 is	 a	 direct	 band	 gap
semiconductor.	When	 we	 form	 a	 solid	 solution	 with	 gallium	 phosphide	 (GaP;	 an	 indirect
semiconductor),	 the	 band	 gap	 of	 GaAs1–xPx	 remains	 direct	 up	 to	 phosphorus	 (P)	 mole
fractions	of	~x	=	0.45–0.50.	Beyond	this	(i.e.,	x	>	0.5),	the	band	gap	becomes	indirect	until	we
reach	GaP	(Figure	3.13).	Another	important	energy	level	in	Figure	3.13	is	associated	with	the
nitrogen	atom	that	is	doped	into	GaP.	The	significance	of	the	electron	energy	level	of	doped
N	will	be	discussed	in	Section	3.6.

FIGURE	 3.11 Band	 structure	 or	 E–k	 relationships	 for	 a	 direct	 and	 indirect	 band	 gap	 semiconductor.	 (From	 Singh,	 J:
Semiconductor	 Devices:	 Basic	 Principles.	 2001.	 Copyright	 Wiley-VCH	 Verlag	 GmbH	 &	 Co.	 KGaA.	 Reproduced	 with
permission.)

3.6 APPLICATIONS	OF	DIRECT	BAND	GAP	MATERIALS

Direct	band	gap	materials	exhibit	strong	interactions	with	energy	in	the	form	of	light	waves.
Because	of	this,	direct	band	gap	materials	are	used	to	create	optoelectronic	devices.	Electrons
can	move	from	the	valence	band	 to	 the	conduction	band	by	absorbing	 light	with	 the	energy



equal	to	or	larger	than	Eg.	After	an	electron	is	excited	into	the	conduction	band,	it	falls	back	to
the	valence	band	by	recombining	with	a	hole.	If	the	energy	of	the	recombination	reaction	is
released	in	the	form	of	light,	this	process	is	known	as	radiative	recombination.

The	 radiative	 recombination	 process	 occurring	 in	 direct	 band	 gap	materials	 enables	 the
operation	of	light-emitting	devices	known	as	LEDs.

In	certain	conditions,	 the	 recombination	of	 the	electrons	with	 the	holes	may	not	produce
light.	 Instead,	 the	 energy	 takes	 the	 form	 of	 vibrations	 of	 the	 atoms	 known	 as	 phonons	 and
appears	as	heat.	This	process	is	known	as	nonradiative	recombination.

The	process	of	 radiative	 recombination	without	 a	 change	 in	 the	momentum	 is	known	as
vertical	recombination	 (Figure	3.14).	Note	 that	 radiative	recombination	also	occurs	 in	some
indirect	 band	 gap	materials	when	 an	 electron	 from	 the	 conduction	 band	 comes	 back	 to	 the
valence	band	via	a	defective	energy	level.	Nonradiative	recombination	(Figure	3.15a)	occurs
in	direct	 band	gap	materials	 as	well;	 however,	we	 can	minimize	 it	 by	using	 semiconductor
materials	that	have	very	few	point	defects,	such	as	vacancies	or	interstitials,	or	other	defects,
such	as	dislocations.	This	will	improve	the	LED	efficiency.	Nonradiative	recombination	also
occurs	 at	 semiconductor	 surfaces	 that	 have	 incomplete	 or	 dangling	 bonds.	 Recombination
dynamics	is	one	of	the	factors	that	limits	how	rapidly	an	LED	can	be	turned	on	and	off.





FIGURE	3.12 Actual	band	structures	of	(a)	Si,	(b)	GaAs,	(c)	Ge,	and	(d)	AlAs.	(From	Singh,	J.,	Semiconductor	Devices:
An	Introduction,	McGraw	Hill,	New	York,	1994.	With	permission.)

The	frequency	(v)	of	light	emitted	is	related	to	the	band	gap	energy	(Eg):

FIGURE	3.13 (a)	Direct	band	gap	of	GaAs;	 (b)	direct	band	gap	of	GaAs0.5P0.5;	 and	 (c)	 indirect	 band	 gap	 of	GaP.	The
relative	level	of	N	dopant	added	for	optoelectronic	applications	is	also	shown.	(From	Schubert,	F.E.,	Light-Emitting	Diodes,
Cambridge	University	Press,	Cambridge,	UK,	2006.	With	permission.)

FIGURE	3.14 Vertical	recombination	and	photon	emission	in	a	direct	band	gap	semiconductor.	(From	Schubert,	F.E.,	Light-
Emitting	Diodes,	University	Press	Cambridge,	Cambridge,	UK,	2006.	With	permission.)



FIGURE	3.15 (a)	Radiative	recombination	of	an	electron–hole	pair	accompanied	by	the	emission	of	a	photon	with	energy	hv
≈	Eg.	 (b)	 In	 nonradiative	 recombination	 events,	 the	 energy	 released	 during	 the	 electron–hole	 recombination	 is	 converted	 to
phonons.	(From	Schubert,	F.E.,	Light-Emitting	Diodes,	University	Press	Cambridge,	Cambridge,	UK,	2006.	With	permission.)

Now,	if	c	is	the	speed	of	light	and	λ	is	its	wavelength,	then

Therefore,	from	Equations	3.24	and	3.25:

This	 relationship	 forms	 the	 basis	 for	 correlating	 the	 wavelength	 of	 light	 emitted	 from
LEDs.

Example	3.2	illustrates	how	Equation	3.26	can	be	converted	into	a	more	useful	form.

Example	3.2: Wavelength	of	Light	Emitted	from	LEDS

Develop	a	relationship	between	the	wavelength	of	light	(λ	in	micrometers)	emitted	from	an	LED	and	the	band	gap
(in	electron	volts).

Solution
We	can	simplify	Equation	3.26	to	make	it	more	practical	for	applications	as	follows:

Therefore,	the	wavelength	of	light	emitted	from	an	LED	is	given	by:

Example	3.3	illustrates	an	application	of	optoelectronic	materials.



Example	3.3: Light	Emission	from	an	LED

An	LED	is	made	using	gallium	nitride	(GaN;	Eg	=	3.47	eV	at	T	=	0	K).	What	 is	 the	wavelength	and	the	color	of
light	emitted	from	this	semiconductor	LED?

Solution
We	use	Equation	3.27	to	calculate	the	wavelength:

In	nanometers,	this	value	is	0.357	×	1000	=	357	nm,	which	coincides	with	the	wavelength	of	UV	light.	We	can
adjust	 the	composition	of	 semiconductors,	which	causes	 the	band	gap	 to	change.	 In	 this	case,	 indium	nitride	 (InN)
can	be	alloyed	with	GaN	 to	 form	blue	 lasers	and	LEDs	 that	 emit	 at	 λ	=	470	nm.	Such	LEDs	are	 found	 in	many
modern-day	electronic	products	such	as	CD	players,	video	games,	and	controllers.	Further	details	of	LEDs	and	the
wavelength–color	relation	can	be	found	in	Chapters	6	and	8.

Indirect	 band	 gap	materials	 such	 as	 silicon	 or	 germanium	 normally	 cannot	 be	 used	 for
making	semiconductor	lasers	or	LEDs.	This	is	because	a	radiative	recombination	of	electrons
and	holes	is	less	probable	than	a	nonradiative	recombination.	In	indirect	band	gap	materials,
electron–hole	recombination	generally	results	in	generation	of	heat.

However,	we	cannot	totally	dismiss	the	possibility	of	using	indirect	band	gap	materials.	In
some	 cases,	 we	 can	 use	 an	 indirect	 band	 gap	 material	 for	 optoelectronic	 devices.	 For
example,	GaP	is	an	indirect	band	gap	material.	When	it	 is	doped	with	nitrogen	(N),	a	defect
level	 is	 created	 deep	 in	 the	 band	 gap	 (Figure	 3.13).	 This	 defect	 level	 then	makes	 radiative
recombination	possible.	The	 transition	 is	between	 the	N	 level	 and	Γ	VB	 (Figure	3.13c).	We
will	 learn	 in	 Section	 3.8	 that	 a	dopant	 is	 an	 element	 or	 a	 compound	 deliberately	 added	 to
enhance	 the	 electrical	 or	 other	 properties	 of	 a	 semiconductor.	 Since	 nitrogen	 has	 the	 same
valence	 as	 phosphorous	 (i.e.,	 +5),	 the	 doping	 of	 GaP	 with	 nitrogen	 is	 an	 example	 of
isoelectronic	 doping	 which	 does	 not	 change	 the	 electron	 (hole)	 concentration	 of	 the
semiconductor	(Section	3.11).

The	 isoelectronic	 doping	 of	 GaP	 with	 nitrogen	 provides	 a	 practical	 application	 of
Heisenberg’s	 uncertainty	 principle.	 Since	 the	 electron	 wave	 function	 of	 nitrogen	 atoms	 is
highly	 localized	 near	 nitrogen	 (small	 Δx),	 a	 possible	 range	 of	 the	 electron	 momentum
broadens	 (large	 Δp).	 As	 a	 result,	 two	 different	 transitions	 can	 occur	 sequentially	 (the
conduction	band	edge	→	the	nitrogen	impurity	level	→	the	valence	and	edge)	(Figure	3.13).
The	 first	 transition	 to	 the	 nitrogen	 impurity	 level	 is	 nonradiative.	 However,	 the	 second
transition	 from	 the	 nitrogen	 level	 to	 the	 valence	 band	 results	 in	 emission	 of	 light	 (Figure
3.13c).	 The	 change	 in	 the	 electron	 momentum	 during	 the	 electron	 transition	 from	 the
conduction	 band	 labeled	 X	 to	 the	 valence	 band	 labeled	 Γ	 is	 absorbed	 by	 the	 isoelectronic
nitrogen	atom.

Another	 way	 to	 modify	 indirect	 band	 gap	 characteristics	 is	 to	 use	 nanostructured	 or
amorphous	 materials.	 For	 example,	 Si	 nanocrystals	 exhibit	 more	 direct	 band	 gap
characteristics	and	a	higher	band	gap	than	Si	bulk	due	to	the	quantum	confinement	effect	(or	a
change	 in	 the	 density	 of	 states).	 This	 shows	 that	 crystal	 structure	 as	 well	 as	 material
composition	are	important	factors	that	control	the	band	structure.



3.7 MOTIONS	OF	ELECTRONS	AND	HOLES:	ELECTRIC	CURRENT

In	this	section,	we	will	explain	the	motion	of	electrons	and	holes	and	their	effects	on	electric
conductivity	using	the	band	diagrams	of	electrons	and	holes	(see	Figures	3.11	and	3.12).	First,
let	 us	 think	 about	 the	motion	 of	 an	 electron–hole	 pair	 of	materials	 that	 are	 not	 electrically
biased.	 When	 a	 valence	 electron	 is	 excited	 to	 the	 conduction	 band,	 the	 electron	 in	 the
conduction	band	and	the	hole	in	the	valence	band	have	the	same	wave	vector	and	momentum
(Figure	3.16a).	 If	 their	effective	masses	are	 the	same,	 two	oppositely	charged	particles	with
the	same	momentum	move	along	the	same	direction	with	the	same	velocity.	This	means	that
the	effect	of	 the	electron	motion	cancels	out	 that	of	 the	hole	motion	and	no	electric	current
flows.	 Second,	 consider	 two	 electrons	 occupying	 the	 same	 energy	 in	 the	 valence	 band	 of
metals	(Figure	3.16b).	 If	Electron	1	 is	moving	with	wave	vector	kx	and	velocity	vx,	 then	 the
effect	 of	 its	 motion	 (in	 terms	 of	 current	 generation)	 is	 nullified	 by	 the	 other	 electron
(Electron	 2)	 moving	 with	 wave	 vector	 −kx	 and	 velocity	 −vx.	 Since	 the	 wave	 vector	 (k)	 is
proportional	to	the	momentum	(p)	of	the	electrons	(Equation	3.9),	the	velocities	of	these	two
electrons	 are	opposite.	 In	metals,	 energy	 levels	below	EF	 are	 fully	 filled.	There	 are	 always
two	 electrons	 that	 have	 the	 same	 energy	 but	 opposite	 wave	 vectors.	 Thus,	 in	 metals,	 the
motions	 of	 all	 electrons	 in	 the	 valence	 band	 of	 the	metal	 are	 canceled,	 and	 the	 net	 electric
current	 is	 zero.	 Here,	 we	 see	 why	 the	 electron–hole	 pair	 in	 the	 semiconductors	 and	 the
electron	motion	in	the	metals	do	not	contribute	to	the	electric	conductivity	if	no	electric	field
is	applied.	This	is	the	basis	for	the	following	equation	for	the	current	density	of	a	completely
filled	band:



FIGURE	3.16 (a)	Diagram	illustrating	the	wave	vector	for	an	electron–hole	pair	in	semiconductors.	(b)	Diagram	illustrating
the	E–k	 curve	 in	 the	 valence	 band	of	metals—the	wave	 vectors	 of	 electrons	 occupying	 the	 same	 energy	 level	 (top)	 and	 a
change	in	E–k	curve	of	materials	electrically	biased	(bottom).

where	J	 is	the	current	density,	q	 is	the	magnitude	of	the	charge	on	the	electron,	and	vi	 is	 the
velocity	of	the	ith	electron.	Note	the	negative	sign	in	Equation	3.28,	which	is	used	because	of
the	negatively	charged	electron.

Then,	let	us	examine	how	electric	conductivity	can	be	explained	using	the	E–k	curve	(i.e.,
from	 the	 standpoint	 of	 quantum	 mechanics).	 In	 Section	 2.17,	 we	 learned	 that	 the	 quantum
mechanical	 approach	 considers	 that	 only	 electrons	 taking	 energy	 levels	 near	 EF	 mainly
contribute	 to	 electric	 conductivity.	 This	 view	 can	 be	 understood	 better	 using	 the	 schematic
illustration	 shown	 at	 the	 bottom	 of	 Figure	 3.16b.	When	 the	 electric	 field	 is	 applied	 to	 the
metals,	the	electrons	moving	with	the	wave	vectors	of	kx	and	−kx	are	affected	differently.	If	an
electron	with	 the	 wave	 vector	kx	 is	 accelerated	 (i.e.,	 momentum	 increases),	 its	 counterpart
with	 the	 wave	 vector	 −kx	 is	 decelerated	 (i.e.,	 momentum	 decreases)	 and	 the	 E–k	 curve
becomes	asymmetric	under	the	electric	bias.	Thus,	the	energy	levels	near	EF	are	taken	by	only
accelerated	 electrons	 and	 their	 motions	 are	 not	 canceled	 by	 decelerated	 electrons,	 which
results	in	the	appearance	of	a	net	electric	current.

Now	consider	the	valence	band	of	a	semiconductor,	which	has	a	hole	created	by	removing
the	 jth	 electron.	 The	 current	 density	 in	 this	 band	 will	 be	 given	 by	 the	 sum	 of	 all	 current
densities	minus	the	current	density	due	to	motion	of	the	jth	electron.

Note	that	the	first	term	in	Equation	3.29	is	zero.	Thus,	the	current	density	in	a	valence	band
with	one	hole	is	given	by



We	can	conclude	that	the	current	in	a	valence	band	with	one	hole	can	be	described	as	the
current	by	the	 jth	electron	(whose	motion	is	uncompensated)	moving	with	velocity	–vj.	This
current	contribution	is	the	same	as	that	of	a	hole	with	a	charge	of	+q	moving	in	the	opposite
direction,	that	is,	with	a	velocity	of	+vj.	The	magnitude	of	 the	wave	vector	associated	with	a
missing	electron	is	equal	to	the	wave	vector	of	the	hole	created	(Figure	3.16).

An	important	fact	to	understand	about	electric	current	is	that	during	the	motion	of	charge
carriers,	 the	current	 contributions	of	 an	electron	moving	with	a	certain	velocity	and	a	hole
moving	with	 opposite	 velocity	 are	 the	 same.	 To	 understand	 the	 electrical	 properties	 of	 the
valence	 band,	 which	 is	 almost	 (but	 not	 completely)	 filled	 with	 electrons,	 we	 consider	 the
behavior	of	the	holes.	As	an	analogy,	consider	that	we	look	for	an	empty	parking	spot	rather
than	for	parked	cars	when	parking	in	a	garage.	To	understand	the	electrical	properties	of	the
conduction	band,	we	look	at	the	behavior	of	the	electrons.

In	a	band	diagram	or	a	band	structure,	we	plot	the	electron	energy	so	that	it	increases	as	the
energy	state	goes	up	in	the	band	diagram	or	band	structure	and	the	hole	energy	increases	as
the	energy	state	goes	down	(Section	3.15).	As	a	result,	the	electrons	excited	to	the	conduction
band	 seeking	 the	minimum	 energy	 are	 shown	 at	 the	 bottom	 of	 the	 conduction	 band	 on	 the
band	diagram,	and	the	holes	created	in	the	valence	band	minimize	their	energy	and	are	shown
at	the	top	of	the	valence	band.	The	band	diagrams	(Figures	3.2	and	3.5),	 therefore,	show	the
predominance	of	electrons	at	E	=	Ec	and	that	of	holes	at	E	=	Ev.

3.8 EXTRINSIC	SEMICONDUCTORS

In	intrinsic	semiconductors,	the	changes	in	the	number	of	carriers	are	related	exponentially	to
the	changes	in	the	temperature	(Equation	3.5).	This	makes	 it	very	difficult	 to	make	practical
and	useful	devices	using	intrinsic	materials.	We	need	semiconductors	whose	conductivity	can
be	moderated	by	controlled	changes	in	the	composition.	We	would	prefer	that	these	materials
show	electrical	properties	 that	would	not	only	be	 tunable	with	composition	changes	but	 that
would	also	be	stable	over	a	wide	range	of	temperatures	(e.g.,	−50°C	to	+150°C).	In	Chapter	6,
we	will	 discuss	 electronic	 devices	 such	 as	 transistors	 and	 diodes	 that	 can	 be	 designed	 and
manufactured	from	extrinsic	semiconductors.	These	materials	show	controllable	variations	in
their	conductivity	due	to	doping	and	are	also	relatively	temperature	stable.

As	mentioned	in	Section	3.2,	a	material	in	which	the	conductivity	is	largely	controlled	by
the	 addition	 of	 other	 elements	 is	 known	 as	 an	 extrinsic	 semiconductor.	 In	 extrinsic
semiconductors,	the	charge	carriers	(electrons	and	holes)	are	generated	by	adding	aliovalent
elements	known	as	dopants.	A	dopant	 is	 an	 element	or	 a	 compound	deliberately	 added	 to	 a
semiconductor	 to	 influence	 and	 control	 electrical	 or	 other	 properties.	 In	 particular,	 the
electrical	conductivity	of	semiconductors	is	significantly	affected	by	the	presence	of	foreign
atoms.	 In	 contrast	 to	 dopants,	 impurities	 are	 elements	 or	 compounds	 that	 are	 present	 in
semiconductors	 either	 inadvertently	 or	 because	 of	 processing	 limitations.	 For	 example,
silicon	crystals	grown	from	melt	often	contain	dissolved	oxygen	 (O).	This	 impurity	comes
from	the	quartz	(SiO2)	crucibles	used	for	the	growth	of	silicon	single	crystals.	Like	dopants,
impurities	 also	 have	 a	 profound	 effect	 on	 the	 electrical	 properties	 of	 semiconductors.	 The



concentrations	 of	 impurities	 usually	 are	 not	 completely	 predictable,	 so	 it	 is	 difficult	 to
estimate	 their	 effects	 on	 semiconductor	 properties.	 Thus,	 every	 effort	 is	 made	 in
semiconductor	processing	 to	minimize	 the	presence	of	 impurities.	 In	Sections	3.9	 and	3.10,
we	describe	different	types	of	extrinsic	semiconductors.

3.9 DONOR-DOPED	(N-TYPE)	SEMICONDUCTORS

A	donor-doped	 or	 n-type	 semiconductor	 consists	 of	 an	 atom	 or	 an	 ion	 that	 provides	 extra
electrons.	 Electrons	 are	 the	 majority	 carriers	 in	 these	 materials.	 Since	 electrons	 carry	 a
negative	charge,	these	materials	are	also	known	as	n-type	semiconductors.

For	example,	consider	a	silicon	crystal	with	a	low	concentration	of	arsenic	(As)	forming	a
solid	solution	in	which	the	arsenic	atoms	occupy	the	silicon	sites.	Each	arsenic	atom	brings	in
five	valence	electrons.	Only	four	of	these	participate	in	the	formation	of	covalent	bonds	with
other	 silicon	 atoms.	 The	 fifth	 electron	 remains	 bonded	 to	 the	 arsenic	 atom	 at	 low
temperatures.	However,	as	the	temperature	increases	to	~50	to	100	K,	the	fifth	electron	from
arsenic	 dissociates	 itself	 and	 is	 available	 for	 conduction	 (Figure	 3.17).	 Thus,	 each	 arsenic
atom	added	results	in	one	extra	electron	available	for	conduction.	Note	that	since	the	dopant
atoms	added	are	neutral,	 the	doped	semiconductor	remains	electrically	neutral	and	does	not
acquire	 a	 net	 negative	 charge.	 A	 band	 diagram	 for	 an	 n-type	 semiconductor	 is	 shown	 in
Figure	3.18.	In	this	figure,	Ed	demonstrates	how	strongly	the	fifth	electron	of	As	is	bonded	to
As	 atoms.	 Note	 the	 donor	 energy	 level	 (Ed)	 in	 relation	 to	 the	 conduction	 band	 edge	 (Ec)
(Table	 3.3).	 Since	 dopant	 energy	 levels	 are	 much	 smaller	 than	 the	 band	 gap	 of
semiconductors,	thermal	energy	at	room	temperature	is	large	enough	to	activate	most	dopants
and	to	generate	the	charge	carriers.	The	energy	required	for	carrier	generation	is	the	major
difference	between	extrinsic	and	intrinsic	semiconductors.	Examples	of	other	n-type	dopants
for	 silicon	 include	phosphorus	 (P),	 arsenic	 (As),	 and	antimony	 (Sb).	Section	3.21	 discusses
similar	 concepts	 through	 which	 we	 can	 create	 ceramic	 materials	 that	 show	 n-type
semiconductivity.



FIGURE	 3.17 Illustration	 of	 arsenic-doped	 silicon,	 which	 is	 an	 n-type	 or	 donor-doped	 semiconductor.	 (From	 Singh,	 J.:
Semiconductor	 Devices:	 Basic	 Principles.	 2001.	 Copyright	 Wiley-VCH	 Verlag	 GmbH	 &	 Co.	 KGaA.	 Reproduced	 with
permission.)

FIGURE	3.18 Band	diagram	for	an	n-type	semiconductor.

3.10 ACCEPTOR-DOPED	(P-TYPE)	SEMICONDUCTORS

Another	type	of	extrinsic	semiconductor	is	an	acceptor-doped	or	p-type	 semiconductor.	The
term	“p-type”	refers	to	the	positive	charge	on	holes	that	are	the	dominant	charge	carriers.	In
this	type	of	material,	the	situation	is	opposite	to	that	of	n-type	semiconductors.	We	add	dopant
atoms	or	ions	that	create	a	deficit	of	electrons.	A	typical	example	of	a	p-type	semiconductor	is
silicon	doped	with	boron	(B;	Figure	3.19).	Each	boron	atom	added	to	silicon	brings	in	three
valence	electrons.	Thus,	the	boron	atoms	occupying	the	silicon	sites	have	only	three	valence
electrons	that	can	form	complete	covalent	bonds	with	three	silicon	atoms.	The	fourth	boron–
silicon	bond	 is	 incomplete	 in	 that	 it	 is	missing	 an	 electron	 and	 is	 thus	 ready	 to	 accept	one.
Boron-doped	silicon	is	therefore	referred	to	as	an	acceptor-doped	semiconductor.	Aluminum
is	another	example	of	an	acceptor	dopant	for	silicon.



TABLE	3.3

Energy	Levels	for	Some	Dopants	in	Silicon,	Germanium,	and	GaAs

FIGURE	3.19 Illustration	 of	 a	 boron-doped	 silicon,	which	 is	 a	 p-type	 or	 acceptor-doped	 semiconductor.	 (From	Singh,	 J.:
Semiconductor	 Devices:	 Basic	 Principles.	 2001.	 Copyright	 Wiley-VCH	 Verlag	 GmbH	 &	 Co.	 KGaA.	 Reproduced	 with
permission.)

The	missing	electron	in	one	of	the	boron–silicon	bonds	is	also	described	as	the	creation	of
a	hole.	In	acceptor-doped	or	p-type	semiconductors,	the	majority	of	carriers	are	holes.	Hence,
acceptor-doped	semiconductors	are	also	known	as	p-type	semiconductors.	The	band	diagram



for	a	typical	p-type	semiconductor	is	shown	in	Figure	3.20.	Note	the	position	of	the	acceptor
level,	Ea,	which	is	above	the	valence	band	edge	(Ev).

FIGURE	3.20 A	band	diagram	for	a	p-type	or	acceptor-doped	semiconductor.

3.11 AMPHOTERIC	 DOPANTS,	 COMPENSATION,	 AND	 ISOELECTRONIC
DOPANTS

In	some	cases,	the	same	dopant	element	will	behave	as	if	it	is	both	the	donor	and	the	acceptor.
Such	 dopants	 are	 known	 as	 amphoteric	 dopants.	 For	 example,	 silicon	 in	 GaAs	 is	 an
amphoteric	dopant.	If	the	tetravalent	silicon	occupies	the	trivalent	gallium	sites,	it	behaves	as	a
donor.	 If	 silicon	 atoms	 occupy	 the	 pentavalent	 arsenic	 sites,	 they	 behave	 as	 acceptors.
Therefore,	 is	 silicon	 a	 donor	 or	 an	 acceptor	 dopant	 when	 added	 to	 GaAs?	 The	 answer
depends	on	the	concentration	of	silicon	added	to	GaAs,	the	manner	in	which	it	is	added,	and
the	 temperature	 during	 the	 addition.	 At	 low	 processing	 temperatures	 and	 lower
concentrations,	 silicon	 acts	 as	 an	 acceptor	 by	 taking	 up	 the	 arsenic	 sites;	 whereas	 at	 high
processing	 temperatures	 and	 higher	 concentrations,	 it	 occupies	 gallium	 sites	 and	 acts	 as	 a
donor.	We	will	learn	about	the	ways	to	add	dopants	to	semiconductors	in	the	next	chapter.

As	mentioned	 in	Section	3.6,	 the	addition	of	 isoelectronic	dopants	can	be	useful	 in	some
cases.	For	example,	aluminum	with	a	valency	of	3	can	be	added	to	GaN.	Thus,	aluminum	acts
as	 neither	 an	 acceptor	 nor	 a	 donor.	When	 isoelectronic	 dopants	 are	 added,	 they	 change	 the
local	 electronic	 structure	 and,	 in	 turn,	 alter	 the	 electrical	 properties	 of	 the	 base	 materials.
Another	 example	 of	 an	 isoelectronic	 dopant	 is	 germanium	 in	 silicon.	 Silicon–germanium
(informally	known	as	siggy)	semiconductors	have	been	developed.	Their	advantages	include	a
higher	device	speed	and	less	power	consumption	(Ahlgre	and	Dunn	2000).

In	some	cases,	 isoelectronic	additions	help	with	optical	properties.	As	mentioned	before,
nitrogen-doped	 GaAs1−xPx	 compositions	 with	 an	 indirect	 band	 gap	 are	 used	 for	 making
yellow	and	green	LEDs	(Streetman	and	Banerjee	2000;	Figure	3.13).

There	are	many	electronic	devices	that	contain	both	types	of	dopants	in	the	same	volume	of
material.	For	example,	we	may	have	a	phosphorus-doped	silicon	crystal,	and	we	add	boron,
an	 acceptor	 dopant,	 either	 to	 the	 entire	 crystal	 or	 to	 parts	 of	 it.	 The	 effect	 of	 the	 boron
addition	 will	 compensate	 for	 the	 effect	 of	 the	 phosphorus	 doping.	 This	 is	 known	 as
compensation	doping.	Note	that,	in	order	for	the	compensated	semiconductor	(either	the	entire



crystal	or	a	selected	part	of	it)	to	behave	as	n-type	or	p-type,	the	net	concentration	of	carriers
created	 must	 exceed	 the	 concentrations	 of	 thermally	 generated	 carriers.	 A	 semiconductor
containing	both	types	of	dopants	behaves	as	n-type	if	the	donor	concentration	(Nd)	outweighs
the	 acceptor	 concentration	 (Na)	 and	 (Nd	−	Na)	 >>	 ni.	 If	 a	 semiconductor	 has	 both	 types	 of
dopants	and	if	(Na	−	Nd)	>>	ni	(=	pi),	then	the	material	behaves	as	a	p-type	semiconductor.

3.12 DOPANT	IONIZATION

In	an	n-type	or	a	p-type	material,	at	 low	temperatures	near	0	K,	electrons	and	holes	 remain
bonded	 to	 the	 donor	 or	 acceptor	 atoms,	 respectively.	This	 temperature	 region	 in	which	 the
carriers	remain	bonded	to	the	dopant	atoms	is	known	as	the	freeze-out	range	(Figure	3.21).

FIGURE	 3.21 Carrier	 concentration	 (plotted	 on	 a	 log	 scale)	 as	 a	 function	 of	 the	 inverse	 of	 the	 temperature	 (T).	 (From
Askeland,	D.	and	Fulay	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	3.22 Dopant	ionization	in	an	n-type	semiconductor.	(From	Kano,	K.,	Semiconductor	Fundamentals,	Prentice	Hall,
Upper	Saddle	River,	NJ,	1997.	With	permission.)



As	 the	 temperature	 increases	 to	 ~50	 to	 100	K,	 the	 extra	 electrons	 or	 holes	 bound	 to	 the
donor	 and	 acceptor	 atoms	 become	 available	 for	 conduction.	 This	 process	 by	 which	 the
carriers	that	have	bonded	with	the	dopant	atoms	dissociate	themselves	from	the	dopant	atoms
is	known	as	dopant	ionization	(Figure	3.22).

As	illustrated	in	Figure	3.22,	when	the	fifth	electron	from	the	phosphorous	atom	becomes
detached,	we	get	a	phosphorous	 ion	 that	has	an	effective	charge	of	+1.	 If	a	hole	bound	 to	a
boron	 atom	 dissociates	 itself,	 we	 get	 a	 boron	 ion	 with	 an	 effective	 charge	 of	 −1.	 With	 a
further	 increase	 in	 the	 temperature,	 the	carrier	concentration	 levels	off,	 indicating	complete
ionization.	This	region	is	labeled	as	extrinsic	in	Figure	3.21	because	the	carrier	concentration
is	directly	linked	to	the	dopant	concentration.	With	a	further	increase	in	the	temperature,	the
concentrations	of	thermally	excited	carriers	(ni	and	pi)	are	dominant.	This	region	is	therefore
labeled	 intrinsic	 because	 even	 if	 the	 material	 is	 doped,	 it	 behaves	 as	 an	 intrinsic
semiconductor.

The	energy	required	(Ed)	to	remove	the	fifth	electron	from	a	phosphorus	atom—that	is,	to
ionize	a	donor	atom—is	given	by	the	following	equation:

In	Equation	3.31,	Ed	is	the	donor	energy	level,	Ec	is	the	conduction	band	edge	energy,	and	ε
is	 the	dielectric	permittivity	of	 the	semiconductor	(unit	F/m).	Thus,	 the	difference	(Ed	−	Ec)
tells	us	how	far	below	Ec	the	donor	energy	level	Ed	is.	This	equation	is	an	extension	of	Bohr ’s
atomic	model,	which	is	used	for	predicting	the	binding	energy	of	an	electron	to	a	hydrogen
atom	nucleus.

We	rewrite	Equation	3.31	to	involve	the	ratio	of	the	effective	mass	to	the	mass	of	electrons
in	a	vacuum.	The	ratio	of	the	permittivity	of	the	semiconductor	to	the	permittivity	of	the	free
space	(ε0)	is	its	dielectric	constant	(εr).

In	Example	3.4,	we	will	show	that

This	is	the	energy	with	which	an	electron	is	bound	to	a	nucleus	of	a	hydrogen	atom.
Thus,	from	Equations	3.31	and	3.32,	we	get

We	can	rewrite	this	as



or

Note	 that,	 in	 these	equations,	we	use	 the	effective	mass	of	electrons	 	 for	direct	band
gap	 semiconductors	 (e.g.,	 GaAs);	 whereas	 for	 indirect	 band	 gap	 semiconductors	 such	 as
silicon,	we	use	 the	conductivity	effective	mass	 .	The	 examples	 that	 follow	 illustrate	 the
calculations	of	dopant	levels	in	direct	and	indirect	band	gap	materials.

The	 values	 of	 the	 dopant	 energy	 levels	 calculated	 here	 are	 approximate	 and	 use	 an
extension	 of	 Bohr ’s	 model	 for	 the	 binding	 energy	 of	 an	 electron	 bound	 to	 the	 hydrogen
nucleus.	This	is	known	as	the	hydrogen	model.	The	actual	values	of	the	binding	energy	levels
for	different	dopants	used	in	silicon,	germanium,	and	GaAs	depend	upon	the	specific	dopant
and	are	shown	in	Table	3.3.	This	table	shows	that	the	binding	energy	for	most	dopants	is	a	few
millielectron	volts.	The	binding	energy	of	dopants	is	significantly	lower	than	13.6	eV.	There
are	 two	 reasons	 for	 this:	 (1)	The	effective	mass	of	 the	 carriers	 is	 smaller	 than	 the	mass	of
charge	carriers	in	vacuum;	and	(2)	the	binding	potential	is	reduced	by	the	crystal	as	described
by	the	dielectric	constant	(εr;	Equation	3.36).
Shallow	dopants	are	those	whose	energy	levels	are	close	to	the	band	edge,	for	example,	the

dopants	 shown	 in	 Table	 3.3.	 They	 reasonably	 follow	Bohr ’s	 atomic	model	 summarized	 in
Equation	3.36	(Examples	3.5	and	3.7).	Some	atoms	create	defect	 levels	 that	are	well	 into	 the
band	gap	(Ed	>	100	meV	in	silicon);	these	are	known	as	deep-level	defects.	The	levels	of	these
dopants	cannot	be	predicted	using	Bohr ’s	atomic	model	(Equation	3.35).	Deep-level	dopants
are	introduced	by	atoms	or	ions	that	do	not	fit	the	semiconductor	crystal;	they	severely	distort
the	host	lattice.	Deep-level	defects	act	as	a	trap	for	charge	carriers.	They	can	also	be	useful	in
pinning	down	the	Fermi	energy	level.

Example	3.4: Value	of	an	Expression	Related	to	the	Binding	Energy	for	an	Electron	in	an	H	Atom

Show	that	 the	 term	expressed	in	Equation	3.32	 is	equal	 to	13.6	eV.	This	 is	 the	energy	with	which	an	electron	 in	a
hydrogen	(H)	atom	is	bound	to	its	nucleus.

Solution
We	use	m0	=	9.11	×	10

−31	kg,	q	=	1.6	×	10−19	C,	ε0	=	8.85	×	10
−12	F/m,	and	ℏ	=	1.05	×	10−34	J	·	s	in	Equation

3.32.

Note	 that	 1	 eV	 is	 the	 energy	 required	 to	 move	 the	 charge	 equal	 to	 the	 charge	 on	 an	 electron	 through	 1	 V
potential	difference,	that	is,	1	eV	=	1.6	×	10−19	J.



Therefore,	converting	2.189	×	10−15	J	into	electron	volts,	we	get

Example	3.5: Donor	Energy	Level	Calculation	for	Silicon-Doped	Gallium	Arsenide

Assuming	that	Si	acts	as	a	donor	in	a	GaAs	sample,	calculate	the	position	of	the	donor	energy	level	(Ed)	relative	to
the	conduction	band	edge	(Ec).

Solution
We	use	Equation	3.35	to	calculate	the	relative	position	of	the	donor	energy	level.	Since	GaAs	is	a	direct	band	gap
semiconductor,	we	use	the	effective	mass	of	electrons.
From	Table	3.2,	for	GaAs	 	and	the	dielectric	constant	(εr)	is	13.2.

Therefore,

FIGURE	3.23 Illustration	of	the	silicon	donor	dopant	energy	level	in	GaAs.	The	intrinsic	Fermi	energy	level	(EF,i)	is	shown
in	the	middle	of	the	band	gap.	Diagram	is	not	to	scale	(see	Example	3.5).

Thus,	 the	donor	energy	level	for	Si	 in	GaAs	is	~5.2	meV	below	the	conduction	band	edge	(Figure	3.23).	Note
that	 this	 calculation	 does	 not	 require	 the	 actual	 band	 gap	 energy	 value.	 The	 binding	 energy	 of	many	 dopants	 is
significantly	lower	than	13.6	eV	because	of	the	lesser	effective	masses	and	dielectric	constant.

Example	3.6: Comparison	of	Donor	Energy	Level	Relative	to	Thermal	Energy

Compare	 the	magnitude	of	 the	difference	 (Ed	−	Ec)	calculated	 in	Example	3.5	with	 the	 thermal	 energy	 (kBT)	 of

carriers	at	300	K.	(Note:	Boltzmann’s	constant	[kB]	is	8.617	×	10
−5	eV/K	or	1.38	×	10−23	J/K.)

Solution
Since	we	prefer	to	obtain	the	energy	in	electron	volts,	we	use	the	value	of	kB	in	electron	volts.	The	value	of	kBT	at
300	K	is	~0.026	eV.
The	energy	with	which	the	donor	electron	of	Si	in	GaAs	is	bonded	is	only	0.00522	eV.	Thus,	the	thermal	energy

at	300	K	is	almost	five	times	greater,	suggesting	a	nearly	complete	donor	ionization.



Example	3.7: Donor	Energy	Level	For	Phosphorus-Doped	Silicon

Calculate	 the	position	of	 the	donor	 energy	 (Ed)	 level	 relative	 to	 the	conduction	band	edge	 (Ec)	 for	 P	 in	 Si.	 The
dielectric	constant	(εr)	of	Si	is	11.8	(Table	3.2).	The	ratio	of	the	conductivity	effective	mass	of	electrons	in	Si	to	m0
is	0.26.

Solution
We	 use	 the	 values	 in	 Equation	 3.35,	 which	 have	 been	 modified	 to	 show	 the	 conductivity	 effective	 mass	 of	 the
electrons	in	Si.

Note	the	use	of	the	conductivity	effective	mass	because	Si	is	an	indirect	band	gap	material.

Thus,	the	donor	level	for	P	in	Si	is	~0.025	eV	or	25	meV	below	the	conduction	band	edge.	This	is	illustrated	in
Figure	3.24.

FIGURE	3.24 Position	of	calculated	donor	dopant	level	(Ed)	in	silicon	relative	to	conduction	band	edge	(Ec).	The	dotted
line	in	the	middle	of	the	band	gap	is	the	Fermi	energy	level	of	the	intrinsic	semiconductor	(EF,i).	Diagram	is	not	to	scale	(see
Example	3.7).

3.13 CONDUCTIVITY	OF	INTRINSIC	AND	EXTRINSIC	SEMICONDUCTORS

The	conductivity	of	a	semiconductor	is	given	by	the	following	equation:



where	q	is	the	magnitude	of	the	charge	on	the	electron	or	hole	and	is	1.6	×	10−19	C,	n	is	the
concentration	of	conduction	electrons,	p	 is	 the	concentration	of	holes,	and	μn	and	μp	are	 the
mobilities	of	electrons	and	holes	in	the	semiconductor	material,	respectively.

If	we	add	one	phosphorus	atom	to	a	silicon	crystal	and	the	temperature	is	high	enough	to
cause	 donor	 ionization,	 we	 should	 get	 one	 electron	 in	 the	 conduction	 band.	 Let	Nd	 be	 the
concentration	of	donor	atoms.	Assuming	 that	each	donor	dopant	atom	donates	one	electron
that	 becomes	 available	 for	 conduction,	we	 expect	 to	 get	Nd	 number	 of	 electrons	 per	 cubic
centimeter	in	the	conduction	band.	Note	that	as	the	temperature	increases,	we	expect	not	only
donor	 ionization	(Figure	3.22)	but	also	 some	electrons	 in	 the	 silicon–silicon	bond	 to	break
free	and	provide	for	the	intrinsic	or	thermally	generated	electrons	and	holes	(Figure	3.2).

If	ni	is	the	concentration	of	thermally	generated	carriers,	then	for	an	n-type	semiconductor,
we	can	write	the	total	concentration	of	conduction	electrons	(n)	as

In	 an	 n-type	 semiconductor,	 conduction	 electrons	 generated	 through	 the	 doping	 process
dominate	the	conductivity	and	are	the	majority	carriers,	that	is

Since	the	concentration	of	conduction	electrons	created	by	doping	is	significantly	higher
than	 the	 concentration	 of	 those	 generated	 by	 thermal	 excitation	 (Equation	 3.40),	 we	 can
assume

Recall	 that	 there	 is	 an	 equal	 concentration	 of	 holes	 (pi	 holes/cm3)	 corresponding	 to	 ni
electrons/cm3.	 In	 this	 case,	 we	 can	 ignore	 the	 contribution	 of	 holes	 and	 thermally	 excited
electrons	 to	 the	 total	 conductivity	 because	 holes	 are	 minority	 carriers	 in	 n-type
semiconductors.	The	equation	for	the	conductivity	of	an	n-type	semiconductor	can	be	written
as

The	situation	is	analogous	for	the	p-type	semiconductor.	For	this	type,	the	concentration	of
holes	generated	due	 to	acceptor	dopants	 is	dominant	 (Na	>>	pi).	The	holes	 are	 the	majority
carriers,	and	the	electrons	are	the	minority	carriers.

We	can	ignore	the	contribution	of	thermally	generated	electrons	and	holes	to	conductivity,
that	is

These	concepts	are	illustrated	in	Example	3.8.	Before	solving	examples,	note	that	ni	and	pi
of	 doped	 semiconductors	 are	 different	 from	 those	 of	 intrinsic	 semiconductors.	 Details	 are
found	in	Chapter	4.

Example	3.8: Conductivity	of	Intrinsic	Gallium	Arsenide



1.	 What	is	the	resistivity	of	intrinsic	GaAs?	Assume	that	the	temperature	is	300	K
and	ni	=	2	×	106	electrons/cm3	(Figure	3.7).

2.	 How	does	this	value	compare	with	the	conductivity	of	an	intrinsic	Ge	sample?
(See	Example	3.1.)

Solution
1.	 Since	 this	 is	 an	 intrinsic	 semiconductor,	 the	 concentrations	 of	 electrons	 and

holes	play	a	role	in	the	conductivity.	From	Equation	3.38,

σ	=	q	×	n	×	μn	+	q	×	p	×	μp

Table	3.1	shows	that	 the	mobility	values	for	electrons	and	holes	for	intrinsic	GaAs	are	8500	and
400	 cm2/V	 ·	 s,	 respectively.	 The	 concentration	 of	 holes	 and	 electrons	 is	 the	 same	 because	 each
electron	that	moves	into	the	conduction	band	creates	a	hole	in	the	valence	band,	i.e.,	ni	=	pi.
Therefore

σ	=	(1.6	×	10−19	C)(2	×	106/cm3)(8500	+	400)	cm2/V	·	s

σ	=	2.848	×10−19	S/cm

The	resistivity	ρ	=	3.51	×	108	Ω	·	cm.
Thus,	undoped	intrinsic	GaAs	has	a	relatively	high	resistivity.	This	value	is	actually	higher	than	103

Ω	·	cm,	which	generally	 is	considered	the	approximate	upper	 limit	 for	a	material	 to	be	defined	as	a
semiconductor	(see	Section	3.1).

2.	 As	seen	in	Example	3.1,	the	resistivity	of	intrinsic	Ge	was	43.1	Ω	·	cm.
Since	 Ge	 has	 a	 smaller	 band	 gap	 compared	 to	 the	 GaAs	 band	 gap,	 it	 has	 a	 much	 higher

concentration	of	electrons	in	the	conduction	band.	Conversely,	the	mobilities	of	the	carriers	in	Ge	are
smaller	 than	 those	 for	 GaAs	 (see	 Example	 3.1).	 However,	 the	 effect	 of	 increased	 carrier
concentrations	 dominates	 the	 effect	 of	mobilities.	 As	 a	 result,	 intrinsic	 Ge	 ends	 up	 having	 a	 higher
conductivity	than	GaAs.

3.14 EFFECT	OF	TEMPERATURE	ON	THE	MOBILITY	OF	CARRIERS

Temperature	has	a	major	influence	on	the	mobility	of	electrons	(μn)	and	holes	(μp).	When	the
temperature	is	too	low	for	dopant	ionization,	electrons	and	holes	remain	bound	to	the	dopant
atoms.	In	this	freeze-out	zone	at	low	temperatures,	the	conductivity	of	the	semiconductors	is
very	 low	 due	 to	 the	 lack	 of	 electrons	 in	 the	 conduction	 band	 at	 low	 temperatures.	 As	 the
temperature	increases,	dopant	ionization	occurs	in	the	extrinsic	semiconductors,	and	electrons
occupy	 the	 conduction	 band.	 In	 this	 regime,	 electrons	 traveling	 in	 the	 conduction	 band	 are
scattered	 through	 two	 different	 mechanisms.	 One	 is	 scattering	 by	 ionized	 dopants,	 which
mainly	 is	 related	 to	 the	electrostatic	attraction	or	 repulsion	between	 the	charge	carriers	and
the	ionized	dopants.	The	other	is	scattering	by	the	host	 lattice	atoms,	which	is	caused	by	the
thermal	 vibration	 of	 the	 host	 atoms.	When	 the	 temperature	 increases	 above	 the	 freeze-out
range	 but	 is	 not	 too	 high,	 the	 thermal	 energy	 of	 charge	 carriers	 is	 not	 large	 enough	 to
overcome	the	electrostatic	interactions	with	the	ionized	dopant.	Also,	the	extent	of	scattering
of	 carriers	 by	 the	vibrations	of	 atoms	 is	 small,	 since	 the	host	 atoms	do	not	 have	 sufficient
thermal	 energy.	 Therefore,	 the	 scattering	 of	 the	 carriers	 caused	 by	 the	 dopant	 atoms	 is



dominant	at	low	temperature	(T	<	200	K).	The	mobility	of	carriers	limited	by	the	scattering	of
the	dopant	or	impurity	atoms	is	known	as	impurity-	or	dopant-scattering	limited	mobility.	As
the	 dopant	 concentration	 increases,	 the	 impurity-scattering	 mechanism	 becomes	 more
pronounced	at	low	temperatures.	An	increase	in	the	temperature	increases	the	thermal	energy
of	 carriers	 and	helps	 the	 carriers	 to	 overcome	 the	 electrostatic	 interaction	with	 the	 ionized
dopants.	If	the	temperature	reaches	room	temperature	or	higher,	phonon	scattering	or	lattice
scattering	 (i.e.,	 the	 scattering	 of	 vibrations	 of	 atoms	 of	 the	 host	 lattice	 atoms)	 begins	 to
dominate,	 and	 the	mobility	decreases	again.	This	behavior	 at	high	 temperature	 is	known	as
lattice-scattering	 limited	 mobility.	 Both	 scattering	 mechanisms	 work	 in	 extrinsic
semiconductors,	 and	 highly	 doped	 semiconductors	 exhibit	 the	 highest	 mobility	 near	 room
temperature	where	the	transition	from	the	impurity-scattering	dominant	regime	to	the	lattice-
scattering	regime	occurs.

However,	in	intrinsic	semiconductors,	only	lattice	scattering	is	available	and	its	mobility	is
the	 highest	 at	 low	 temperature.	An	 increase	 in	 the	 temperature	 keeps	 reducing	 the	 intrinsic
semiconductor ’s	 mobility.	 The	 trends	 in	 changes	 in	 the	 mobility	 of	 carriers	 are	 shown	 in
Figure	3.25.

FIGURE	 3.25 Electron	 mobility	 in	 silicon	 versus	 temperature	 for	 various	 donor	 concentrations.	 The	 inset	 shows	 the
theoretical	 temperature	 dependence	 of	 electron	mobility	 in	 heavily	 doped	 semiconductors.	 (From	Sze,	 S.M.:	Semiconductor
Devices,	Physics,	and	Technology.	1985.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)



3.15 EFFECT	OF	DOPANT	CONCENTRATION	ON	MOBILITY

As	discussed	 in	Section	3.14,	 although	 the	 dopant	 atoms	 provide	 carriers	 that	 contribute	 to
conductivity,	 they	 can	 also	 act	 as	 scattering	 centers.	 This	 effect	 is	 important	 at	 both	 low
temperatures	and	at	high	dopant	concentrations,	where	the	electrostatic	interaction	of	charge
carriers	with	 the	 ionized	 dopants	 is	 significant.	 The	 variations	 in	 the	 electron	 and	 the	 hole
drift	mobility	for	silicon	at	different	temperatures	and	at	different	dopant	concentrations	are
shown	in	Figures	3.26	and	3.27.	As	the	dopant	concentration	increases,	the	mobility	decreases
and	 the	 dependence	 of	 the	mobility	 on	 temperature	 also	 decreases.	 Similar	mobility	 versus
dopant	 concentration	 trends	 are	 found	 in	 the	 direct	 band	 gap	 semiconductor	GaAs	 (Figure
3.28).	 Note	 that	 the	 mobility	 and	 the	 diffusivity	 of	 charge	 carriers	 are	 linearly	 related	 in
Figure	 3.28.	 This	 relation	 is	 known	 as	 the	 Einstein	 relation,	 and	 its	 importance	 will	 be
addressed	in	Chapter	9	(Equation	9.36).

FIGURE	 3.26 The	 variation	 in	 electron	 mobility	 for	 silicon	 at	 different	 temperatures	 and	 different	 donor	 dopant
concentrations.	(From	Li,	S.S.	and	Thurber	W.R.,	Solid	State	Electron.,	20,	609–616,	1977.	With	permission.)



FIGURE	3.27 The	variation	in	hole	mobility	for	silicon	at	different	temperatures	and	acceptor	dopant	concentrations.	(From
Dorkel,	J.M.	and	Leturcq	P.,	Solid	State	Electron.,	24(9),	821–825,	1981.	With	permission.)

FIGURE	3.28 Mobilities	and	diffusivities	 in	 silicon	and	gallium	arsenide	at	300	K	as	a	 function	of	 impurity	concentration.
(From	 Sze,	 S.	 M.:	 Semiconductor	 Devices,	 Physics,	 and	 Technology.	 1985.	 Copyright	Wiley-VCH	 Verlag	 GmbH	 &	 Co.
KGaA.	Reproduced	with	permission.)



Example	 3.9	 shows	 how	 to	 account	 for	 these	 changes	 in	 mobility	 with	 the	 dopant
concentration	while	calculating	the	conductivity	of	extrinsic	semiconductors.

Example	3.9: Resistivity	of	N-Type	Doped	Gallium	Arsenide

Calculate	the	resistivity	of	donor-doped	GaAs	with	Nd	=	10
13	atoms/cm3.	Assume	that	T	=	300	K	and	that	all	the

donors	are	ionized.

Solution
For	GaAs	at	300	K,	ni	=	2.0	×	10

6	electrons/cm3	(Figure	3.7).

In	 this	 case,	Nd	 >>	 ni;	 the	 total	 concentration	 of	 conduction	 electrons	 (n)	 ≈	Nd	 =	 10
13	 electrons/cm3.	 From

Equation	3.38:

σ	=	q	×	n	×	μn	+	q	×	p	×	μp

We	ignore	the	contributions	of	the	holes	because	the	electrons	are	the	majority	charge	carriers.	From	Figure	3.28,
for	GaAs	with	Nd	=	10

13	atoms/cm3,	and	μn	=	8000	cm
2/V	·	s,

σ	=	(1.6	×	10−19	C)(1013)(8000)

∴	σ	=	1.28	×10−3	Ω−1	·	cm−1

The	 resistivity	 (ρ)	 is	 781	 Ω	 ·	 cm.	 This	 value	 is	 much	 lower	 than	 3.51	 ×	 108	 Ω	 ·	 cm,	 which	 is	 the	 value	 of
resistivity	for	intrinsic	GaAs	(Example	3.8).

3.16 TEMPERATURE	 AND	 DOPANT	 CONCENTRATION	 DEPENDENCE	 OF
CONDUCTIVITY

As	 shown	 here,	 the	 combination	 of	 dopant	 ionization,	 changes	 in	 mobility,	 and	 thermal
generation	 of	 carriers	 using	 temperature	 (Figures	 3.21	 and	 3.28)	 leads	 to	 changes	 in	 the
conductivity	 of	 a	 semiconductor	 as	 a	 function	 of	 the	 temperature	 and	 the	 dopant
concentration.	 Note	 that	 the	 conductivity	 of	 the	 intrinsic	 semiconductors	 increases	 with
increasing	temperature	in	spite	of	a	decrease	in	the	mobility.	This	is	attributed	to	an	increase
in	 the	electron	concentration	 in	 the	conduction	band	at	a	higher	 temperature.	The	change	 in
the	resistivity	of	silicon	as	a	function	of	the	dopant	concentration	is	shown	in	Figure	3.29.	As
the	dopant	concentration	increases,	the	resistivity	continuously	decreases.	In	Si	with	moderate
doping	 concentration,	 n-type	 Si	 exhibits	 lower	 resistivity	 than	 p-type	 Si	 due	 to	 the	 lower
electron	mobility	(Figure	3.28).

3.17 EFFECT	OF	PARTIAL	DOPANT	IONIZATION

For	 extrinsic	 semiconductors	 near	 room	 temperature,	 we	 usually	 assume	 complete	 dopant
ionization.	 However,	 this	 may	 not	 always	 be	 the	 case.	 Dopant	 ionization	 is	 temperature-
dependent	 (Figures	3.21	and	3.22),	and	 its	extent	depends	on	 the	 relative	difference	between
the	 defect	 level	 and	 the	 nearest	 band	 edge.	 The	 fraction	 of	 electrons	 still	 tied	 to	 the	 donor
atoms	in	an	n-type	semiconductor	is	given	by



where	nd	is	the	concentration	of	electrons	still	bound	to	donor	atoms,	n	is	the	concentration	of
free	electrons	in	the	conduction	band,	(Ec	−	Ed)	is	the	difference	between	the	conduction	band
edge	and	the	donor	energy	level,	Nd	is	the	donor	dopant	concentration,	and	Nc	is	the	effective
density	of	states	at	the	conduction	band.	Nc	is	a	parameter	indicating	the	maximum	number	of
electrons	 that	can	be	accommodated	at	 the	energy	 level	E	=	Ec.	Although	Nc	determines	 the
upper	 limit	 of	 electron	 concentration	 at	Ec,	 the	 actual	 number	 of	 electrons	 available	 in	 the
conduction	 band	 depends	 on	 the	 distance	 between	 the	 donor	 level	 and	 the	 conduction	 band
edge	(i.e.,	donor	energy	level).

FIGURE	3.29 The	change	in	resistivity	of	silicon	with	dopant	concentration.	(From	Grove,	A.	S.:	Physics	and	Technology	of
Semiconductor	Devices.	1967.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)

If	 the	 temperature	 is	 constant	 and	 the	donor	energy	 level	 increases,	 then	more	energy	 is
required	to	release	free	electrons	from	dopants	and	the	fraction	of	the	electrons	that	remain
bound	 to	 the	 donor	 atoms	 also	 increases.	 Similarly,	 as	 the	 temperature	 decreases,	 the
exponential	 term	 in	 the	 denominator	 of	 Equation	 3.45	 decreases.	 This	 indicates	 that	 an
increase	in	the	donor	energy	level	increases	the	fraction	of	electrons	that	remain	bound	to	the
donor	atoms.

From	a	quantum	mechanics	base	consideration,	the	maximum	density	of	electrons	that	can
stay	together	at	the	band	edge	(Nc)	is	given	by:



Note	 that	Nc	 is	 related	 to	 effective	mass	 and	 temperature.	 As	 temperature	 increases,	 the
maximum	 concentration	 of	 electrons	 that	 can	 stay	 at	 Ec	 (namely	 Nc)	 increases.	 Also,	 an
increase	 in	 the	 effective	mass	 of	 the	 carrier	 raises	Nc.	 Further	 details	 about	 the	 density	 of
states	can	be	found	in	Section	4.3.

In	calculating	 the	effective	density	of	states,	we	must	be	careful	 in	selecting	 the	effective
mass	 for	 direct	 and	 indirect	 band	 gap	 materials.	 To	 calculate	 the	 density	 of	 states	 in	 the
conduction	band	of	direct	band	gap	materials	such	as	GaAs,	we	use	the	effective	mass	of	the
electron	as	m*	in	Equation	3.46;	that	is,	we	substitute	the	value	of	 	for	m*.

In	contrast,	 to	calculate	 the	density	of	 states	 in	 the	conduction	band	of	 indirect	 band	gap
semiconductors	such	as	silicon,	we	use	the	density	of	states	effective	mass	 	of	electrons,
defined	as

In	Equation	3.47,	 	and	 	are	known	as	longitudinal	and	transverse	effective	masses	of
electrons,	respectively	(Table	3.2).	The	values	 	and	 	for	the	electrons	in	silicon	are	0.98
and	0.19,	respectively.	This	leads	us	from	Equation	3.47	to	 	.

A	detailed	discussion	of	these	parameters	is	beyond	the	scope	of	this	book.	We	will	use	the
density	of	states	effective	masses	of	electrons	and	holes	to	calculate	the	density	of	states	and
the	electron	concentration	 in	 the	 conduction	band	 (or	 the	holes	 in	 the	valence	band),	which
will	be	discussed	in	Chapter	4.	In	addition,	note	that	the	conductivity	effective	mass	is	used	in
calculating	the	response	of	the	carriers	to	the	electric	field	and	the	donor	energies	(Example
3.7).

For	p-type	semiconductors,	there	is	a	relationship	similar	to	Equation	3.44.	The	fraction	of
holes	that	remain	bound	to	the	acceptor	atoms	depends	on	the	temperature	and	on	the	distance
between	the	acceptor	level	(Ea)	and	the	valence	band	edge	(Ev).

where	 pa	 is	 the	 concentration	 of	 the	 holes	 still	 bound	 to	 the	 acceptor	 atoms,	 p	 is	 the
concentration	 of	 the	 holes	 in	 the	 conduction	 band,	 (Ea	 −	Ev)	 is	 the	 difference	 between	 the
acceptor	energy	level	and	the	valence	band	edge,	and	Na	is	the	concentration	of	the	acceptor
dopant.	In	Equation	3.48,	Nv	is	the	effective	density	of	states	at	the	valence	band	edge.

This	value	is	given	by	the	following	equation	if	the	semiconductor	has	a	heavy-hole	band
and	a	light-hole	band	(e.g.,	for	GaAs):



TABLE	3.4

Effective	Density	of	States	for	Silicon,	Germanium,	and	GaAs	(T	=	300	K)

Semiconductor
Conduction	Band	Effective	Density
(cm−3)	of	States	(Nc)

Valence	Band	Effective	Density	(cm
−3)	of	States	(Nv)

Si 2.78	×	1019 9.84	×	1018

Ge 1.04	×	1019 6.0	×	1018

GaAs 4.45	×	1017 7.72	×	1018

In	Equation	3.49,	mhh	and	mlh	are	the	effective	masses	of	heavy	and	light	holes,	respectively
(Table	3.2).	The	density	of	states	effective	mass	of	the	holes	in	the	valence	band	is	given	by

For	holes	in	silicon,	 	and	 ,	and	this	leads	to	 .	For	holes	in
GaAs,	 	and	 ,	and	this	leads	to	 .

The	 values	 of	 the	 density	 of	 states	 (at	 300	 K)	 for	 Ge,	 Si,	 and	 GaAs,	 calculated	 using
Equations	3.48	and	3.1	and	related	equations,	are	shown	in	Table	3.4.

We	usually	assume	that	at	or	near	300	K,	the	dopants	are	completely	ionized,	and	thus	the
fractions	on	the	left-hand	sides	of	Equations	3.45	and	3.48	are	very	small.

Example	3.10	shows	how	to	account	for	partial	dopant	ionization.

Example	3.10: Partial	Dopant	Ionization	and	Conductivity

A	GaAs	crystal	is	doped	with	Si,	which	acts	as	a	donor	dopant	with	Nd	=	10
15	atoms/cm3.

1.	 Calculate	the	fraction	of	electrons	that	is	bound	to	the	donor	atoms	in	GaAs.
2.	 What	is	the	resistivity	of	this	material?	Assume	that	the	donor	energy	(Ed)	is	5.8

meV	away	from	the	conduction	band	edge	(Ec;	Example	3.5	and	Table	3.3).
Solution
1.	 We	use	Equation	3.45	to	obtain	the	fraction	of	electrons	that	is	still	bound	to	the

Si	dopant,	assumed	to	be	a	donor	for	GaAs.	From	Table	3.3,	we	know	that	 the
value	of	(Ec	−	EF)	is	5.8	meV.	Note	that,	at	300	K,	the	value	of	kBT	is	0.026	eV.

From	Table	3.4,	we	know	that	the	density	of	states	at	the	conduction	band	edge	(Nc)	for	GaAs	at

300	K	is	4.45	×	1017	cm−3.

Thus,	~5%	to	6%	of	the	electrons	remain	bound	to	the	Si	atoms	in	this	n-type	GaAs	sample	at
T	=	300	K.

2.	 The	actual	number	of	the	conduction	electrons	available	is	0.00586	×	1015	and
the	conductivity	is



3.18 EFFECT	OF	TEMPERATURE	ON	THE	BAND	GAP

So	 far,	 we	 have	 assumed	 that	 the	 band	 gap	 (Eg)	 of	 semiconductors	 does	 not	 change	 with
temperature.	 However,	 the	 band	 gap	 of	 the	 semiconductor	 does	 change	 slightly	 with
temperature	 because	 thermal	 expansion	 and	 contraction	 lead	 to	 a	 change	 in	 the	 interatomic
distance.	As	we	 can	 see	 in	 Figure	 3.30,	 as	 the	 interatomic	 spacing	 increases	 as	 a	 result	 of
thermal	expansion,	the	band	gap	of	silicon	will	decrease	slightly.	This	trend	is	seen	in	other
semiconductors	 as	 well.	 Intuitively,	 we	 can	 think	 that	 the	 thermal	 energy	 decreases	 the
electrostatic	interaction	between	electrons	and	nucleus,	and	reduces	an	energy	gap	between	the
free	 states	 and	 bound	 states	 that	 are	 discussed	 in	 Sections	 2.14,	 2.15	 and	 2.16.	 A	 physical
meaning	of	the	band	gap	is	how	tightly	electrons	are	bound	to	the	nucleus.

The	changes	in	the	band	gap	of	semiconductors	are	given	by	the	Varshni	formula:

In	 general,	 the	 band	 gap	 of	 the	 semiconductors	 decreases	 slightly	 with	 increasing
temperature,	 due	 to	 the	 thermal	 expansion.	 The	 Varshni	 parameters	 α	 and	 β	 for	 different
semiconductors	and	their	band	gaps	at	0	K	are	listed	in	Table	3.5	(Schubert	2006).	Similarly,
the	band	gap	of	a	semiconductor	will	depend	upon	the	type	and	magnitude	of	the	stress	that	is
applied	or	present.	In	general,	a	tensile	stress	will	lead	to	an	increase	in	interatomic	spacing,
causing	a	decrease	in	the	band	gap.

Examples	3.11	and	3.12	show	how	to	account	for	temperature	variation	in	the	band	gap.



FIGURE	3.30 Energy	levels	in	intrinsic	silicon	as	a	function	of	interatomic	spacing.	(From	Streetman,	B.G.	and	Banerjee	S.,
Solid	State	Electronic	Devices,	5th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	2000.	With	permission.)

TABLE	3.5

Varshni	Parameters	for	Semiconductors

Example	3.11: Variation	of	the	Band	gap	with	Temperature

Calculate	the	band	gap	of	(1)	Si	and	(2)	GaAs	at	300	K	using	the	Varshni	parameters	shown	in	Table	3.5.

Solution

1.	 For	Si,	Eg	at	0	K	is	1.170	eV,	α	=	4.73	×	10−4	eV/K,	and	β	=	636	K.	Therefore:



2.	 For	GaAs,	 the	Eg	 at	 0	K	 is	 1.519	 eV,	 α	 =	 5.41	 ×	 10−4	 eV/K,	 and	 β	 =	 204	 K.
Therefore:

Thus,	the	band	gaps	of	Si	and	GaAs	at	300	K	are	1.124	and	1.422	eV,	respectively.

Example	3.12: Variation	in	the	Wavelength	of	a	Gallium	Nitride	LED

What	is	the	wavelength	of	light	emitted	from	a	GaN	LED	operating	at	300	K?	Assume	that	the	band	gap	of	GaN
changes	according	to	the	Varshni	parameters	shown	in	Table	3.5.	How	does	this	compare	with	the	value	calculated
in	Example	3.3?

Solution
Using	the	Varshni	parameters	for	GaN	(Table	3.5),	we	can	show	that	the	band	gap	of	GaN	at	300	K	is	3.4	eV.	For
this	band	gap,	the	wavelength	based	on	a	GaN	LED	will	be

Note	that,	in	most	cases,	we	use	the	room-temperature	values	of	the	band	gaps	and	not	 those	at	0	K.	When	the
room-temperature	band	gap	values	are	used,	we	often	ignore	the	band	gap’s	dependence	on	temperature.	Compared
to	λ	=	357	nm	for	0	K	(Example	3.3),	the	wavelength	of	365	nm	is	a	little	higher	because	of	the	decreased	band
gap.

3.19 EFFECT	OF	DOPANT	CONCENTRATION	ON	THE	BAND	GAP

When	 semiconductors	 are	 heavily	 doped—that	 is,	 they	 have	 dopant	 concentrations	 greater
than	1018	atoms/cm3—the	average	distance	between	 the	dopant	atoms	becomes	smaller.	The
electron	wave	functions	of	the	dopant	atoms	begin	to	overlap,	which	is	similar	to	Figure	2.25.
Instead	of	getting	a	single	energy	level	associated	with	the	dopant	atoms,	we	get	an	additional
band	 of	 energy	 levels	 associated	with	 the	 dopant	 levels.	 Since	 the	 atomic	 distance	 between
dopants	is	longer	than	the	distance	between	the	host	lattice	atoms,	the	band	associated	with	the
dopants	generally	is	narrower	than	the	valence	band	or	the	conduction	band.	If	 these	dopant
energy	 levels	 are	 shallow,	 that	 is,	 close	 to	 the	 band	 edges	 (Ec	 and	Ev),	 the	 dopant	 band	 is
overlapped	with	 the	main	 bands	 and	 the	 conduction	 band	 edge	 (i.e.,	 the	 energy	 level	 at	 the



bottom	 of	 the	 overlapped	 band)	 decreases.	 Therefore,	 the	 overall	 energy	 gap	 between	 the
conduction	band	and	the	valence	band	becomes	smaller.

This	reduction	in	the	energy	gap	(i.e.,	band	gap)	as	a	function	of	the	dopant	concentration
is	given	by	the	following	equation:

where	N	is	the	dopant	concentration,	q	is	the	electronic	charge,	εr	is	the	dielectric	constant,	T
is	the	temperature	in	K,	and	kB	is	the	Boltzmann’s	constant.

For	silicon,	the	dielectric	constant	(εr)	is	11.8,	and	Equation	3.52	is	reduced	to

This	 change	 in	 the	 band	gap	 for	 different	 semiconductors	 is	 shown	 in	Figure	 3.31	 (Van
Zeghbroeck	2004).

FIGURE	3.31 The	relative	change	in	the	band	gap	of	silicon	as	a	function	of	dopant	concentrations.	(From	Van	Zeghbroeck,
B.	2004.	Principles	of	Semiconductor	Devices.	Available	at	http://ece-www.colorado.edu/~bart/book/.	With	permission.)

In	some	semiconductor	devices,	materials	or	parts	of	a	material	are	doped	so	heavily	that
the	 Fermi	 energy	 level	 is	 very	 close	 to	 or	 beyond	 the	 band	 edge	 (conduction	 or	 valence).
These	 semiconductors	 with	 such	 a	 high	 dopant	 concentration	 are	 known	 as	 degenerate
semiconductors.	The	electric	properties	of	degenerate	semiconductors	are	closer	to	those	of
metals,	although	the	optical	properties	of	the	degenerate	semiconductors	are	closer	to	those
of	 the	 traditional	 semiconductors.	 Further	 discussion	 on	 Eg	 and	 EF	 of	 the	 heavily	 doped
semiconductors	can	be	found	in	Section	4.9.	An	example	of	the	degenerate	semiconductors	is
tin-doped	indium	oxide	(known	as	ITO).	The	origin	of	the	conductivity	in	ITO	is	similar	to
one	 in	silicon,	which	will	be	described	 in	Section	3.21.	The	electric	 resistivity	of	 ITO	 is	as
low	as	2	×	10−4	Ω	·	cm,	which	is	slightly	higher	than	that	of	metals	(~10–6	Ω	·	cm).	However,
the	 ITO	 is	 still	 transparent	 for	 visible	 light,	 which	 is	 similar	 to	 wide	 band	 gap	 oxide
semiconductors.	Hence,	ITO	is	widely	used	as	a	transparent	conductor	in	optoelectric	devices

http://ece-www.colorado.edu/~bart/book/


such	 as	 displays,	 light-emitting	 diodes,	 and	 emerging	 solar	 cells.	 Calculation	 of	 the	 Fermi
energy	level	in	the	degenerated	semiconductors	is	found	in	Section	4.9.

3.20 EFFECT	OF	CRYSTALLITE	SIZE	ON	THE	BAND	GAP

So	far,	we	have	assumed	that	the	materials	we	have	considered	are	in	a	bulk	form.	This	means
that	the	size	of	the	semiconductor	crystals	or	the	thickness	of	any	thin	films	used	in	devices	is
significantly	 larger	 than	 the	 size	 of	 the	 atoms.	 In	 recent	 years,	 there	 has	 been	 considerable
interest	in	the	nanoparticles	of	semiconductors,	known	as	quantum	dots.	These	semiconductor
nanocrystals,	between	~2	and	10	nm,	have	many	interesting	optical	and	electrical	properties.
For	example,	when	 the	size	of	a	 semiconductor	crystal	 is	 reduced	 to	a	 few	nanometers,	 the
band	gap	(Eg)	becomes	larger	compared	to	the	band	gap	of	a	bulk	material.	This	is	due	to	the
fact	that,	as	the	number	of	atoms	participating	in	the	overlap	of	the	wave	functions	decreases,
so	do	the	widths	of	the	conduction	and	valence	bands	in	the	quantum	dots.	Thus,	in	direct	band
gap	material,	the	wavelength	of	light	absorbed	or	emitted	is	shorter.	This	is	known	as	a	blue
shift.	 In	 the	 case	 of	 cadmium	 selenide	 (CdSe),	 a	 direct	 band	 gap	 semiconductor,	 larger
crystals	have	a	 lesser	band	gap	energy	and	appear	 red.	As	 the	crystallite	size	decreases,	 the
band	 gap	 increases	 due	 to	 the	 so-called	 quantum	 confinement	 effect,	 and	 the	 color	 of	 the
nanocrystals	changes	to	yellow	(Reed	1993).

3.21 SEMICONDUCTIVITY	IN	CERAMIC	MATERIALS

In	Chapter	2,	we	saw	 that	most	ceramic	materials	are	considered	 to	be	electrical	 insulators.
However,	many	ceramic	materials	exhibit	semiconducting	behavior.	If	the	semiconductivity	is
due	to	the	movement	of	ions,	the	materials	are	known	as	ionic	conductors.	We	can	also	dope
ceramics	with	a	donor	or	an	acceptor,	similar	to	the	way	in	which	Si	and	GaAs	are	doped.	If
the	 predominant	 charge	 carriers	 are	 electrons	 or	 holes,	 these	 ceramics	 are	 known	 as
electronic	conductors.

FIGURE	3.32 Donor	doping	of	barium	titanate	(BaTiO3)	using	Nb
5+	 (in	 the	 form	of	Nb2O5)	 ions	 that	occupy	Ti

4+	 sites
results	in	an	n-type	semiconductor.



FIGURE	3.33 Illustration	of	acceptor-doped	BaTiO3,	created	by	adding	MnO.	Each	Mn2+	ion	going	on	the	titanium	(Ti4+)
site	creates	two	holes.

Semiconducting	 compositions	 of	 ceramic	 barium	 titanate	 (BaTiO3)	 are	 used	 in	 sensors.
The	 insulating	 or	 nonsemiconducting	 formulations	 of	 BaTiO3	 are	 used	 for	manufacturing
capacitors.	 For	 BaTiO3,	 Nb5+	 ions	 (in	 the	 form	 of	 niobium	 oxide	 [Nb2O5])	 are	 used	 as	 a
donor	dopant.	In	this	case,	Nb5+	ions	occupy	titanium	ion	(Ti4+)	sites.	Since	each	niobium	ion
brings	in	five	valence	electrons	(compared	with	four	from	titanium),	niobium	functions	as	a
donor	dopant	for	BaTiO3	(Figure	3.32).	This	makes	BaTiO3,	which	 is	otherwise	considered
an	insulator	(Eg	~3.05	eV),	behave	as	an	n-type	semiconductor.	As	seen	in	Chapter	1,	we	need
to	balance	the	site,	mass,	and	electrical	charge	while	considering	the	doping	of	compounds.
This	 balance	 can	be	 expressed	using	 the	Kröger–Vink	notation	 (Section	1.14).	 If	Y3+	 ion	 is
doped	into	the	site	of	Ba2+,	the	electron	concentration	in	the	conduction	band	of	BaTiO3	also
increases	and	the	ceramics	exhibit	the	electric	properties	of	the	semiconductors.

We	can	create	acceptor-doped	or	p-type	BaTiO3	formulations	by	adding	manganese	oxide
(MnO).	When	we	add	Mn2+	 ions	 in	 the	 form	of	MnO,	 they	occupy	 the	 titanium	 (Ti4+)	 sites
(Figure	3.33).	Each	Mn2+	 ion	has	a	charge	of	+2	and	occupies	a	Ti4+	 site.	This	creates	 two
holes.	If	Al2O3	is	doped	into	BaTiO3,	Al	occupies	a	Ti4+	site	and	the	ceramics	also	show	p-
type	semiconductivity.

Similarly,	in	solid	oxide	fuel	cells,	 strontium	(Sr)-doped	 lanthanum	manganite	 (LaMnO3)
is	 used	 as	 a	 cathode	 material.	 In	 this	 material,	 the	 divalent	 Sr2+	 ions	 occupy	 trivalent
lanthanum	ion	(La3+)	sites.	This	creates	a	p-type	semiconductor	ceramic	composition.

In	 many	 solid	 oxide	 fuel	 cells,	 yttria	 (Y2O3)-doped	 or	 yttria-stabilized	 zirconia	 (ZrO2;
YSZ)	is	used	as	an	ionic	conductor.	As	we	studied	in	Example	1.8,	 the	 ionic	conductivity	of
YSZ	 is	 due	 to	 the	 addition	 of	 Y2O3	 to	 ZrO2,	 which	 creates	 oxygen	 ion	 vacancies.	 To
compensate	for	 the	charge	imbalance	of	Y3+	 taking	the	site	of	Zr2+,	one	oxygen	vacancy	 is
formed	 per	 two	 	 defects.	 This	 oxygen	 vacancy	 facilitates	 the	 diffusion	 of	 oxygen	 ions,
thereby	 creating	 an	 ionic	 conductor.	 The	 fuel	 cells	make	 use	 of	 air	 and	 fuel	 gases	 such	 as
natural	 gas.	 They	 operate	 at	 relatively	 high	 temperatures	 (~1000°C)	 and	 generate	 electric
power.

PROBLEMS



3.1 Si	has	a	density	of	2.33	g/cm3.	The	atomic	mass	of	Si	is	28	and	the	valence	is	4—that	is,
each	atom	has	four	valence	electrons.	Calculate	the	density	of	valence	electrons	in	the
valence	band	assuming	all	electrons	are	in	the	valence	band.

3.2 The	density	of	GaAs	is	5.31	g/cm3.	The	atomic	masses	of	Ga	and	As	are	69.7	and	74.92,
respectively.	 Show	 that	 the	 density	 of	 atoms—that	 is,	 the	 total	 number	 of	Ga	 and	As
atoms	per	cubic	centimeter	in	GaAs—is	4.42	×	1022.

3.3 At	300	K,	if	the	concentration	of	electrons	excited	to	the	conduction	band	is	1.5	×	1010
cm−3,	what	fraction	of	the	total	concentration	of	electrons	is	excited	to	the	conduction
band?

3.4 What	is	the	resistivity	of	an	intrinsic	Si	sample	at	300	K?	Assume	that	T	=	300	K	and	the
concentration	of	electrons	in	the	conduction	band	is	ni	=	1.5	×	1010	cm−3.

3.5 What	is	the	concentration	of	electrons	excited	to	the	conduction	band	for	Si	at	400	K?
(See	Figure	3.7.)

3.6 What	 is	 the	 conductivity	 of	 intrinsic	 Si	 at	 400	 K?	 Assume	 that	 the	 mobility	 is
proportional	to	T−3/2	in	this	region,	and	use	the	carrier	concentrations	from	Figure	3.7.

3.7 Silicon	 carbide	 (SiC)	 is	 used	 in	 high-temperature,	 high-power,	 and	 high-frequency
device	 applications.	 It	 exhibits	 various	 polytypes;	 4H	 and	 6H	 are	 some	 of	 the	 most
widely	used.	What	is	the	intrinsic	carrier	concentration	for	the	6H	form	of	SiC	at	666
K,	if	the	carrier	concentration	changes	with	temperature	as	shown	in	Figure	3.34?

FIGURE	3.34 Changes	 in	 the	 intrinsic	 carrier	 concentration	 for	SiC.	 (From	Goldberg	 et	 al.,	 eds.:	Properties	 of	 Advanced
Semiconductor	 Materials	 GaN,	 AlN,	 SiC,	 BN,	 SiC,	 SiGe.	 2001.	 Copyright	 Wiley-VCH	 Verlag	 GmbH	 &	 Co.	 KGaA.
Reproduced	with	permission.)

3.8 The	concentration	of	atoms	in	Si	is	~5	×	1022	atoms/cm3.	 If	a	Si	crystal	contains	one
part	 per	 billion	 (ppb)	 of	Sb,	what	 is	 the	 concentration	of	Sb	 expressed	 as	 atoms	per
cubic	centimeter?

3.9 What	is	the	resistivity	of	this	Si	containing	1	ppb	of	antimony?	Assume	T	=	300	K	and
the	same	mobility	values	as	for	intrinsic	Si.

3.10 Consider	a	Si	crystal	that	has	1	ppb	of	Al	as	a	dopant.	What	is	the	concentration	of	this
dopant	expressed	as	atoms	per	cubic	centimeter?



3.11 A	Si	sample	is	doped	with	10−4	atom	%	of	P.	Using	the	atomic	mass	of	Si	(28)	and	its
density	(2.33	g/cm3),	show	that	the	donor	dopant	concentration	is	5	×	1022	atoms/cm3.
From	this,	show	that	the	conductivity	of	this	n-type	Si	is	~1200	Ω−1	·	cm−1.

3.12 What	 is	 the	resistivity	of	a	Si	sample	doped	with	1	ppb	of	Al?	Why	is	 this	 resistivity
higher	than	that	for	a	sample	doped	with	1	ppb	of	Sb?	Use	your	answer	to	justify	the
trends	in	the	data	shown	in	Figure	3.29.

3.13 Two	 crystals	 of	 SiC	 of	 the	 so-called	 4H	 type	 were	 grown.	 One	 was	 grown	 in	 a	 N
atmosphere	 and	 the	 other	 in	 an	 argon	 (Ar)	 atmosphere.	 Resistivity	 measurements
showed	that	one	of	the	crystals	had	a	very	low	resistivity	(0.007	Ω	·	cm;	Siergiej	et	al.
1999).	Which	crystal	do	you	think	this	is—the	one	grown	in	a	N	atmosphere	or	in	a	Ar
atmosphere?	Explain.

3.14 The	mobility	of	electrons	 in	n-doped	4H-type	SiC	 is	~1000	cm2/V	 ·	 s	 (Siergiej	et	 al.
1999).	What	is	the	anticipated	N-doping	level	in	an	n-type	doped	SiC	crystal	that	has	a
resistivity	of	0.007	Ω	·	cm?

3.15 What	do	the	terms	“radiative	recombination”	and	“nonradiative	recombination”	mean?
Explain	using	a	sketch.

3.16 Can	radiative	recombination	occur	in	indirect	band	gap	materials?	Explain.
3.17 Can	nonradiative	recombination	occur	in	direct	band	gap	materials?	Explain.
3.18 An	LED	 is	made	 using	 a	 compound	 that	 is	 a	 solid	 solution	 between	 InAs	 and	GaAs.

This	compound	can	be	described	as	InxGa1−xAs,	where	x	is	the	mole	fraction	of	In.	If
the	wavelength	of	 the	LED	made	using	 this	 compound	 is	 1300	nm,	what	 is	 the	band
gap?	Assume	T	=	300	K.

3.19 Amber	and	orange	LEDs	are	made	using	AlGaInP	compositions.	If	the	wavelength	of
the	orange	LEDs	is	0.6	Lmi,	what	is	the	band	gap	of	this	composition?	Assume	T	=	300
K.

3.20 An	LED	is	made	using	an	AlGaAs	composition	with	a	band	gap	of	1.8	eV.	What	is	the
color	of	this	LED?	What	is	the	wavelength	in	nm?	Assume	T	=	300	K.

3.21 The	 dielectric	 constant	 of	 Ge	 is	 16	 (Table	 3.2).	 The	 conductivity	 effective	 mass	 of
electrons	 in	Ge	 is	0.12	m0.	Calculate	 the	difference	between	donor	 ionization	energy
(Ed)	and	conduction	band	edge	(Ec)	for	Ge	doped	with	P	(see	Equation	3.35).

3.22 Calculate	the	donor	energy	level	position	for	indium	arsenide	(InAs),	a	direct	band	gap
material.	The	dielectric	constant	is	15.	The	effective	mass	of	electrons	is	0.027	m0.

3.23 What	is	isoelectronic	doping?	Explain	how	this	can	be	useful	for	some	applications.
3.24 At	high	dopant	concentrations	(N	>	1018	atoms/cm3),	the	band	gap	of	a	semiconductor

becomes	 smaller.	 Derive	 a	 simplified	 equation	 (similar	 to	 Equation	 3.53)	 for	 the
change	in	band	gap	energy	(in	meV)	for	Ge.	Plot	the	data	similar	to	that	in	Figure	3.31.
Notice	that,	for	a	given	dopant	level,	 the	change	in	the	band	gap	is	the	maximum	for
the	semiconductor	that	has	the	highest	dielectric	constant.

3.25 Derive	an	expression	similar	to	Equation	3.53	for	the	change	in	band	gap	as	a	function
of	dopant	concentration	for	GaAs.

3.26 Calculate	 the	band	gap	of	Si,	Ge,	and	GaAs	at	200,	400,	and	500	K	using	the	Varshni
parameters	shown	in	Table	3.5.



GLOSSARY

Acceptor:	An	atom	or	ion	that	provides	the	source	of	holes	in	an	extrinsic	semiconductor
(e.g.,	boron	in	silicon).

Acceptor-doped	 semiconductor	 (p-type):	 A	 semiconductor	 doped	with	 an	 element	 that
results	in	an	electron	deficit	(e.g.,	boron-doped	silicon).

Amphoteric	 dopants:	 Dopants	 that	 can	 act	 as	 a	 donor	 or	 an	 acceptor	 (e.g.,	 silicon	 in
GaAs).

Band	gap	energy	(Eg):	The	energy	difference	between	 the	conduction	and	valence	band
edges.

Band	structure:	The	relationship	between	the	energy	(E)	of	a	charge	carrier	and	the	wave
vector	(k).

Compensated	 semiconductor:	 A	 semiconductor	 that	 contains	 both	 donor	 and	 acceptor
types	 of	 dopants.	The	 semiconductor	 behaves	 as	 an	 n-type	 if	 the	 donor	 concentration
ultimately	outweighs	the	acceptor	concentration	and	Nd	−	Na	>>	ni;	if	Na	−	Nd	>>	ni,	then
the	material	behaves	as	a	p-type	semiconductor.

Compound	semiconductor:	A	semiconductor	based	on	a	compound	(e.g.,	GaAs).
Conduction	 band	 edge	 (Ec):	 The	 energy	 level	 corresponding	 to	 the	 bottom	 of	 the
conduction	band.

Conductivity	effective	mass	 :	The	mass	used	to	calculate	the	donor	position	level	in
indirect	band	gap	semiconductors.

Deep-level	defects:	Energy	level	defects	created	deep	in	the	band	gap,	usually	by	atoms	or
ions	that	do	not	easily	“fit”	in	the	crystal	structure	and	create	a	severe	distortion.

Degenerate	semiconductors:	Heavily	 doped	 semiconductors	with	 a	 Fermi	 energy	 level
very	close	to	the	band	edge.

Density	of	states	effective	mass	 :	Defined	for	electrons	as	

and	for	holes	as	 .	It	is	used	for	the	calculation	of	the	density	of
states	or	for	the	position	of	the	Fermi	energy	level.

Dielectric	constant	(εr):	A	measure	of	the	ability	of	a	material	to	store	a	charge.	It	is	the
ratio	of	the	permittivity	of	a	material	(ε)	to	the	permittivity	of	the	free	space	(ε0).

Direct	band	gap	semiconductor:	A	material	in	which	an	electron	can	be	transferred	from
the	conduction	band	into	the	valence	band	with	emission	of	light	and	without	a	change	in
its	momentum.

Donor:	 Atoms	 or	 ions	 that	 are	 the	 source	 of	 conduction	 electrons	 in	 an	 extrinsic
semiconductor	(e.g.,	phosphorus	in	silicon).

Donor-doped	semiconductor	(n-type):	A	semiconductor	in	which	the	dopant	atoms	bring
in	 “extra”	 electrons	 that	 become	 dissociated	 from	 the	 dopant	 atoms	 and	 provide
semiconductivity.

Dopant:	An	element	or	a	compound	added	to	a	semiconductor	to	enhance	and	control	its
electrical	or	other	properties.



Dopant	 ionization:	The	process	by	which	 the	electrons	 from	the	dopant	atoms	or	holes
from	the	acceptor	atoms	dissociate	themselves	from	their	parent	atoms.

Effective	density	of	states	(N):	A	parameter	that	represents	the	effective	allowed	number
of	energy	levels	at	a	given	band	edge	conduction	(Nc)	or	(Nv).

Effective	mass	of	an	electron	 	:	The	mass	 that	an	electron	would	appear	 to	have	as	a
result	 of	 the	 attractive	 and	 repulsive	 forces	 an	 electron	 experiences	 in	 a	 crystal.	 It	 is
different	from	the	mass	of	an	electron	in	a	vacuum	(m0).

Electron–hole	 pair	 (EHP):	 The	 process	 by	 which	 an	 electron	 in	 the	 valence	 band	 is
promoted	to	the	conduction	band,	creating	a	hole	in	the	valence	band.

Elemental	semiconductor:	An	element	that	shows	semiconducting	behavior	(e.g.,	silicon).
Extrinsic	 semiconductor:	 A	 donor-doped	 or	 acceptor-doped	 semiconductor.	 The
conductivity	of	an	extrinsic	semiconductor	is	controlled	by	the	addition	of	dopants.

Freeze-out	range:	The	low-temperature	range	in	which	the	electrons	and	the	holes	remain
bonded	to	the	dopant	atoms	and	are	not	available	for	conduction.

Hole:	A	missing	electron	in	a	bond	that	is	treated	as	an	imaginary	particle	with	a	positive
charge	q.

Impurities:	 Elements	 or	 compounds	 present	 in	 semiconductors	 either	 inadvertently	 or
because	of	processing	limitations.	Their	presence	is	usually	considered	undesirable.

Impurity-	 or	 dopant-scattering	 limited	 mobility:	 The	 value	 of	 mobility	 at	 low
temperatures	 (but	 above	 the	 carrier	 freeze-out)	 limited	 by	 the	 conduction	 electrons
scattering	off	of	the	dopant	or	impurity	atoms.

Indirect	band	gap	 semiconductor:	A	 semiconductor	 in	which	an	electron	 that	has	been
excited	into	the	conduction	band	transfers	into	the	conduction	band	with	a	change	in	its
momentum.

Intrinsic	 semiconductor:	 A	 material	 whose	 properties	 are	 controlled	 by	 thermally
generated	carriers.	It	does	not	contain	any	dopants.

Isoelectronic	dopants:	Dopants	that	have	the	same	valence	as	the	sites	they	occupy	(e.g.,
germanium	in	silicon	or	nitrogen	in	GaP–GaAs	materials).	This	does	not	create	n-type
or	p-type	behavior.

Kröger–Vink	notation:	Notation	used	for	expressing	point	defects	in	materials.
Lattice-scattering	limited	mobility:	The	limited	mobility	of	carriers	at	high	temperatures
caused	by	the	scattering	of	vibrations	of	atoms	known	as	phonons.

Majority	carriers:	Carriers	of	electricity	that	dominate	overall	conductivity;	for	example,
in	 an	 n-type	 semiconductor,	 electrons	 created	 by	 donor	 atoms	would	 be	 the	majority
carriers.

Minority	carriers:	Carriers	 of	 electricity	 that	 do	 not	 dominate	 the	 overall	 conductivity;
for	example,	in	an	n-type	semiconductor,	holes	are	the	minority	carriers,	and	in	an	ionic
conductor,	both	electrons	and	holes	are	the	minority	carriers.

Nonradiative	 recombination:	 A	 process	 by	 which	 electrons	 and	 holes	 recombine,
transferring	the	energy	to	vibrations	of	atoms	or	phonons.	The	energy	appears	as	heat,
and	the	process	occurs	in	both	direct	and	indirect	band	gap	materials.



n-type	semiconductor:	A	semiconductor	in	which	the	majority	carriers	are	electrons;	also
known	as	a	donor-doped	semiconductor.

Optoelectronic	 devices:	 Devices	 such	 as	 light-emitting	 diodes	 (LEDs)	 that	 usually	 are
based	on	direct	band	gap	materials	that	have	a	strong	interaction	with	light	waves.

p-type	semiconductor:	A	 semiconductor	 in	which	 the	majority	 carriers	 are	 holes;	 also
known	as	an	acceptor-doped	semiconductor.

Quantum	dots:	Nanocrystalline	semiconductors	whose	band	gap	 is	 larger	 than	 that	of	a
bulk	material.

Radiative	recombination:	The	process	by	which	an	electron	 that	has	been	excited	 to	 the
conduction	band	 falls	back	 to	 the	valence	band,	 recombining	with	 a	hole	 and	causing
emission	of	light.	It	may	involve	a	defect	energy	level.

Semiconductors:	Elements	or	compounds	with	resistivity	 (ρ)	between	10−4	and	103	 (Ω	 ·
cm).	This	range	is	approximate.

Shallow-level	dopants:	Dopants	with	energy	levels	only	a	few	millielectron	volts	from	the
band	edge.

Solid	 oxide	 fuel	 cells:	 Fuel	 cells	 that	make	 use	 of	 ceramic	 oxides,	 such	 as	 yttria-doped
zirconia,	as	an	electrolyte.

Thermally	generated	charge	carriers:	Electrons	and	holes	that	are	generated	as	electrons
jump	from	the	valence	band	into	the	conduction	band	as	a	result	of	thermal	energy.

Valence	band	edge	(Ev):	The	energy	level	corresponding	to	the	top	of	the	valence	band.
Varshni	 formula:	 A	 formula	 that	 shows	 the	 variation	 in	 the	 band	 gap	with	 temperature
(Equation	3.51).

Vertical	 recombination:	 The	 process	 of	 radiative	 recombination	 without	 a	 change	 in
momentum.

Wave	 vector	 (k):	 In	 the	 quantum	 mechanics–based	 approach,	 an	 electron	 that	 is
considered	a	plane	wave	with	a	propagation	constant.
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4	Fermi	Energy	Levels	in	Semiconductors

KEY	TOPICS

The	concept	of	Fermi	energy	level
Fermi–Dirac	distribution	for	electron	energy
Electron	and	hole	concentrations
Fermi	energy	positions	for	n-type	and	p-type	materials
Invariance	of	Fermi	energy	levels

4.1 FERMI	ENERGY	LEVELS	IN	METALS

We	have	seen	in	Chapter	1	that,	in	metals,	the	outermost	band	usually	is	nearly	half-filled.	Let
us	define	the	energy	at	the	bottom	of	the	partially	filled	band	as	E	=	0	when	E	=	EB	 (Figure
4.1).

In	metals	at	around	0	K,	the	highest	energy	level	at	which	electrons	are	present	is	known	as
the	Fermi	 energy	 level	 (EF).	Above	 this	 level,	 the	 states	 are	 available	 for	 electrons,	 but	 no
electrons	 occupy	 these	 states.	 Thus,	 in	metals	 at	 around	 0	K,	 the	 probability	 of	 finding	 an
electron	at	E	>	EF	is	zero.	The	Fermi	energy	values	for	different	metals	are	shown	in	Table
4.1.	This	 table	also	shows	 the	value	of	 the	work	 function	 (ϕ),	which	for	metals	 refers	 to	 the
energy	needed	to	remove	the	outermost	electron	from	E	=	EF.	For	example,	the	EF	value	for
copper	 (Cu)	 is	 7.0	 eV	 (Table	 4.1).	 Thus,	 as	 shown	 in	 Figure	 4.1,	 the	work	 function	 (ϕ)	 of
copper	is	4.65	eV.

From	the	quantum	mechanical	consideration,	 the	Fermi	energy	level	for	metals	at	0	K	is
given	by

where	me	 is	 the	 rest	mass	of	 the	 electron	ℏ=	h/2π,	h	 is	Planck’s	 constant,	 and	n	 is	 the	 free
electron	concentration	in	the	metal.	Equation	4.1	clearly	shows	that	the	metal	with	the	higher
free	electron	concentration	(n)	has	higher	EF.

Example	4.1	illustrates	the	calculation	of	the	Fermi	energy	level	for	a	metal.

Example	4.1: Fermi	Energy	of	a	Metal	at	T	=	0	K

In	Cu,	if	we	assume	that	each	Cu	atom	donates	one	electron,	the	free	electron	concentration	is	8.5	×	1022	cm−3.	(a)
What	is	the	value	of	EF,0?	(b)	If	the	concentration	of	conduction	electrons	estimated	by	conductivity	measurements

is	1.5	×	1023	cm−3,	then	find	the	number	of	electrons	donated	per	Cu	atom.

Solution



1.	 We	 first	 convert	 the	 concentration	 of	 electrons	 per	 cubic	 centimeter	 to	 cubic
millimeters	and	 then	substitute	 the	 rest	mass	of	electrons	 (9.1	×	10−30	 kg)	 and
the	value	of	ℏ	as	1.05	×	10−34	J	·	s.

FIGURE	4.1 Fermi	energy	level	representation	for	a	metal	and	a	semiconductor.	In	a	pure	semiconductor,
the	Fermi	energy	level	(EF)	is	located	at	the	center	of	the	forbidden	gap	and	(EC	−	EF)	is	the	same	as	(EF	−
EV).

TABLE	4.1

Fermi	Energy	Levels	(EF,0)	and	Work	Functions	(ϕ)	for	Different	Metals



From	Equation	4.1,

2.	 From	the	conductivity	measurements,	the	estimated	electron	concentration	in	Cu
is	~1.15	×	1029	m−3.	Thus,	the	average	number	of	electrons	contributed	by	a	Cu
atom	is	larger	than	8.5	×	1028.

The	number	of	electrons	donated	per	Cu	atom	is	given	by

This	 value	 seems	 reasonable.	 In	 many	 compounds,	 Cu	 exhibits	 a	 valence	 of	 +1	 and	 +2,	 for
example	Cu2O	and	CuO.

The	Fermi	energy	of	metals	does	vary	slightly	with	temperature	and	is	given	by

Note	that	the	EF,0	for	metals	is	much	higher	than	the	kBT	(Table	4.1).	As	a	result,	the	EF	of
metals	 does	 not	 change	 significantly	 with	 temperature.	 The	 Fermi	 energy	 level	 of
semiconductors,	especially	those	that	are	extrinsic	(i.e.,	doped	with	impurities),	does	change
appreciably	with	temperature	(see	Section	4.6).

An	electron	with	energy	E	=	EF	represents	the	highest	energy	electron	in	a	metal.	This	is
the	 significance	 of	 the	 Fermi	 energy	 level	 in	metals.	 If	 vF	 is	 the	 speed	 of	 an	 electron	with
energy	EF,0,	then

From	the	typical	values	of	EF,0	for	metals,	we	can	see	that	at	T	=	0	K,	the	highest	speed	of
electrons	 with	 energy	 EF,0	 is	 ~106	 m/s	 (see	 Equation	 4.3).	 In	 quantum	 mechanical
considerations,	only	these	extremely	high,	fast-moving	electrons	near	EF	deliver	the	electric
charge.	The	effective	speed	of	electrons	(ve)	or	the	root	mean	speed	of	electrons	in	a	metal	is
given	by

The	effective	speed	of	electrons	(ve)	in	a	metal	is	relatively	insensitive	to	temperature	and
depends	on	EF,0.	As	mentioned	 in	Chapter	3,	 however,	 if	 electrons	 are	 considered	 classical
particles,	then	the	speed	of	electrons	at	0	K	should	be	zero.	This	different	electron	speed	at	0
K	makes	a	distinction	between	classical	theory	and	quantum	mechanics.



4.2 FERMI	ENERGY	LEVELS	IN	SEMICONDUCTORS

We	discussed	Fermi	Energy	Level	of	 semiconductors	 in	Section	2.16.	At	 low	 temperatures,
the	conduction	band	of	 semiconductors	 is	 empty,	 and	 the	valence	band	 is	 completely	 filled.
Thus,	the	probability	of	finding	an	electron	at	T	=	0	K	at	the	valence	band	edge	(E	=	Ev)	is	1.
As	the	temperature	increases,	some	electrons	make	a	transition	across	the	band	gap	into	the
valence	band.	The	probability	of	finding	an	electron	at	or	above	the	conduction	band	edge	(E
≥	Ec)	is	zero.	At	higher	temperatures	(e.g.,	300	K),	the	probability	of	finding	an	electron	in	the
valence	band	is	still	close	to	1,	but	 it	becomes	slightly	smaller	 than	1	near	the	valence	band
edge	(Ev).	In	addition,	there	is	a	small	(but	nonzero)	probability	of	finding	an	electron	in	the
conduction	band	edge	as	well,	that	is,	E	≥	Ec.	Thus,	as	we	go	from	E	=	Ev	to	E	=	Ec	and	higher
in	 the	 conduction	 band,	 the	 probability	 of	 finding	 an	 electron	 begins	 at	 1	 and	 eventually
approaches	zero	well	into	the	conduction	band.

In	general,	the	probability	function	for	a	system	of	classical	particles	with	different	energy
(E)	is	given	by	the	Boltzmann	function:

where	A	is	a	constant,	kB	is	the	Boltzmann	constant,	and	T	is	the	temperature.	In	addition	to	the
classical	Boltzmann	function,	electron	occupation	of	quantized	energy	levels	 in	materials	 is
also	constrained	by	Pauli’s	exclusion	principle,	which	states	that	no	two	electrons	can	have	the
same	 energy	 level	 (i.e.,	 the	 same	 set	 of	 quantum	 numbers).	 With	 this	 restriction	 on	 the
occupancy	of	states,	the	probability	of	finding	an	electron	occupying	energy	level	E	is	given
by	the	so-called	Fermi–Dirac	distribution	function,	which	is	defined	as

where	E	is	the	energy	of	the	electron,	f(E)	is	the	probability	of	an	electron	occupying	the	state
with	energy	E,	kB	is	the	Boltzmann	constant,	T	is	the	temperature,	and	EF	is	the	Fermi	energy
level.	Thus,	the	Fermi–Dirac	function	gives	the	probability	of	filling	the	energy	level	E	with
an	electron	at	T.

In	Figure	4.2,	readers	can	find	that	the	Fermi–Dirac	function	becomes	a	step	function	at	T	=
0	K.	If	E	<	EF,	f(E)	is	1	at	T	=	0	K.	This	means	that	every	available	level	below	EF	is	filled	at	T
=	 0	K.	 The	 filling	 of	 all	 energy	 states	 below	EF	 is	 the	 same	 for	 both	 semiconductors	 and
metals	at	T	=	0	K.	Also,	note	that	at	T	=	0	K,	f(E)	=	0	if	E	>	EF,	which	means	that	every	energy
level	above	EF	is	empty.

As	discussed	in	Section	2.16,	the	Fermi	energy	level	(EF)	is	the	energy	level	for	which	the
probability	 of	 finding	 an	 electron	 is	 0.5	 at	T	 >	 0	K.	This	 feature	 of	EF	 is	well	 reflected	 in
Equation	4.6.	Based	on	the	band	diagram	of	a	semiconductor,	EF	will	be	in	the	middle	of	the
band	gap	(between	E	=	Ev	and	E	=	Ec),	where	no	electrons	are	allowed.	In	other	words,	though



the	 probability	 of	 filling	 at	EF	 is	 50%,	 the	 actual	 electron	 density	 at	 EF	 is	 determined	 by
multiplying	 the	 Fermi–Dirac	 function	 with	 a	 number	 of	 electron	 enegy	 states.	 Since	 no
electron	energy	states	are	allowed	 in	 the	band	gap	of	an	 intrinsic	 semiconductor,	 the	actual
number	of	electrons	staying	at	EF	is	zero.	In	intrinsic	semiconductors,	EF	lies	at	the	center	of
the	band	gap	(a	forbidden	region	between	Ev	and	Ec).	In	extrinsic	semiconductors,	EF	is	closer
to	Ev	for	the	p-type	semiconductor	and	Ec	for	the	n-type	semiconductor.

At	a	given	temperature	(e.g.,	T	=	T1),	as	E	increases,	f(E)	decreases.	This	indicates	that	the
probability	of	finding	an	electron	decreases,	as	shown	in	Figure	4.2.

In	 the	 regime	E	>	EF,	 an	 increase	 in	 the	 temperature	 increases	 f(E).	 This	means	 that	 the
probability	of	finding	an	electron	at	higher	energy	levels	becomes	higher	as	the	temperature
increases.

FIGURE	 4.2 Fermi–Dirac	 function	 at	 different	 temperatures.	 EF	 remains	 constant.	 (From	 Pierret,	 R.F.,	 Advanced
Semiconductor	Fundamentals,	Addison-Wesley,	Reading,	MA,	1987.	With	permission.)

In	the	regime	E	<	EF,	an	increase	in	the	temperature	decreases	f(E).	That	is,	the	probability
of	 finding	an	electron	at	 lower	energy	 levels	becomes	smaller	as	 the	 temperature	 increases
because	chances	are	better	that	the	electrons	have	moved	up	to	higher	energy	levels.

An	electron	creates	a	hole	in	the	valence	band	when	it	is	promoted	to	the	conduction	band.
Because	a	hole	can	be	considered	to	be	a	missing	electron,	the	probability	of	finding	a	hole	is
given	by

Another	interesting	situation	to	consider	is	that	(E	−	EF)	is	far	greater	than	kBT	 in	silicon
and	GaAs	with	the	band	gap	1.12	and	1.42	eV	for	energy	levels	in	the	valence	or	conduction



bands.	If	(E	−	EF)	>>	kBT,	then	exp[(E	−	EF)/kBT]	>>	1	and	Equation	4.6	can	be	simplified	as:

Note	the	negative	sign	in	Equation	4.8.	This	equation	is	a	form	of	the	Boltzmann	equation
for	 classical	 particles.	 Thus,	 the	 tail	 of	 the	 Fermi–Dirac	 distribution	 (i.e.,	 when	E	 is	much
greater	than	EF)	can	be	described	by	the	Boltzmann	distribution	equation.	The	importance	of
this	 is	 as	 follows:	 In	 the	 conduction	 band	 of	 a	 semiconductor,	 the	 number	 of	 the	 electron
energy	states	available	is	significantly	greater	than	the	number	of	free	electrons.	Therefore,
the	chance	of	two	electrons	occupying	the	same	energy	level	(i.e.,	having	the	same	quantum
numbers)	 is	 not	 very	 high.	 Thus,	 the	 Paul’s	 exclusion	 principle	 ruling	 that	 two	 electrons
cannot	take	the	same	electron	energy	state	is	not	broken.	We	can	use	the	Boltzmann	equation
(Equation	 4.8)	 to	 calculate	 the	 concentration	 of	 electrons	 in	 the	 conduction	 band	 and	 the
concentration	of	holes	in	the	valence	band	(Section	4.3).

4.3 ELECTRON	AND	HOLE	CONCENTRATIONS

The	conductivity	of	a	semiconductor	depends	on	the	carrier	concentrations	and	their	mobility.
In	 Sections	 3.14,	 3.15	 and	 3.16,	 we	 reviewed	 the	 effect	 of	 temperature	 and	 dopant
concentration	on	the	carrier	mobility.	In	this	section,	we	will	learn	how	to	calculate	the	carrier
concentrations.	If	we	know	the	probability	of	finding	an	electron	at	a	given	energy	level	in	the
conduction	band,	and	if	we	know	the	number	of	the	electron	energy	states	available	at	a	given
energy	level	in	the	conduction	band,	we	can	then	calculate	the	total	number	of	electrons	in	the
conduction	band.	The	following	analogy	may	help.

Imagine	a	high-rise	hotel	building	with	many	guests.	We	want	 to	know	how	many	guests
are	in	the	hotel	at	a	given	time	on	the	assumption	that	only	one	guest	can	stay	in	each	room	(a
limitation	imposed	by	the	Pauli	exclusion	principle).	 In	 this	case,	first,	we	need	to	find	how
many	rooms	there	are	on	each	floor.	Second,	the	probability	of	the	room	to	be	filled	by	one
guest	needs	to	be	known.	Third,	we	then	calculate	the	total	number	of	guests	in	the	hotel	by	(i)
multiplying	 the	number	of	 rooms	and	 the	 filling	probability	of	each	floor	 to	 figure	out	 the
number	of	guests	on	each	floor	and	(ii)	adding	the	guest	number	from	the	bottom	floor	to	the
top	floor	of	the	hotel.	The	same	logic	can	be	applied	to	calculating	the	number	of	electrons	in
a	conduction	band.

Consider	the	band	diagram	for	a	typical	intrinsic	semiconductor	(Figure	4.3).	Note	that	the
vertical	axis	is	the	electron	energy	(E).	Here,	a	concept	corresponding	to	a	number	of	rooms
available	at	each	floor	is	called	density	of	states,	N(E),	which	is	a	number	of	electron	states	at
a	specific	energy	level	E.	As	N(E)	increases,	more	states	are	available	for	electrons	at	energy
E,	and	a	maximum	number	of	electrons	staying	at	E	increases.	A	general	formula	of	N(E)	 is
found	in	Equation	4.48.	Note	that	N(E)	is	proportional	to	E1/2.	A	detailed	calculation	process
to	derive	N(E)	is	beyond	the	scope	of	this	book.	The	probability	of	finding	an	electron	at	E	is
again	calculated	by	the	Fermi–Dirac	function,	f(E).	If	the	state	is	filled	by	an	electron,	f(E)	 is



1.	If	the	state	is	empty,	f(E)	is	0.	Then	we	can	integrate	N(E)	×	f(E)	over	the	energy	levels	of
interest.

FIGURE	 4.3 Band	 diagram	 and	 the	 Fermi–Dirac	 function	 for	 an	 intrinsic	 semiconductor	 at	 T	 >	 0.	 (From	 Pierret,	 R.F.,
Semiconductor	Fundamentals	Volume,	Addison-Wesley,	Reading,	MA,	1988.	With	permission.)

The	electron	energies	in	the	conduction	band	range	from	E	=	Ec	to	E	=	∞.	At	any	energy
level	E,	a	product	of	the	number	of	available	energy	levels	N(E)	and	the	probability	of	filling
the	 state	 f(E)	 gives	 us	 the	 number	 of	 electrons	 taking	 the	 energy	 level	E.	We	 integrate	 the
product	N(E)	×	f(E)	over	the	range	E	=	Ec	to	E	=	∞	to	get	the	total	concentration	of	electrons
in	the	conduction	band.	Strictly	speaking,	the	top	limit	for	the	integration	should	be	Ec	+	q	×	χ
(χ:	 electron	 affinity).	When	 the	 energy	 of	 an	 electron	 becomes	 larger	 than	Ec	+	 q	 ×	 χ,	 the
electron	becomes	free	from	the	attraction	of	the	nucleus	(Figure	4.1),	N(E)	becomes	zero	and
N(E)	 ×	 f(E)	 equals	 zero.	 However,	 the	 function	 f(E)	 approaches	 zero,	 as	 E	 tends	 to	 ∞.
Therefore,	we	will	use	E	=	∞	as	the	top	limit	for	the	integral	for	convenience.

where	n	is	the	total	number	of	electrons	taking	the	energy	levels	higher	than	Ec.	The	density
of	states	(the	shaded	area	in	the	left	plot	of	Figure	4.3)	and	f(E)	(the	right	plot	of	Figure	4.3)
are	used	for	the	integral	shown	in	Equation	4.9.

Here,	we	will	introduce	a	new	approach,	the	effective	density	of	states	approximation.	In	the
semiconductor,	we	assume	that	most,	if	not	all,	electrons	reside	at	the	bottom	energy	level	of
the	 conduction	 band	 (E	 =	 Ec)	 to	 keep	 the	 sum	 of	 electron	 energies	 low.	 Even	 though	 the
valence	electrons	of	 the	 semiconductor	 can	 jump	 to	higher	 energy	 levels	 in	 the	conduction
band,	the	excited	electrons	still	stay	at	the	bottom	of	the	conduction	band	to	minimize	the	total
energy	of	the	system.	Given	the	physical	characteristics	of	the	semiconductor,	this	assumption
is	reasonable.	If	electrons	fill	the	energy	levels	above	Ec,	the	conduction	band	is	treated	as	a
partially	filled	band,	and	the	material	cannot	be	treated	as	a	semiconductor.	Remember	that	the
metal	 has	 the	 partially	 filled	 valence	 band	 and	 the	 semiconductor	 has	 the	 fully	 empty



conduction	 bands.	 According	 to	 the	 quantum	 mechanical	 calculations	 (Section	 3.17),	 the
effective	density	of	states	at	the	conduction	band	edge	N(Ec)	is	noted	as	Nc,	which	is	given	by

As	explained	above,	in	semiconductors	where	the	excited	electrons	occupy	only	a	part	of
the	energy	states	at	Ec,	N(E)	×	f(E)	is	not	zero	only	at	the	bottom	conduction	band	edge	(E	=
Ec).	 Then,	 Equation	 4.9	 becomes	 n	 =	N(Ec)	 f(Ec)	 =	Nc	 f(Ec),	 where	N(Ec)	 is	 the	 effective
density	of	states	at	the	band	edge	Nc.	Thus,	Equation	4.9	can	be	written	as:

Note	 that	 because	 we	 assumed	 that	 most	 electrons	 in	 the	 conduction	 band	 reside	 at	 the
bottom,	we	multiplied	the	effective	density	of	states	by	the	value	of	the	probability	function	at
E	=	Ec.

From	the	definition	of	the	Fermi–Dirac	function	(Equation	4.6),	we	get

Since	 (Ec	 −	EF)	 >>	 kBT,	 the	 exponential	 term	 is	much	 larger	 than	 1,	 and	 hence	 f(Ec)	 is
written	as

Substituting	the	value	of	f(Ec)	from	Equation	4.13	into	Equation	4.11,	we	get

By	keeping	the	first	term	as	Nc,	n	is	given	by:

The	negative	sign	outside	is	shown	so	that	the	term	inside	is	positive	because	Ec	is	above
EF.	We	can	rewrite	Equation	4.14	as	follows	to	eliminate	the	negative	sign	in	the	exponential
term:



In	Sections	4.5	and	4.6,	we	will	see	that	we	can	calculate	the	concentration	of	electrons	for
intrinsic	as	well	as	extrinsic	semiconductors	using	Equation	4.16	if	we	know	the	position	of
the	EF	relative	to	Ec.

We	can	now	derive	a	similar	expression	for	calculating	the	concentration	of	holes	 in	 the
valence	band.	Remember	that	the	conduction	band	is	nearly	empty	and	has	few	electrons,	the
concentration	of	which	we	have	calculated	(Equation	4.16).	Now,	 the	valence	band	 is	nearly
completely	 filled	with	valence	 electrons	 in	 the	 covalent	 bonds	of	 the	 semiconductor	 atoms.
When	 some	 of	 these	 bonds	 break,	 the	 electrons	move	 to	 the	 conduction	 band.	This	 creates
holes	in	the	valence	band.	The	concentration	of	holes	(p)	in	the	valance	band	is	given	by

Notice	that	the	density	of	states	N(E)	is	now	multiplied	by	1	−	f(E),	which	is	the	probability
of	finding	a	hole.	We	again	use	the	effective	density	of	states	at	the	valence	band	edge	(N(Ev));
that	 is,	 we	 assume	 that	 most	 holes	 remain	 at	 the	 top	 of	 the	 valence	 band.	 Recall	 that	 the
electron	energy	increases	as	 the	energy	level	moves	up	the	band	diagram,	whereas	 the	hole
energy	 increases	as	 the	energy	 level	goes	down	 the	band	diagram.	The	effective	density	of
states	at	E	=	Ev	is	given	by

On	the	assumption	that	a	total	number	of	holes	is	smaller	than	the	effective	density	states	at
Ev,	holes	will	only	stay	at	energy	states	at	Ev.	Then,	Equation	4.17	is	rewritten	as

From	the	Fermi–Dirac	function

Note	that	the	denominator	of	the	exponential	term	now	contains	(EF−Ev)	and	not	(Ev	−	EF).
Again,	 if	 (EF	 −	 Ev)	 >>	 kBT,	 then	 the	 Fermi–Dirac	 function	 simplifies	 to	 a	 Boltzmann

function	since	exp	[(EF	−	Ev)/kBT]	>>	1.	The	denominator	in	Equation	4.21	becomes	1.
Thus,	Equation	4.21	now	becomes



The	concentration	of	holes	in	the	valence	band	from	Equation	4.19	now	becomes

For	the	sake	of	convenience,	we	can	represent	the	first	term	as	Nv	and	can	write	Equation
4.23	as

The	negative	sign	outside	is	shown	so	that	the	term	inside	is	positive	because	EF	is	above
Ev.	This	equation	gives	us	the	concentration	of	holes	in	either	an	intrinsic	semiconductor	or
an	extrinsic	semiconductor.	If	we	know	the	difference	between	the	valence	band	edge	and	the
Fermi	 energy	 level,	 temperature,	 and	 the	 effective	 mass	 of	 holes,	 we	 can	 calculate	 the
concentration	of	holes	(p).

Let	 us	multiply	 the	 equations	 for	 electron	 and	hole	 concentrations.	From	Equations	 4.15
and	4.24,	we	get

Since	(Ec	−	Ev)	=	Eg,	we	get

Thus,	 for	 a	 given	 semiconductor,	 the	 product	 of	 the	 electron	 concentration	 and	 the	 hole
concentration	at	a	given	temperature	is	constant.	This	is	known	as	the	law	of	mass	action	for
semiconductors.	 It	 is	 similar	 to	 the	 ideal	 gas	 law:	 pressure	 ×	 volume	 is	 a	 constant.	 For
example,	for	silicon	(Si)	(Eg	≈	1.1	eV	at	300	K),	 the	value	of	n	×	p	 is	constant,	whether	we
have	intrinsic,	n-type,	or	p-type	silicon.	For	an	n-type	silicon	crystal,	created	by	doping	with
antimony	 (Sb),	 the	 electron	 concentration	 in	 the	 conduction	 band	 is	 higher	 compared	 to	ni.
The	increase	in	the	concentration	of	electrons	in	an	n-type	semiconductor	is	compensated	by	a
decrease	 in	 the	 concentration	 of	 holes	 in	 the	 valence	 band.	 Similarly,	 for	 a	 p-type
semiconductor,	holes	are	the	majority	carriers,	that	is,	p	>>	n.	To	maintain	a	constant	value	of
n	×	p,	the	concentration	of	electrons	(n)	decreases.

4.4 FERMI	ENERGY	LEVELS	IN	INTRINSIC	SEMICONDUCTORS



For	 an	 intrinsic	 semiconductor,	 ni	 =	 pi.	 Applying	 Equations	 4.15	 and	 4.24	 to	 an	 intrinsic
semiconductor,	we	get

In	 this	 equation,	EF,i	 is	 the	 Fermi	 energy	 level	 of	 an	 intrinsic	 semiconductor.	 Taking	 a
natural	logarithm	of	both	sides,	we	get

Substituting	for	Nc	and	Nv	from	Equations	4.10	and	4.18,	respectively,	we	get

The	 first	 term	 in	 Equation	 4.29	 represents	 the	middle	 of	 the	 band	 gap.	 Thus,	 the	 Fermi
energy	level	of	an	intrinsic	material	(EF,i)	is	very	close	to	the	center	energy	level	of	the	band
gap	(Emidgap),	as	shown	in	Figure	4.4:

FIGURE	4.4 Fermi	energy	level	position	for	a	typical	intrinsic	semiconductor.	(From	Pierret,	R.F.,	Advanced	Semiconductor
Fundamentals,	Addison-Wesley,	Reading,	MA,	1987.	With	permission.)



FIGURE	4.5 Variation	of	EF,i	with	the	temperature.	When	the	effective	mass	of	holes	is	higher,	the	Fermi	energy	level	is	in
the	 upper	 half	 of	 the	 band	 gap.	 (With	 kind	 permission	 from	 Springer	 Science+Business	 Media:	 Semiconductor	 Physical
Electronics,	2006,	Li,	S.	S.)

For	 intrinsic	semiconductors	with	a	 larger	effective	mass	of	holes,	Nv	 is	higher	 than	Nc.
Thus,	 the	 intrinsic	 Fermi	 energy	 level	 (EF,i)	 moves	 away	 from	 the	 valence	 band	 and	 is
therefore	 slightly	 above	 the	middle	 of	 the	 band	 gap	 (Emidgap),	 as	 shown	 in	 Figure	 4.5.	 For
intrinsic	materials	with	a	larger	effective	electron	mass,	the	EF,i	 is	slightly	below	the	middle
of	the	band	gap	(Emidgap).	The	effective	masses	also	change	with	the	temperature,	as	does	the
band	gap	 (Eg).	 The	 variation	 of	EF,i	 as	 given	 by	Equation	4.30,	 is	 shown	 in	 Figure	 4.5.	As
temperature	increases,	a	deviation	of	EF,i	from	Emidgap	increases.	Note	that	the	dependence	of
Eg	on	temperature,	as	given	by	the	Varshni	parameters,	is	not	considered	in	Figure	4.5.

The	slight	deviation	that	causes	the	EF,i	to	shift	from	the	middle	of	the	band	gap	as	a	result
of	the	difference	between	the	effective	mass	of	holes	and	electrons	is	calculated	in	Example
4.2.

Example	4.2: Intrinsic	Fermi	Energy	Level	for	Si

Calculate	 the	 locations	 of	 the	Fermi	 energy	 level	 for	 intrinsic	 Si	 located	 relative	 to	 the	middle	 of	 the	 band	 gap.
Assume	that	the	effective	masses	for	electrons	and	holes	in	Si	are	1.08	and	0.56,	respectively.

Solution
From	Equation	4.30,	we	get

Thus,	 the	 intrinsic	Fermi	energy	 level	 for	Si	 is	12.8	meV	below	 the	middle	of	 the	band	gap.	Compared	 to	550
meV	(~half	of	the	band	gap	[Eg]	of	~1.1	eV),	this	deviation	is	much	smaller.

4.5 CARRIER	CONCENTRATIONS	IN	INTRINSIC	SEMICONDUCTORS

For	 intrinsic	 semiconductors,	we	 can	 derive	 the	 electron	 and	 the	 hole	 concentrations	 using
Equation	4.16	and	Equation	4.23,	respectively,	as	follows:



As	mentioned	previously,	the	negative	sign	is	included	so	that	the	terms	inside	the	brackets
are	positive	because	Ec	is	above	EF,i	and	EF,i	is	above	Ev.	In	Equations	4.31	and	4.32,	ni	and	pi
are	the	electron	and	hole	concentrations,	the	subscript	i	indicates	the	intrinsic	semiconductor,
EF,i	is	the	Fermi	energy	level	for	an	intrinsic	semiconductor,	and	Nc	and	Nv	are	the	effective
density	of	states	for	the	conduction	and	valence	band	edges,	respectively.

We	now	multiply	Equation	4.31	by	Equation	4.32	to	get

or	since	Ec	−	Ev	=	Eg,	the	band	gap	energy

Comparison	of	Equation	4.26	and	Equation	4.33	shows	that	the	n	×	p	value	is	a	constant	for
a	given	semiconductor	at	a	given	temperature.	It	does	not	matter	whether	the	semiconductor	is
extrinsic	or	intrinsic.

We	have	now	shown	that	the	n	×	p	value	remains	constant	for	a	given	semiconductor	at	a
given	temperature:

This	 is	 a	 very	 important	 equation	 since	 it	 allows	 us	 to	 make	 a	 connection	 between	 the
properties	of	intrinsic	and	extrinsic	semiconductors.

Another	way	to	rewrite	Equation	4.33	based	on	the	relation	of	ni	=	pi,	is	as	follows:

We	can	see	quantitatively	from	Equation	4.35	that	the	concentration	of	thermally	generated
carriers	changes	with	the	temperature.

We	 discussed	 the	 values	 of	 ni	 and	 pi	 for	 different	 semiconductors	 in	 Chapter	 3.	 The
intrinsic	carrier	concentrations	are	strongly	temperature-dependent	and	are	inversely	related
to	the	band	gap	(Eg).	An	increase	in	temperature	increases	the	intrinsic	carrier	concentration
and	an	 increase	 in	 the	band	gap	decreases	 the	 intrinsic	carrier	concentration.	The	values	of
electron	or	hole	 intrinsic	concentrations	for	silicon,	germanium	(Ge),	and	gallium	arsenide
(GaAs)	are	shown	in	Figure	4.6.

As	we	can	see	in	Figure	4.6,	the	value	of	ni	for	Si	at	300	K	is	~1.5	×	1010	electrons/cm3.



The	band	gap	of	the	semiconductors	(Eg)	also	changes	with	temperature.	This	dependence
is	given	by	 the	Varshni	parameters.	For	 silicon,	 the	 change	 in	densities	of	 states	Nc	 and	Nv
(Equations	 4.10	 and	 4.18)	 and	 the	 variation	 in	 the	 band	 gap	 (Eg)	with	 a	 temperature	 in	 the
range	 200–500	K	 are	 given	 by	 the	 following	 simplified	 equations	 (Green	 1990;	Bullis	 and
Huff	1994):

The	Varshni	formula	that	describes	the	temperature	dependence	of	the	band	gap	for	silicon
is

In	 Equations	 4.36,	 4.37	 and	 4.38,	 the	 density	 of	 states	 is	 expressed	 as	 states	 per	 cubic
centimeter,	and	Eg	 is	expressed	 in	electron	volts.	Note	 that	 these	Varshni	parameters	are	for
the	temperature	range	200–500	K	and	are	slightly	different	from	the	values	of	1.206	and	2.73
×	10−4	for	a	wider	temperature	range,	as	discussed	in	Chapter	3.



FIGURE	4.6 Intrinsic	carrier	concentrations	for	gallium	arsenide,	silicon,	and	germanium.	(From	Grove,	A.S.:	Physics	 and
Technology	 of	 Semiconductor	 Devices.	 1967.	 Copyright	 Wiley-VCH	 Verlag	 GmbH	 &	 Co.	 KGaA.	 Reproduced	 with
permission.)

TABLE	4.2

Density	of	States	(Nc,	Nv),	Band	gap	(Eg),	and	Intrinsic	Carrier	Concentration	(ni)	Values	for	Si	at
Different	Temperatures

For	silicon,	a	more	precise	equation	for	the	change	in	ni	is



The	values	of	Nc,	Nv,	Eg,	and	ni	 from	Equations	4.36,	4.37,	4.38	and	4.39,	calculated	as	a
function	of	 the	 temperature,	are	shown	in	Table	4.2.	The	value	of	ni	 for	 silicon	at	300	K	 is
1.07	×	1010	electrons/cm3,	whereas	 the	normally	quoted	value	 is	~1.5	×	1010	 electrons/cm3.
The	use	of	these	higher	ni	values	leads	to	the	prediction	of	a	higher	current	in	silicon-based
devices.

4.6 FERMI	ENERGY	LEVELS	IN	N-TYPE	AND	P-TYPE	SEMICONDUCTORS

In	Section	4.4,	we	saw	that	the	Fermi	energy	level	of	an	intrinsic	semiconductor	lies	close	to
the	middle	of	the	band	gap.	Now	we	will	find	the	location	of	EF	for	extrinsic	materials.	Since
n	×	p	is	constant	for	a	given	semiconductor	at	a	given	temperature,

Since	the	intrinsic	semiconductor	has	the	same	number	of	electrons	and	holes	(i.e.,	ni	=	pi),
we	can	rewrite	Equation	4.40	as

Recall	from	Equation	4.15	that

Substitute	for	Nc	from	Equation	4.31	and	rewrite	Equation	4.15.	Then,	you	will	get

This	 is	 also	 an	 important	 equation	 because	 it	 relates	 the	 conduction	 band	 electron
concentration	 in	 an	 extrinsic	 semiconductor	 to	 EF	 of	 the	 semiconductor	 in	 both	 extrinsic
intrinsic	forms.	Since	the	product	n	×	p	is	a	constant,	we	can	also	calculate	the	concentration
of	holes	in	an	n-type	semiconductor.

Similarly,	in	a	p-type	semiconductor,	the	concentration	of	holes	(p)	is	related	to	the	density
of	states	available	in	the	valence	band	and	to	the	Fermi	energy	level	by	Equation	4.24:

We	substitute	the	value	of	Nv	from	Equation	4.32:



Therefore,

To	remove	the	negative	sign,	and	since	ni	=	pi,	we	rewrite	Equation	4.43	as

Note	that	in	Equation	4.44,	p	≈	Na.	Thus,	we	can	calculate	the	position	of	the	Fermi	energy
level	relative	to	the	center	of	the	band	gap.	As	discussed	in	Section	4.4,	the	Fermi	energy	level
for	an	intrinsic	semiconductor	(EF,i)	lies	close	to	the	center	of	the	band	gap	(Figures	4.4	and
4.5).

To	summarize,	we	now	have	a	set	of	 two	important	equations	that	allows	us	to	relate	 the
dopant	concentration	of	an	extrinsic	semiconductor	(n-type	or	p-type)	to	their	Fermi	energy
levels.

From	Equation	4.45,	we	can	conclude	that,	as	the	doping	level	increases,	the	Fermi	energy
level	of	an	n-type	semiconductor	will	move	closer	 to	 the	conduction	band	edge.	The	 Fermi
energy	level	of	n-type	semiconductors	lies	in	the	upper	half	of	the	band	gap.	Similarly,	as	the
doping	level	increases,	the	Fermi	energy	level	of	a	p-type	semiconductor	will	move	closer	to
the	valence	band	edge.	The	Fermi	energy	level	of	p-type	semiconductors	lies	in	the	lower	half
of	 the	 band	 gap.	 Figure	 4.7	 shows	 the	 variation	 of	 EF	 of	 Si	 as	 a	 function	 of	 the	 dopant
concentrations	(Pierret	1988).	Note	that	this	was	calculated	assuming	ni	=	1010	cm–3.

4.7 FERMI	ENERGY	AS	A	FUNCTION	OF	THE	TEMPERATURE

For	 an	 intrinsic	 semiconductor,	 the	 dependence	 of	 Fermi	 energy	 level	 on	 temperature	 is
marginal.	 If	 the	 effective	 mass	 ratio	 between	 the	 electron	 and	 the	 hole	 is	 1	 regardless	 of
temperature,	 EF,i	 stays	 at	 the	 center	 between	 Ec	 and	 Ev	 (Equations	 4.28,	 4.29	 and	 4.30).
However,	 because	 of	 the	 change	 in	 the	 effective	 masses	 of	 holes	 and	 electrons	 with
temperature	(Figure	4.5),	the	EF,i	varies	slightly	with	temperature.



FIGURE	4.7 Variation	in	EF	as	a	function	of	the	dopant	concentration	of	silicon	at	300	K.	(Note:	It	assumes	ni	=	10
10	cm

−3.)	(From	Pierret,	R.F.,	Semiconductor	Fundamentals	Volume,	Addison-Wesley,	Reading,	MA,	1988.	With	permission.)

FIGURE	4.8 Position	of	EF	of	silicon	for	different	 temperatures	and	dopant	concentrations.	 (From	Pierret,	R.F.,	Advanced
Semiconductor	Fundamentals,	Addison-Wesley,	Reading,	MA,	1987.	With	permission.)



When	an	extrinsic	semiconductor	is	at	very	low	temperatures,	a	carrier	freeze-out	occurs,
causing	it	to	behave	as	an	intrinsic	semiconductor.	Thus,	at	very	low	temperatures,	EF	is	equal
to	EF,i.	As	 the	 temperature	 increases,	 donor	 ionization	occurs.	The	Fermi	 energy	 level	 then
moves	to	the	location	given	by	Equation	4.45.	At	higher	temperatures,	the	thermally	generated
carriers	 (i.e.,	 the	 intrinsic	 effect)	 begin	 to	 dominate.	 The	 semiconductor	 behaves	 as	 if	 it	 is
intrinsic,	 and	 the	EF	 goes	 back	 to	 close	 to	 the	 center	 of	 the	 band	 gap,	 that	 is,	 near	 the	EF,i
(Figure	4.8).

As	we	will	see	in	Section	4.9,	when	the	dopant	concentration	is	very	high,	the	Fermi	energy
level	moves	very	close	(~	within	3	kBT)	to	a	band	edge.	Such	materials	are	called	degenerate
semiconductors.	 We	 cannot	 use	 Equation	 4.45	 to	 calculate	 the	 position	 of	 EF	 for	 these
materials.

The	 calculation	 of	 EF	 for	 degenerate	 semiconductors	 is	 discussed	 in	 Section	 4.9.	 The
calculation	of	the	location	of	EF	relative	to	EF,i	for	nondegenerate	semiconductors	is	shown	in
Examples	4.3	and	4.4.

Example	4.3: Fermi	Energy	Level	in	n-Type	Si

A	Si	crystal	is	doped	with	1016/cm3	Sb	atoms.	At	300	K:
1.	 What	is	the	concentration	of	electrons	(n)?
2.	 What	is	the	concentration	of	holes	(p)	in	this	n-type	Si?
3.	 Where	 is	 the	 Fermi	 energy	 level	 (EF)	 for	 this	 material	 relative	 to	 the	 Fermi

energy	level	for	intrinsic	Si	(Ei)?
Solution

1.	 The	 donor	 dopant	 (Sb)	 concentration	 (Nd)	 is	 1016	 atoms/cm3.	 The	 intrinsic
electron	 concentration	 (ni)	 in	 Si	 at	 300	 K	 (Figure	 4.6)	 is	 1.5	 ×	 1010

electrons/cm3	(Figure	4.6).	Since	Nd	>>	ni,	we	have	assured	n	≈	Nd.	We	assume
that	 the	 complete	 dopant	 ionization	 occurs	 at	 300	 K;	 therefore,	 the	 electron
concentration	(n)	≈	Nd	=	1016	electrons/cm3.

2.	 From	Equation	4.41,

Therefore,

1016×p	=	(1.5	×	1010)2	=	2.25	×	1020

Thus,	 the	 concentration	 of	 holes	 in	 this	 n-type	 semiconductor	 is	p	 =	 2.25	 ×	 104	 holes/cm3.
When	compared	to	the	electron	concentration	of	1016	(100,000	trillion),	there	are	only	22,500
holes/cm3.	Therefore,	holes	are	considered	a	minority	carrier	in	an	n-type	semiconductor.	We	had
seen	this	concept	in	Chapter	3	but	had	not	calculated	the	actual	concentration	of	minority	carriers.

3.	 Now,	we	calculate	the	relative	position	of	EF	relative	to	EF,i	using	Equation	4.42:



or

Therefore,

Note	that	we	used	kBT	=	0.026	eV.
Thus,	the	Fermi	energy	level	for	this	n-type	semiconductor	is	0.349	eV	above	EF,i.	The	band

diagram	 for	 this	 n-type	 Si	 is	 shown	 in	 Figure	 4.9.	 In	 this	 diagram,	 the	 Fermi	 energy	 level	 is
designated	as	EF,n.

FIGURE	4.9 A	band	diagram	and	the	Fermi	energy	level	location	for	n-type	silicon	(see	Example	4.3).

Example	4.4: Fermi	Energy	Level	in	B-Doped	Si

A	Si	crystal	is	doped	with	1017/cm3	boron	(B)	atoms.	At	300	K:
1.	 What	is	the	concentration	of	holes	(p)?
2.	 What	is	the	concentration	of	electrons	(n)	in	this	p-type	Si?
3.	 Where	 is	 the	 Fermi	 energy	 level	 (EF)	 for	 this	 material	 relative	 to	 the	 Fermi

energy	level	for	intrinsic	Si	(Ei)?
Solution

1.	 The	acceptor	dopant	(B)	concentration	(Na)	is	1017	atoms/cm3.	We	assume	that
complete	dopant	ionization	occurs	at	300	K.	Therefore,	the	hole	concentration
(p)	≈	Na	=	1017	holes/cm3.

2.	 From	Equation	4.41,

Therefore,

n	×	1017	=	(1.5	×	1010)2	=	2.25	×	1020

Thus,	the	concentration	of	electrons	in	this	p-type	semiconductor	is	2.25	×	103	electrons/cm3.
Therefore,	electrons	are	considered	a	minority	carrier	in	a	p-type	semiconductor.

3.	 Now,	 we	 calculate	 the	 relative	 position	 of	 EF	 for	 this	 p-type	 semiconductor
relative	to	the	EF,i	using	Equation	4.44:



or

Therefore,

or
  EF	=	EF,i	−	0.407	eV
  EThus,	 the	 Fermi	 energy	 level	 (EF)	 for	 this	 p-type	 semiconductor	 is

0.407	eV	below	the	EF,i.	The	band	diagram	for	this	n-type	Si	is	shown	in	Figure
4.10.

FIGURE	4.10 A	band	diagram	for	boron-doped	silicon	(see	Example	4.4).



FIGURE	 4.11 The	 Fermi	 energy	 level,	 the	 Fermi–Dirac	 distribution	 function,	 and	 the	 related	 band	 diagram	 for	 (a)	 an
intrinsic,	(b)	an	n-type,	and	(c)	a	p-type	semiconductor.	(From	Streetman,	B.G.	and	Banerjee	S.,	Solid	State	Electronic	Devices,
Prentice	Hall,	Upper	Saddle	River,	NJ,	2000.	With	permission.)

4.8 FERMI	ENERGY	POSITIONS	AND	THE	FERMI–DIRAC	DISTRIBUTION

It	is	clear	from	Equation	4.45	that	the	EF	of	a	semiconductor	moves	closer	to	the	band	edge	as
the	doping	level	increases.	This	change	in	EF	is	also	reflected	in	the	Fermi–Dirac	distribution
function	(Figure	4.11).	In	the	intrinsic	semiconductor,	EF,i	is	near	the	center	between	Ec	and	Ev,
depending	 on	 the	 ratio	 of	Nv/Nc	 or	mp

*/me
*,	 and	 the	 inversion	 center	 of	 the	 Fermi–Dirac

function	is	at	EF,i.	Therefore,	 the	electron	distribution	 in	 the	conduction	band	(Equation	4.9)
and	 the	hole	distribution	 in	 the	valence	band	 (Equation	4.17)	 are	 almost	 symmetric	 (Figure
4.11a).	 In	addition,	note	 that	 the	density	of	states	N(E)	 in	Figure	4.11	 is	proportional	 to	E1/2
and	is	given	by

where	V	is	total	volume	that	electrons	can	occupy.
For	n-type	 semiconductors	 (Figure	4.11b),	 the	EF	 is	 closer	 to	 the	 conduction	 band	 edge,

which	means	 that	 the	Fermi–Dirac	 function	 f(E)	 is	 also	pushed	up	on	 the	diagram.	Though



N(E)	 does	 not	 depend	 on	 the	 doping	 type	 and	 concentration,	 a	 change	 in	 the	 Fermi–Dirac
function	alters	the	electron	concentration	at	E	(n(E))	that	is	expressed	as	n(E)	=	N(E)	×	 f(E).
Figure	4.11b	shows	that	the	high	electron	concentration	in	the	conduction	band	and	low	hole
concentration	in	the	valence	band	can	be	explained	using	a	shift	of	f(E)	toward	Ec.

Similarly,	for	a	p-type	semiconductor	(Figure	4.11c),	 the	Fermi	energy	 level	 is	closer	 to
the	valence	band	edge;	thus,	the	Fermi	energy	function	is	pushed	down.	Note	that	for	p-type
semiconductors,	the	value	of	f(Ev)	is	less	than	1	because	there	are	holes	in	the	valence	band
edge.	The	value	of	f(Ev)	(i.e.,	the	probability	of	finding	an	electron)	is	slightly	less	than	1,	and
this	(1	−	f(Ev))	is	the	probability	of	finding	a	hole	in	the	valence	band.	From	Figure	4.11,	we
learn	how	a	shift	in	EF	modifies	f(E)	and	n(E),	although	there	is	no	change	in	N(E).

4.9 DEGENERATE	OR	HEAVILY	DOPED	SEMICONDUCTORS

As	mentioned	 in	Section	4.6,	with	 very	 high	 levels	 of	 doping,	 the	 Fermi	 energy	 level	 of	 a
semiconductor	comes	very	close	to	the	band	edge.	When	|EF	−	Ec|	or	|EF	−	Ev|	is	≦	3	kBT,	the
semiconductor	 is	 known	 as	 a	 degenerate	 semiconductor	 (Figure	 4.12).	 The	 position	 of	 the
Fermi	energy	level	for	degenerate	semiconductors	cannot	be	calculated	using	Equation	4.45.

In	degenerate	semiconductors,	 the	dopant	concentration	 is	high,	and	the	distance	between
dopant	 atoms	 is	very	 small.	As	we	discussed	 in	Chapter	3	 (Equation	3.53	 and	 Figure	 3.31),
there	 no	 longer	 is	 a	 discrete	 energy	 level	 (Ed	 or	Ea)	 at	 such	 high	 dopant	 concentrations.
Instead,	we	get	a	band	of	energies	near	the	band	edge,	and	the	band	gap	effectively	becomes
narrow.	If	the	doping	levels	are	very	high,	then	the	Fermi	energy	level	of	an	n-type	material
actually	lies	in	the	conduction	band.	The	Fermi	energy	level	of	a	p-type	semiconductor	lies	in
the	 valence	 band	 (Figure	 4.13).	 Tunnel	 diodes	 can	 be	 made	 by	 using	 such	 degenerate
semiconductors.	 In	 these	 devices,	 a	 phenomenon	 known	 as	 electron	 tunneling	 occurs.	 For
silicon	 at	 300	 K,	 a	 donor	 dopant	 concentration,	 (Nd)	 ≈	 ≥	 1.6	 ×	 1018	 atoms/cm3,	 and	 an
acceptor	 dopant	 concentration,	 (Na)	 ≈	 ≥	 9.1	 ×	 1017	 atoms/cm3,	 result	 in	 a	 degenerate
semiconductor	 (Pierret	1988).	Terms	such	as	highly	or	heavily	doped	and	“n+−material”	 or
“p+−material”	are	also	used	to	describe	degenerate	semiconductors.

We	 use	 the	 Joyce–Dixon	 approximation	 (Equation	 4.49)	 to	 calculate	 EF	 for	 degenerate
semiconductors:



FIGURE	 4.12 Definition	 of	 degenerate	 and	 nondegenerate	 semiconductors.	 (From	 Pierret,	 R.F.,	 Semiconductor
Fundamentals,	Addison-Wesley,	Reading,	MA,	1988.	With	permission.)

FIGURE	4.13 Fermi	energy	levels	for	(a)	degenerate	n-type	and	(b)	degenerate	p-type	semiconductors.	(From	Neaman,	D.,
An	Introduction	to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Equation	 4.49	 shows	 that	EF	 can	 be	 higher	 than	Ec	 (or	 lower	 than	Ev)	when	 the	 carrier
concentration	(n	or	p)	is	larger	than	the	effective	density	of	states	at	the	band	edges	(Nc	or	Nv).
This	indicates	that	electrons	(or	holes)	can	partially	fill	 the	conduction	band	(or	the	valence
band)	in	the	degenerated	semiconductors,	which	is	observed	in	the	metals.	In	the	degenerate
semiconductors,	 an	 increase	 in	 the	 doping	 level	 increases	EF	 and	 decreases	Eg.	 Hence,	 as
discussed	in	Chapter	3,	the	degenerated	semiconductors	are	sometimes	considered	to	exhibit
the	 electric	 properties	 of	 metals.	 Example	 4.5	 illustrates	 the	 use	 of	 the	 Joyce–Dixon
approximation	for	the	EF	calculation.

Example	4.5: Fermi	Energy	Level	for	a	Degenerate	Semiconductor

A	GaAs	n-type	sample	is	doped	so	that	the	concentration	of	electrons	is	1017.	What	is	the	value	of	the	EF	for	this
sample	relative	to	Ec?	Assume	that	T	=	300	K	and	that	the	semiconductor	is	degenerate.

Solution
The	density	of	states	for	GaAs	at	300	K	is	4.45	×	1017	cm−3	and	kBT	=	0.026	eV.

Therefore,	(EF	−	Ec)	is	−0.037	eV	and	EF	is	0.037	eV	below	Ec.	Note	that	this	value	is	within	3	kBT	of	Ec.



4.10 FERMI	ENERGY	LEVELS	ACROSS	MATERIALS	AND	INTERFACES

We	 have	 discussed	 in	 detail	 how	 to	 calculate	 the	 location	 of	EF	 for	 intrinsic	 and	 extrinsic
semiconductors.	The	significance	of	the	location	of	EF	will	become	clearer	in	Chapter	5	when
we	discuss	 the	formation	of	 the	p-n	 junction,	 the	metal-semiconductor	 junction,	and	devices
based	on	the	same.	When	electrically	different	materials	(e.g.,	a	p-type	semiconductor	and	a
metal)	 are	 brought	 together,	 or	when	 electrically	 different	 interfaces	 are	 created	within	 the
same	 material,	 the	 equilibrium	 Fermi	 energy	 level	 remains	 invariant	 through	 the	 contact.
There	is	no	discontinuity	or	gradient	that	can	exist	in	the	equilibrium	Fermi	energy	level.	As
an	 example,	 consider	 two	 materials,	 A	 and	 B,	 with	 Fermi	 energy	 levels	 EF,A	 and	 EF,B,
respectively	(Figure	4.14).	It	does	not	matter	whether	these	materials	are	the	same	or	different
semiconductors	or	whether	they	are	n-type	or	p-type.	Materials	A	and	B	can	also	be	metals.

We	 usually	 create	 a	 p-type	 material	 in	 a	 crystal	 that	 is	 uniformly	 donor-doped	 or	 vice
versa,	or	we	deposit	a	metal	on	a	semiconductor	crystal.	When	we	bring	Materials	A	and	B
with	different	Fermi	energy	levels	together	(Figure	4.14),	electrons	from	Material	A	(which
has	a	higher	Fermi	energy	 level	and	an	overall	higher	energy)	begin	 to	 flow	to	Material	B
(Figure	4.14c),	until	the	electrons	in	both	materials	have	the	same	energy	distribution	or	the
same	EF	in	both	Materials	A	and	B	(Figure	4.14d).	The	flow	of	electrons	from	Material	A	to
Material	 B	 will	 be	 proportional	 to	 the	 number	 of	 energy	 states	 filled	 with	 electrons	 in
Material	A	and	to	the	number	of	empty	energy	states	available	in	Material	B.

FIGURE	4.14 Materials	A	and	B	with	different	Fermi	energy	 levels	before	and	after	making	a	contact.	 (a)	Material	A	 in
thermal	equilibrium,	(b)	Material	B	in	thermal	equilibrium,	(c)	Materials	A	and	B	at	the	instant	they	are	placed	in	contact,	and
(d)	Materials	 A	 and	 B	 in	 contact	 at	 thermal	 equilibrium.	 (From	 Neaman,	 D.,	An	 Introduction	 to	 Semiconductor	 Devices,
McGraw	Hill,	New	York,	2006.	With	permission.)



The	 rate	of	 transfer	 of	 electrons	 from	Material	A	 to	Material	B	 at	 the	 energy	 level	E	 is
proportional	 to	 [NA(E)	 fA(E)]	×	[NB(E)	 (1	−	fB(E))]	 (i.e.,	 the	 electron	 population	 density	 of
Material	A	at	E	×	the	hole	population	density	of	Material	B	at	E).	Similarly,	the	rate	of	transfer
of	 electrons	 from	Material	 B	 to	Material	 A	 at	 the	 same	 energy	 level	E	 is	 proportional	 to
[NB(E)	fB(E)]	×	[NA(E)(1	−	fA(E))].

When	 equilibrium	 is	 reached	 following	 the	 contact	 between	 the	materials	 with	 different
Fermi	energy	 levels,	 there	 is	no	net	current	 flow.	At	equilibrium,	 the	rate	of	 the	 transfer	of
electrons	 from	Material	 A	 to	Material	 B	 is	 equal	 to	 that	 of	 the	 transfer	 of	 electrons	 from
Material	B	to	Material	A.	Therefore,

[NA(E)	fA	(E)]	×	[NB(E)(1	−	fB(E))]	=	[NB(E)	fB(E)]	×	[NA(E)(1	−	fA(E))]

This	simplifies	to

fA(E)=	fB(E)

or

This	is	true	only	if	EF,A	=	EF,B.
Therefore,	the	Fermi	energy	level	remains	constant	across	Materials	A	and	B,	or

In	 this	 discussion,	 if	 Materials	 A	 and	 B	 were	 n-type	 and	 p-type	 semiconductors,
respectively,	 then	 we	 would	 create	 a	 p-n	 junction	 by	 bringing	 these	 materials	 together.	 In
Chapter	 5,	 we	 will	 discuss	 the	 use	 of	 this	 important	 concept,	 called	 invariance	 of	 Fermi
energy,	in	formation	of	p-n	junctions.

PROBLEMS

4.1 A	metal	 has	 an	 electron	 concentration	 of	 1022	 atoms/cm3.	 What	 is	 the	 value	 of	 the
Fermi	energy	level	at	0	K?	(Use	Equation	4.1.)

4.2 What	 is	 the	maximum	 speed	 of	 an	 electron	 in	 Cu	 at	 0	 K?	 Does	 this	 speed	 increase
significantly	with	temperature?	Explain.

4.3 What	is	the	effective	speed	of	electrons	in	Cu	at	0	K?	Does	this	speed	depend	strongly
on	the	temperature?	Explain.

4.4 What	is	the	EF	at	T	=	300	K	for	the	metal	discussed	in	Problem	4.1?
4.5 How	is	the	Fermi	energy	level	of	a	semiconductor	different	from	both	the	donor	and

acceptor	levels?	Show	using	an	illustration.



4.6 A	 semiconductor	 has	 EF	 =	 0.26	 eV	 below	 the	 conduction	 band	 edge.	 What	 is	 the
probability	that	the	state	0.026	eV	(kBT)	above	the	conduction	band	edge	is	occupied	by
an	electron?	What	type	of	semiconductor	is	this	material—n-type	or	p-type?

4.7 An	 energy	 level	 is	 located	 at	 0.3	 eV	 above	 the	 EF.	 Calculate	 the	 probability	 of
occupancy	for	this	state	at	0,	300,	and	600	K.

4.8 What	 is	 the	 probability	 that	 an	 energy	 state	 0.4	 eV	 below	 EF	 is	 empty	 for	 the
temperatures	of	0,	300,	and	600	K?

4.9 Show	that	the	Fermi–Dirac	function	is	symmetric	around	EF,	that	is,	that	the	probability
of	a	state	∆E	above	EF	is	the	same	as	the	probability	of	finding	a	hole	at	a	state	E	below
EF.

4.10 The	reduced	effective	density	of	states	mass	for	electrons	and	holes	in	GaAs	are	~0.067
and	0.50.	Use	Equation	4.30	 to	calculate	 the	exact	position	of	 the	Fermi	energy	 level
for	intrinsic	GaAs	at	300	K.	How	is	this	location	different	from	that	for	Ge	at	300	K?

4.11 Use	Equation	4.15	to	express	the	concentration	of	electrons	(n)	in	the	conduction	band.
Then,	use	a	similar	equation	to	express	the	concentration	of	electrons	nd	in	the	donor
state	Ed	and	density	of	states	Nd.

4.12 The	reduced	effective	density	of	states	mass	for	electrons	and	holes	in	Ge	are	~0.56	and
0.40	at	300	K.	Use	Equation	4.30	 to	 calculate	 the	 exact	 position	of	 the	Fermi	 energy
level	for	intrinsic	Ge	at	300	K.

4.13 Use	Equation	4.39	to	calculate	the	intrinsic	electron	concentration	in	Si	at	350	and	400
K.

4.14 What	 is	 the	 resistivity	 of	 the	 intrinsic	 Si	 sample	 discussed	 in	Problem	 4.13?	Use	 the
mobility	values	from	Table	3.1	in	Chapter	3,	and	note	that	the	mobility	does	depend	on
the	temperature.

4.15 Derive	 an	 equation	 equivalent	 to	 Equation	 4.39	 that	 describes	 the	 variation	 in	 the
concentration	of	thermally	excited	electrons	in	Ge.

4.16 Derive	 an	 equation	 equivalent	 to	 Equation	 4.39	 that	 describes	 the	 variation	 in	 the
concentration	of	thermally	excited	electrons	in	GaAs.

4.17 A	Si	sample	is	doped	so	that	n	=	2	×	105	cm−3.	What	is	the	hole	concentration	for	this
material?	Is	this	an	n-type	or	a	p-type	Si?	Assume	that	T	=	300	K.

4.18 What	is	the	conductivity	(σ)	of	the	sample	described	in	Problem	4.17?
4.19 A	Si	crystal	is	doped	with	1015	cm−3	of	P	atoms.	Calculate	the	EF	of	this	crystal	relative

to	the	center	of	the	band	gap,	which	can	be	assumed	as	the	location	of	EF,i.
4.20 A	GaAs	crystal	is	doped	such	that	the	EF	is	0.2	eV	above	the	Ev.	Is	this	an	n-type	or	a	p-

type	GaAs?	What	 are	 the	 electron	 and	 hole	 concentrations	 in	 this	material?	Assume
that	Eg	=	1.43	eV	and	T	=	300	K.

4.21 What	 is	 the	resistivity	(ρ)	at	300	K	of	 the	sample	discussed	 in	Problem	4.20?	Use	 the
appropriate	mobility	values	from	Table	3.1	in	Chapter	3.

4.22 A	 Si	 crystal	 is	 first	 uniformly	 doped	 with	 a	 donor	 dopant,	 and	 then	 the	 process	 of
doping	the	entire	crystal	with	an	acceptor	 is	started.	Sketch	the	variation	of	 the	EF	of



this	 semiconductor,	 starting	out	as	an	n-type	material	 as	a	 function	of	 the	 increasing
acceptor	concentration.	Where	 is	 the	EF	when	 the	donor	 and	acceptor	 concentrations
are	equal?

4.23 A	Si	crystal	is	doped	with	1016	cm−3	of	Sb	atoms	(see	Example	4.3),	and	then	the	entire
crystal	is	doped	with	3	×	1017	atoms/cm3	of	B.	What	is	the	new	location	of	the	Fermi
energy	level	for	this	crystal	containing	both	B	and	Sb?

4.24 What	is	the	resistivity	of	Si	(at	300	K)	discussed	in	Problem	4.23	after	Sb-doping	and
B-doping?	 Use	 the	 appropriate	 values	 of	 mobility	 and	 consider	 the	 dependence	 of
mobility	on	the	dopant	concentration.

4.25 As	stated	 in	Section	4.9,	 for	Si	at	300	K,	a	donor	dopant	concentration	(Nd)	≈	≥1.6	×
1018	 atoms/cm3	 or	 an	 acceptor	 dopant	 concentration	 (Na)	 ≈	 ≥9.1	 ×	 1017	 atoms/cm3

result	in	a	degenerate	semiconductor.	Verify	that	this	is	correct	using	the	definition	of	a
degenerate	semiconductor.

4.26 What	 is	 the	 minimum	 donor	 dopant	 concentration	 for	 GaAs	 at	 300	 K,	 at	 which	 we
consider	it	degenerate?	(Hint:	The	solution	for	[EF	−	Ec]	must	be	less	than	3	kBT.)

4.27 A	sample	of	a	GaAs	crystal	is	doped	so	that	Nd	=	1017	donor	atoms/cm3	(see	Example
4.5).	Calculate	the	Fermi	energy	position	using	Equation	4.45,	in	which	we	assume	that
the	sample	is	nondegenerate.	Compare	the	result	with	that	used	in	Example	4.5,	where
we	used	the	Joyce–Dixon	approximation.

GLOSSARY

Degenerate	 semiconductors:	 Semiconductors	 that	 are	 heavily	 doped	 so	 that	 the	 Fermi
energy	moves	very	close	(within	3	kBT)	to	a	band	edge.

Effective	density	of	states	approximation:	The	assumption	that	most	electrons	or	holes
reside	at	the	bottom	of	the	conduction	band	or	the	top	of	the	valence	band,	respectively.
Thus,	Nc	or	Nv	can	be	used	in	calculations	of	the	concentrations	of	electrons	and	holes
in	the	conduction	and	valence	bands,	respectively.

Effective	speed	of	electrons	(ve):	or	the	root	mean	speed	of	electrons	in	a	metal	is	given

by	 .
Fermi–Dirac	distribution	function:	The	function	that	gives	the	probability	of	occupancy

of	a	state	by	an	electron	and	is	defined	as

Fermi	energy	(EF):	The	energy	level	at	which	the	probability	of	occupancy	of	a	state	is
0.5.

Invariance	 of	 Fermi	 energy:	 When	 materials	 with	 different	 Fermi	 energy	 levels	 are
brought	 in	 contact	 with	 each	 other	 under	 equilibrium	 conditions,	 the	 Fermi	 energy



level	remains	continuous	across	the	interface	between	the	different	materials.
Joyce–Dixon	 approximation:	 An	 equation	 used	 for	 calculating	 the	 Fermi	 energy	 level

for	degenerate	semiconductors.
Law	of	mass	action	for	semiconductors:	For	any	given	semiconductor,	the	value	of	n	×	p

is	a	constant	at	a	given	temperature.
p-n	junction:	The	electrical	junction	between	a	p-type	and	an	n-type	semiconductor.	This

is	the	basis	for	many	devices,	including	diodes	and	transistors.
Work	function	(qϕ):	The	energy	required	to	remove	an	electron	from	EF	to	a	vacuum.
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5	Semiconductor	p-n	Junctions

KEY	TOPICS

Formation	of	a	p-n	junction
Concept	of	built-in	potential
Band	diagram	for	a	p-n	junction
Diffusion	and	drift	currents	in	a	p-n	junction
What	makes	the	p-n	junction	useful?
Current–voltage	(I–V)	curve	for	a	p-n	junction
Some	devices	based	on	p-n	junctions

5.1 FORMATION	OF	A	P-N	JUNCTION

Consider	a	hypothetical	experiment	in	which	we	put	together	two	crystals	of	a	semiconductor
and	form	a	contact:	one	is	an	n-type	and	the	other	is	a	p-type.	A	schematic	illustration	on	the
change	at	the	contact	is	shown	in	Figure	5.1.

When	we	 bring	 the	 two	 semiconductors	 together	 to	 form	 a	 p-n	 junction,	 electrons	 start
flowing	from	the	n-side	to	the	p-side	to	minimize	the	concentration	gradient,	which	is	called
the	 diffusion	 current.	 This	 will	 continue	 until	 a	 new	 common	 Fermi	 energy	 level	 (EF)	 is
established	 through	 the	 contact	 (Section	 4.10).	 Since	 electrons	 are	 negatively	 charged,	 the
direction	of	the	current	associated	with	their	motion	is	opposite	to	the	direction	of	their	actual
motion.	The	direction	of	the	current	associated	with	the	diffusion	of	electrons	is	from	the	p-
side	to	the	n-side	of	the	p-n	junction	(Figure	5.2).

On	the	other	hand,	a	p-doped	material	has	a	much	higher	concentration	of	holes	on	the	p-
side	than	on	the	n-side.	Thus,	when	a	p-n	junction	is	formed,	the	holes	diffuse	from	the	p-side
to	the	n-side.	Since	holes	are	positively	charged	particles,	the	diffusion	current	induced	due	to
the	hole	movement	is	in	the	same	direction	as	the	hole	diffusion,	and	hole	diffusion	current
and	electron	diffusion	current	flow	along	the	same	direction	(Figure	5.2).

Note	 that	 a	 concentration	 gradient	 of	 dopant	 atoms	 exists	 because	 there	 is	 a	 significant
concentration	 of	 donor	 atoms	 on	 the	 n-side	 and	 almost	 no	 donor	 atoms	 on	 the	 p-side.
However,	there	is	no	diffusion	of	donor	atoms	or	ions	because	their	mobility	is	very	low	at
or	near	room	temperature.	Thus,	here	we	only	consider	the	diffusion	of	holes	and	electrons.

Since	diffusion	is	concentration	gradient	driven,	we	expect	 that	 the	flow	of	electrons	and
holes	induced	will	continue	until	the	concentrations	of	electrons	and	holes	become	equal	on
both	sides	of	the	p-n	junction.	For	example,	if	we	join	a	crystal	of	copper	(Cu)	and	a	crystal	of
nickel	(Ni)	and	then	heat	this	to	a	high	temperature	(e.g.,	500°C)	to	promote	diffusion	(Figure
5.3),	 after	 a	 few	hours,	 the	copper	atoms	will	diffuse	 into	 the	nickel	crystal	 and	vice	versa.
This	 process	 of	 interdiffusion	 will	 continue	 until	 the	 concentrations	 of	 copper	 and	 nickel
atoms	are	equal	on	both	sides	of	the	original	interface.

We	will	now	discuss	the	difference	between	the	interdiffusion	of	copper	and	nickel	atoms
(Figure	 5.3)	 and	 the	 diffusion	 of	 holes	 and	 electrons	 in	 the	 formation	 of	 a	 p-n	 junction



(Figures	5.1	and	5.2).	When	electrons	in	the	n-type	material	begin	to	diffuse	out	into	the	p-type
material,	they	leave	behind	positively	charged	donor	ions.	For	example,	when	a	donor	such	as
phosphorus	 (P)	 is	 added	 as	 a	 neutral	 atom,	 it	 donates	 an	 electron	 and	 becomes	 ionized,
turning	into	a	P1+	ion.	Similarly,	when	holes	from	the	p-side	begin	to	diffuse	onto	the	n-side
of	the	p-n	junction,	they	leave	behind	negatively	charged	acceptor	ions	(e.g.,	boron;	B1−	ion).

FIGURE	 5.1 Schematics	 on	 the	 diffusion	 of	 charge	 carriers	 and	 the	 formation	 of	 the	 depletion	 region	 after	 the	 p-type
semiconductor	makes	a	junction	with	the	n-type	semiconductor.



FIGURE	5.2 The	directions	of	particle	motion	for	the	diffusion	and	drift	of	electrons	and	their	corresponding	currents	for	a
p-n	junction	under	equilibrium.	(From	Edwards-Shea,	L.,	The	Essence	of	Solid	State	Electronics,	Prentice	Hall,	Upper	Saddle
River,	NJ,	1996.	With	permission.)

Thus,	as	electrons	diffuse	from	the	n-type	into	the	p-material,	they	leave	behind	a	region	of
positively	charged	donor	ions,	shown	with	+	signs	in	Figure	5.1.	Similarly,	as	holes	diffuse
from	the	p-side	to	the	n-side,	they	create	a	region	comprised	of	negatively	charged	acceptor
ions.	 Thus,	 at	 the	 p-n	 junction,	 there	 is	 an	 area	 known	 as	 the	 depletion	 region,	 so	 named
because	it	 is	depleted	of	electrons	and	holes.	It	 is	also	called	the	space-charge	region	or	 the
space-charge	 layer,	which	 refers	 to	 the	positive	and	negative	charges	present	 in	 this	 region
(Figure	5.4).



FIGURE	5.3 Illustration	of	 the	 interdiffusion	of	 copper	 and	nickel	 atoms.	 (From	Askeland,	D.	 and	Fulay	P.,	The	 Science
and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



FIGURE	 5.4 I–V	 curve	 for	 a	 silicon-based	 p-n	 junction.	 Breakdown	 and	 knee	 voltage	 are	 shown.	Note	 the	 current	 and
voltage	scales	for	forward	and	reverse	bias	are	different.

Across	the	width	of	the	depletion	region	(w0),	the	electric	charge	is	not	zero	(negative	in	p-
type	semiconductor	and	positive	in	n-type	semiconductor).	An	internal	electric	field	(E)	is	set
up	because	of	the	presence	of	positively	charged	donor	ions	and	negatively	charged	acceptor
ions	(Figure	5.4).	This	electric	field	(E)	is	directed	from	the	positively	charged	donor	ions	to
the	 negatively	 charged	 acceptor	 ions,	 and	 the	 built-in	 potential	 is	 generated	 across	 the
depletion	region	(Figure	5.3).	If	an	electron	tries	to	diffuse	from	the	n-side	to	the	p-side,	the
electron	begins	to	see	the	acceptor	ions	and	experiences	the	built-in	potential.	The	motion	of
such	electrons	toward	the	p-side	is	opposed	by	the	negatively	charged	acceptor	ions	 	(or
the	built-in	 potential).	 Similarly,	 if	 a	 hole	 tries	 to	 diffuse	 from	 the	 p-side	 to	 the	 n-side,	 it
begins	to	experience	the	repelling	force	of	the	positively	charged	donor	ions	 .	We	will
use	 the	 symbols	Nd	 and	Na	 for	 the	 concentrations	 of	 donor	 and	 acceptor	 atoms	 or	 ions,
respectively.	Thus,	the	built-in	electric	field	stops	the	diffusion	of	electrons	from	the	n-side	to
the	p-side	and	the	diffusion	of	holes	from	the	p-side	to	the	n-side.

The	voltage	corresponding	to	the	internal	electric	field	is	known	as	the	contact	potential,
which	 is	 the	 same	 as	 the	 built-in	 potential	 (V0),	 and	 is	 expressed	 in	 volts.	 This	 potential
difference	can	appear	when	a	p-n	junction	between	different	materials	is	formed.	As	we	can
see	 from	 Figure	 5.3,	 the	 built-in	 electric	 field	 is	 directed	 toward	 the	 −x-direction.	 In	 the
depletion	region,	the	electric	field	is	related	to	the	potential	as	follows:



The	electrostatic	potential	(V)	is	higher	on	the	n-side,	which	is	a	part	of	the	depletion	layer
with	 a	 net	 positive	 charge.	 The	 contact	 potential	 (V0)	 is	 the	 difference	 between	Vn	 and	Vp,
where	Vn	and	Vp	are	 the	electrostatic	potentials	 in	 the	n-	and	p-neutral	 regions,	 respectively.
Thus,

We	plot	the	electron	energy,	which	is	related	to	the	electric	potential	by	a	factor	of	−q,	on
the	band	diagram.	Therefore,	Ec,n,	EF,n,	and	Ev,n	(that	is,	different	energy	levels	on	the	n-side)
appear	lower	on	the	p-n	junction	band	diagram	than	the	corresponding	levels	on	the	p-side.

The	development	of	the	contact	potential,	also	known	as	the	diffusion	potential,	makes	the
p-n	 junction	 interesting	 and	 useful	 for	 device	 applications.	 This	 built-in	 potential	 prevents
further	diffusion	of	electrons	(from	the	n-	to	the	p-side)	and	holes	(from	the	p-	to	the	n-side)
and	maintains	the	width	of	the	depletion	region	at	the	equilibrium	value	(W0).	If	no	external
bias	is	applied,	the	equilibrium	is	made,	and	there	is	no	net	electric	current	flowing	through
the	junction.	We	will	see	in	Section	5.9	that,	by	applying	a	forward	bias	(that	is,	by	connecting
the	positive	 terminal	of	 an	external	voltage	 supply	 to	 the	p-side),	 both	 the	built-in	potential
and	the	depletion	junction	width	can	be	decreased.	If	 this	happens,	 the	electric	current	flows
through	 the	p-n	 junction	as	 the	diffusion	of	electrons	and	holes	 resumes.	Conversely,	 if	we
apply	a	reverse	bias	by	connecting	the	negative	terminal	of	an	external	voltage	supply	to	the
p-side,	then	the	reverse	bias	adds	to	the	built-in	potential	barrier	(see	Section	5.10).	Thus,	the
p-n	 junction	will	 be	 able	 to	 carry	 very	 little	 diffusion	 current.	However,	 there	 still	 is	 a	 net
electric	 current	 even	 under	 the	 reverse	 bias	 state.	 Let	 us	 take	 a	 look	 at	 the	 charge	 carrier
transport	through	the	junction	more	carefully	in	the	next	section.

5.2 DRIFT	AND	DIFFUSION	OF	CARRIERS

A	p-n	 junction	 is	 a	 tunable	device	 and	 is	 used	 to	 create	 diodes,	 transistors,	 and	 so	 on.	The
explanation	in	Section	5.1,	which	is	only	based	on	the	diffusion,	is	a	bit	intuitive	and	not	very
rigorous.	To	understand	the	nature	of	the	p-n	junction,	we	have	to	classify	a	driving	force	of
the	carrier	 transport	 at	 the	 junction	 into	drift	 as	well	 as	 the	diffusion.	Strictly	 speaking,	 the
diffusion	current	is	not	zero	at	the	equilibrium	state.	Instead,	since	the	drift	and	the	diffusion
cause	 two	 currents	 flowing	 in	 parallel	 but	 opposite	 directions,	 the	 net	 electric	 current
becomes	zero.

The	built-in	or	internal	electric	field	(E)	created	in	the	p-n	junction	stops	further	diffusion
of	 electrons	 and	 holes.	 It	 also	 plays	 another	 important	 role	 by	 setting	 up	 drift	 currents
(Figures	 5.2	 and	 5.4).	 The	 term	 drift	 refers	 to	 the	 motion	 of	 charge	 carriers	 under	 the
influence	of	an	internal	or	external	electric	field.	When	electrons	thermally	generated	in	the	p-
side	 (where	 they	are	minority	carriers)	experience	 the	 internal	electric	 field	at	 the	 junction,
the	 minority	 carriers	 are	 driven	 toward	 the	 positively	 charged	 region	 of	 donor	 ions.	 The
internal	 electric	 field	 causes	 electrons	 on	 the	 p-side	 to	 drift	 toward	 the	 n-side	 (Figure	 5.2).
Similarly,	thermally	generated	holes	in	the	n-side	drift	toward	the	negatively	charged	space-
charge	 region	 of	 the	 p-side.	 Due	 to	 a	 difference	 in	 the	 polarity,	 these	 drifts	 of	 the	 charge
carriers	cause	electric	currents	 (called	drift	currents)	 to	 flow	along	 the	same	direction.	The



total	drift	current	in	a	p-n	junction	is	known	as	the	generation	current	(see	Section	5.11).	It	is
an	important	part	of	the	current–voltage	(I–V)	characteristics	of	a	p-n	junction.

Note	that	the	directions	of	the	diffusion	of	electrons	and	the	drift	of	electrons	are	opposite.
Due	to	 the	electron	diffusion,	 the	current	 is	from	the	p-side	 to	 the	n-side.	The	electron	drift
current	 is	 from	the	n-side	 to	 the	p-side.	The	directions	of	 the	diffusion	of	majority	carriers
and	the	drift	of	minority	carriers	on	the	n-side	and	p-side	are	shown	in	Figures	5.2	and	5.4.

For	a	p-n	junction	at	equilibrium	(Figure	5.2),	the	drift	and	diffusion	current	densities	(J)
cancel	out	because	a	p-n	junction	at	the	equilibrium	carries	no	electrical	current.

Therefore,

and

Subscripts	p	and	n	refer	to	the	motion	of	holes	and	electrons,	respectively.

5.3 CONSTRUCTING	THE	BAND	DIAGRAM	FOR	A	P-N	JUNCTION

In	Chapter	4,	we	learned	how	to	calculate	the	relative	position	of	the	Fermi	energy	level	for	a
semiconductor	(Examples	4.2	and	4.3)	and	the	invariance	of	the	Fermi	energy	level	 through
the	contact	(Section	4.10).	We	will	now	draw	the	band	diagram	for	a	p-n	junction	using	this
information	and	graphically	calculate	 the	value	of	qV0	 and,	hence,	V0.	This	 is	 illustrated	 in
Example	5.1.

Example	5.1: Estimation	of	Contact	Potential	from	the	Band	Diagram

Consider	a	p-n	junction	in	Si.	Assume	that	the	n-	and	p-sides	have	a	dopant	concentration	of	Nd	=	10
16	and	Na	 =

1017	atoms/cm3,	 respectively.	 (a)	Calculate	 the	Fermi	energy	position	 for	 the	n-type	and	p-type	 semiconductors,
and	draw	the	band	diagrams	for	 the	n-type	and	p-type	semiconductors	before	 they	are	 joined.	 (b)	Draw	the	band
diagram	 for	 this	 p-n	 junction	 and	 estimate	 its	 contact	 potential	 (V0).	 Assume	 that	 T	 =	 300	 K,	 ni	 =	 1.5	 ×	 10

10

electrons/cm3,	and	Eg	=	1.1	eV.

Solution
1.	 As	we	have	seen	in	Chapter	4,

Assuming	a	complete	donor	ionization,	that	is,	n	≈	Nd	=	10
16	atoms/cm3,	we	get



FIGURE	5.5 Band	diagrams	for	n-type	and	p-type	regions	(see	Example	5.1).

FIGURE	5.6 Summary	of	steps	to	be	followed	to	draw	a	p-n	junction	band	diagram.

Thus,	the	Fermi	energy	level	for	this	n-type	semiconductor	is	0.349	eV	above	EF,i.	This	is	shown	in
Figure	5.5.
Similarly,	for	the	p-side,

Substituting	Na	=	10
17	atoms/cm3	=	p	and	the	value	of	ni,

or

EF,p	=	EF,i	−	0.407	eV

2.	 Now,	 we	 draw	 the	 band	 diagram	 for	 the	 p-n	 junction	 (Figure	 5.6).	 First,	 we
recognize	that	a	common	Fermi	energy	level	is	established	after	the	n-type	and
p-type	 semiconductors	 are	 joined.	 Therefore,	 we	 draw	 a	 horizontal	 line	 that
represents	this	common	EF	(Figure	5.6).	On	 the	n-side	of	 this	 junction,	but	 far
away	from	the	boundary	of	the	interface	between	the	two	materials,	the	common



Fermi	energy	 level	EF	 is	 0.349	 eV	above	 the	EF,i,n.	Using	 a	 suitable	 scale,	we
draw	a	line	0.349	eV	below	EF,i,n	and	label	 it	EF,n.	This	 represents	 the	 intrinsic
Fermi	energy	level	position	on	the	n-side.	Since	this	is	almost	at	the	middle	of
the	 band	 gap,	 we	 draw	 the	 conduction	 band	 edge	Ec,n	 at	 0.55	 eV	 (1/2	 of	Eg)
above	EF,i,n.	We	next	draw	Ev,n	0.55	eV	below	the	EF,i,n.

On	 the	 p-side	 of	 this	 junction,	 but	 far	 away	 from	 the	 boundary	 of	 the	 interface	 between	 the	 two
materials,	the	EF,p	is	0.407	eV	below	the	dotted	EF,i,p	line.	Thus,	we	draw	a	line	0.407	eV	above	the
common	 energy	 level	 EF,p	 and	 label	 it	 as	 EF,i,p.	 This	 represents	 the	 intrinsic	 Fermi	 energy	 level
position	on	the	p-side.	We	then	draw	the	conduction	band	edge	on	the	p-side	Ecp	at	0.55	eV	(1/2	of
Eg)	above	EF,i,p.	We	next	draw	Ev,p	0.55	eV	below	the	EF,i,p	line.	Note	that	this	automatically	puts
the	band	edges	on	the	p-side	higher	than	their	counterparts	on	the	n-side.

FIGURE	5.7 A	band	diagram	for	the	p-n	junction	in	Example	5.1.

The	steps	needed	to	complete	the	p-n	junction	band	diagram	are	summarized	in	Figure	5.6.	We	now
join	the	conduction	band	edges	and	valence	band	edges	on	both	sides	as	shown	in	Figure	5.7.	We	will
see	in	Section	5.7	that	the	variation	of	electron	energy	across	the	depletion	region	is	parabolic.
From	this	band	diagram,	we	can	see	that

Looking	at	the	p-side	of	the	diagram,

Looking	at	the	n-side	of	the	diagram,

Therefore,	subtracting	Equation	5.9	from	Equation	5.8,	we	get	qV0	=	the	height	of	the	energy	barrier
setup	=	Ec,p	−	Ec,n	=	0.407	eV	+	0.55	eV	−	0.55	eV	+	0.349	eV	=	0.756	eV.	Thus,	the	value	of	the
contact	potential	for	this	p-n	junction	(V0)	is	0.756	V	(Figure	5.7).	Note	that	the	contact	potential	is	Vn
−	Vp	(Figure	5.1).

5.4 CALCULATION	OF	CONTACT	POTENTIAL

If	the	doping	level	on	the	n-side	increases,	then	EF,n	will	be	farther	away	from	EF,i,n	 (Figure
5.6)	and	the	Ecn	and	Ev,n	will	move	down	to	center	themselves	around	EF,i,n.	If	nothing	changes
on	the	p-side,	then	the	value	of	qV0	will	be	expected	to	increase.	Similarly,	if	the	doping	level
on	the	p-side	is	increased,	then	EF,i,p	will	move	up	relative	to	EF,p	(Figure	5.5).	Then,	Ev,p	and



Ecp	 will	 also	 move	 up	 to	 center	 around	 EF,i,p.	 If	 nothing	 changes	 on	 the	 n-side,	 qV0	 will
increase.

We	will	now	derive	an	equation	that	quantitatively	describes	how	the	value	of	V0	changes
with	the	dopant	concentrations	on	the	n-	and	p-sides	of	the	p-n	junction.

According	to	Fick’s	first	law	of	diffusion,	the	flux	of	diffusing	species	is	proportional	to
the	 negative	 of	 the	 concentration	 gradient.	 The	 negative	 sign	 means	 that	 there	 will	 be	 a
movement	 of	 species	 from	 a	 region	 of	 higher	 concentration	 to	 a	 region	 of	 lower
concentration.	In	this	case,	we	want	to	calculate	the	electrical	charge	flowing	per	unit	time	not
just	the	number	of	electrons	or	holes.	Therefore,	we	will	multiply	the	flux	of	the	species	by	q,
the	magnitude	of	the	charge	of	an	electron	or	a	hole.

Thus,	the	diffusion	current	density	(J)	due	to	the	motion	of	the	holes	is

We	 have	 taken	 the	 direction	 from	 p	 to	 n	 as	 the	 positive	 x-direction	 (Figure	 5.2).	 In	 this
equation,	Dp	is	the	diffusion	coefficient	for	holes.

The	drift	current,	which	is	due	to	the	movement	of	the	holes	from	the	n-side—where	they
are	the	minority	carriers—to	the	p-side,	is	given	by

In	Equation	5.11,	p(x)	is	the	hole	concentration	along	the	x-direction,	and	E(x)	is	the	built-
in	electric	field.	We	know	the	hole	concentration	on	both	the	p-side	and	the	n-side,	where	the
holes	are	minority	carriers.

The	 current	 induced	 by	 the	 diffusion	 of	majority	 carriers	 and	 the	 current	 caused	 by	 the
drift	of	minority	carriers	are	in	opposite	directions	and	cancel	each	other	out	(Equation	5.3).
Therefore,	we	get

Simplifying,

Since	we	want	to	calculate	the	value	of	V0,	the	contact	potential,	we	change	the	electric	field
(E)	to	electrostatic	potential	(V)	by	substituting	for	E(x)	from	Equation	5.1	into	Equation	5.13:

Using	the	so-called	Einstein	relation	(not	derived	here)	and	applying	it	to	holes,

From	Equations	5.14	and	5.15,	we	get



We	 know	 the	 concentrations	 of	 holes	 on	 both	 the	 p-side	 and	 the	 n-side	 in	 the	 neutral
regions,	 that	 is,	 the	 regions	 away	 from	 the	 p-n	 junction	 that	 do	 not	 have	 any	 built-up	 net
charge.	We	assume	a	one-dimensional	model;	that	is,	we	assume	that	the	carriers	will	diffuse
and	drift	along	the	x-direction	(+	or	−)	only.	We	now	integrate	Equation	5.16	from	the	p-side
to	the	n-side:

In	Equation	5.17,	Vp	and	Vn	are	 the	electrostatic	potentials	on	 the	p-side	and	n-side	of	 the
neutral	regions,	where	there	is	no	built-up	net	charge.	The	hole	concentrations	in	the	neutral
regions	on	 the	p-side	 and	 the	n-side	 are	pp	 and	pn,	 respectively.	The	 subscripts	 indicate	 the
side	of	the	p-n	junction.	Simplifying	Equation	5.17,

Note	that	the	potential	difference	Vn	−	Vp	is	V0,	the	contact	potential.

Eliminating	the	negative	sign,	we	get

For	 a	 step	 junction,	 we	 move	 abruptly	 from	 the	 p-side,	 with	 Na	 acceptors	 per	 cubic
centimeter,	to	the	n-side	with	Nd	donors	per	cubic	centimeter.	We	rewrite	Equation	5.20	as

To	get	Equation	5.21,	we	used	pp	=	Na	and	 .	This	form	is	useful	 in	calculating
the	contact	potential	(V0)	associated	with	a	p-n	junction.

We	can	rewrite	Equation	5.20	as

Since	pp	×	np	=	pn	×	nn	=	n2,	we	can	write



We	can	 see	 from	Equation	5.23	 that,	 if	 the	 dopant	 concentration	 on	 the	 p-side	 increases,
then	qV0	will	 increase.	We	also	saw	this	 in	 the	calculation	of	V0	 from	the	p-n	 junction	band
diagram	in	Section	5.3	and	Figure	5.7.

From	Equation	5.22,	we	substitute	for	pp	and	pn	in	terms	of	the	density	of	states	(N)	and	the
difference	between	EF	relative	to	the	valence	band	edge	on	each	side:

In	Equation	5.24,	the	additional	subscript	for	E	refers	to	the	side	of	the	junction.	Thus,	EF,p
is	the	Fermi	energy	level	on	the	p-side,	Ev,n	is	the	valence	band	edge	on	the	n-side,	and	so	on.
Rearranging	Equation	5.24,

Note	that	the	Fermi	energy	is	constant	for	a	p-n	junction	under	equilibrium;	that	is,	EF,n	−
EF,p	=	0,	so	we	get

FIGURE	5.8 The	I–V	curve	for	the	p-n	junction	in	Example	5.2,	with	a	forward	bias.

Therefore,



The	 contact	 potential	 barrier	 energy	 (qV0)	 is	 the	 difference	 between	 the	 valence	 and
conduction	band	edges	on	 each	 side	of	 the	p-n	 junction.	This	was	 shown	 in	Figure	5.7,	 the
band	diagram	for	a	p-n	junction.	Example	5.2	examines	the	application	of	these	equations.

Example	5.2: Calculation	of	Contact	Potential	(V0)

A	 step	 junction	 in	 Si	 is	 such	 that	 the	 n-	 and	 p-sides	 have	 dopant	 concentrations	 of	Nd	 =	 10
16	 and	Na	 =	 10
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atoms/cm3,	respectively	(see	Example	5.1).	Calculate	the	contact	potential	(V0),	assuming	that	T	=	300	K	and	ni	=

1.5	×	1010	electrons/cm3.
Solution
From	Equation	5.21,

Thus,	the	value	of	the	potential	energy	barrier	set	up	by	the	built-in	electric	field	for	this	p-n	junction	is	0.757	eV
and	the	corresponding	voltage	(V0)	is	0.757	V,	which	is	the	same	as	in	Example	5.1.
Using	 forward	 bias	 (the	 “p-side	 to	 positive,”	 a	 useful	mnemonic),	we	 overcome	 this	 built-in	 potential,	 and	 the

diffusion	current	starts	to	flow	again.	This	assumes	that	the	voltage	drop	is	very	small	in	the	neutral	regions,	where
there	is	no	space	charge	accumulated.	For	a	forward	VF	>	0.757	V,	electrical	current	(VF)	of	the	p-n	junction	begins
to	increase	dramatically	(Figure	5.8).

5.5 SPACE	CHARGE	AT	THE	P-N	JUNCTION

The	depletion	region	shown	in	Figure	5.4	has	an	extremely	small	concentration	of	electrons
or	holes,	 and	 ionized	dopants	 in	 the	depletion	 region	are	not	electrically	compensated.	The
charge	density	for	the	depletion	region	on	the	n-side	of	the	junction	is	q	×	Nd,	where	Nd	is	the
concentration	of	donor	ions.	Assume	that	the	cross-sectional	area	of	the	p-n	junction	is	A	and
the	width	of	the	depletion	region	on	the	n-side	is	xn,0.	The	subscript	n	refers	to	the	n-side,	and
the	subscript	0	stands	for	a	p-n	junction	under	equilibrium;	that	is,	no	external	voltage	or	bias
is	applied.	Thus,	the	volume	of	the	depletion	region	on	the	n-side	is	A	×	xn,0.	In	this	region,	the
total	positive	electrical	charge	is



FIGURE	5.9 (a)	Space	charge	density	and	(b)	electric	field	variation	at	a	p-n	junction.	(From	Neaman,	D.,	An	Introduction
to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Similarly,	if	xp,0	is	the	width	of	the	penetration	of	the	depletion	region	into	the	p-side	and
the	cross-sectional	area	is	A,	 then	 the	magnitude	of	 the	negative	charge	on	 the	p-side	of	 the
depletion	region	is

The	donor	and	acceptor	ion	charges	accumulated	on	the	n-	and	p-sides	must	be	equal	for
an	electrical	neutrality	of	the	entire	p-n	junction,	that	is,	Q+	=	Q−	or

Therefore,

The	 width	 of	 penetration	 of	 the	 depletion	 region	 varies	 inversely	 to	 the	 dopant
concentration.	For	example,	if	the	p-side	of	the	semiconductor	is	doped	more	heavily	than	the
n-side	 (as	 in	 Example	 5.1),	 the	 penetration	 of	 the	 depletion	 region	 on	 the	 p-side	 will	 be
smaller.	If	one	side	is	heavily	doped,	it	needs	a	lesser	volume	of	that	material	to	compensate
for	the	charge	on	the	other	side	(Figure	5.9).	If	one	side	is	lightly	doped	(in	this	case,	the	n-
side),	then	we	need	more	volume	of	that	material	to	compensate	for	the	charge	on	the	other
side.	This	means	a	higher	penetration	depth	in	the	one-dimensional	model.

5.6 ELECTRIC	FIELD	VARIATION	ACROSS	THE	DEPLETION	REGION

Using	Poisson’s	equation,	we	can	calculate	the	electric	field	and	the	electron	energy	variation
across	 the	 depletion	 region.	 According	 to	 the	 one-dimensional	 form	 of	 this	 equation,	 the
gradient	of	the	electric	field	is	related	to	the	charge	density	and	the	dielectric	permittivity	of
the	material	(ε):



where	ϕ	is	the	electric	potential,	ρ	is	the	charge	density,	ε	is	the	dielectric	permittivity	of	the
material,	E	 is	 the	 electric	 field,	 and	 x	 is	 the	 distance.	Note	 that	 ε	 =	 ε0	 ×	 εr,	 where	 εr	 is	 the
dielectric	constant	and	ε0	is	the	permittivity	of	the	free	space.	The	dielectric	constant	(εr)	is	a
measure	of	the	ability	of	a	dielectric	material	to	store	an	electrical	charge.

We	assume	that	the	doping	on	the	n-	and	p-sides	is	uniform,	and	hence	the	charge	density	is
as	shown	in	Figure	5.9a.

Applying	Poisson’s	equation	to	the	n-side	region	in	the	depletion	zone	(x	=	0	to	x	=	xn,0),

We	can	obtain	the	electric	field	(E)	variation	by	integrating	Equation	5.31.

Note	that	when	x	=	xn,0,	E	=	0,	 that	 is,	outside	 the	depletion	 layer,	 there	 is	no	net	built-up
charge	and	the	electric	field	becomes	zero.	Using	this	condition	in	Equation	5.32,	we	get

Using	 this	 value	 of	 the	 constant	 of	 integration	 (C1)	 in	 Equation	 5.32,	 the	 electric	 field
variation	across	the	n-side	of	the	depletion	region	is	given	by

The	maximum	in	the	electric	field	occurs	at	x	=	0.	Its	magnitude	is	given	by

Similarly,	we	can	show	that	on	the	p-side	of	the	junction,	in	the	depletion	region,

The	variation	in	the	electric	field	across	the	depletion	layer	width	(w),	that	is,	from	−xp0	to
xn0,	is	shown	in	Figure	5.9.

As	 we	 can	 see	 from	 Poisson’s	 equation,	 the	 electric	 field	 variation	 is	 in	 the	 form	 of	 a
straight	 line	 for	 a	 uniform	 charge	 density.	With	 a	 linear	 variation	 in	 the	 electric	 field,	 the
electric	potential	will	have	a	parabolic	change.



5.7 VARIATION	OF	ELECTRIC	POTENTIAL

We	use	Poisson’s	equation	 to	compute	 the	electrostatic	potential	 (ϕ)	across	 the	p-n	 junction.
We	can	obtain	 the	 electrostatic	 potential	 by	 integrating	 the	 electric	 field	 across	 the	distance
over	which	the	potential	appears.

For	 the	 p-side	 of	 the	 depletion	 region,	 substituting	 for	 E(x)	 from	 Equation	 5.36	 into
Equation	5.37,	we	get

Therefore,

Since	the	electrostatic	potential	is	zero	at	x	=	−xp,0,	we	can	calculate	the	integration	constant
C2	in	Equation	5.39	as	follows:

Substituting	the	value	of	C2	in	Equation	5.39,	we	get

We	will	now	calculate	the	electrostatic	potential	(ϕ)	on	the	n-side	of	the	depletion	layer	by
integrating	the	electric	field	from	Equation	5.34	as	follows:

Therefore,

The	electrostatic	potential	is	continuous	across	the	p-n	junction,	that	is,	at	x	=	0,	the	value
of	potential	(ϕ)	can	also	be	calculated	using	Equation	5.41	and	is	equal	to	the	value	given	by
Equation	 5.43.	 Therefore,	 we	 evaluate	 the	 integration	 constant	 C3	 using	 the	 following
equation:

Substituting	this	value	of	C3	into	Equation	5.43,	we	get



This	variation	in	the	electrostatic	potential	across	the	p-n	junction	is	shown	in	Figure	5.10
(Neaman	2006).

The	value	of	the	contact	potential	(V0)	can	be	calculated	by	evaluating	this	equation	at	x	=
xn,0.

Therefore,

FIGURE	5.10 Electrostatic	potential	variation	across	the	p-n	junction.

Note	 that	 the	 electrostatic	 potential	 (ϕ;	 unit	 is	 volts)	 and	 the	 electron	 energy	 (unit	 is
electron	volts)	shown	on	the	band	diagram	are	related	by	the	following	equation:

The	 electrostatic	 potential	 is	 higher	 on	 the	 n-side	 (Figure	 5.9),	 which	 means	 that	 the
electron	energy	is	lower	on	the	n-side.	One	way	to	visualize	the	higher	electrostatic	potential
on	the	n-side	is	to	note	that	this	is	the	side	of	the	p-n	junction	with	positively	charged	donor
ions	left	behind	(Figure	5.1).

5.8 WIDTH	OF	THE	DEPLETION	REGION	AND	PENETRATION	DEPTHS

The	semiconductor	p-n	junction	is	electrically	neutral	as	a	whole	(Equations	5.28	and	5.29).
Substituting	for	xp	from	Equation	5.29	into	Equation	5.46	and	solving	for	xn,	we	get

Note	that	we	dropped	the	subscript	0	in	xn,0,	and	that	the	p-n	junction	is	not	biased.
Similarly,	we	can	solve	for	xp	by	substituting	for	xn	from	Equation	5.29	into	Equation	5.46:

Now,	the	width	of	the	depletion	layer	is



Substituting	for	xp	and	xn,

Thus,	for	a	p-n	junction	with	known	doping	levels,	we	can	calculate	the	built-in	potential
(V0)	using	Equation	5.21	or	5.46.	We	can	calculate	 the	depletion	 layer	width	using	Equation
5.51,	and	the	maximum	electric	field	in	a	p-n	junction	at	x	=	0	using	Equation	5.35.	Examples
5.3	and	5.4	illustrate	the	calculation	of	the	contact	potential	(V0),	the	depletion	layer	width	(w),
and	the	maximum	electric	field.

Example	5.3: Calculation	of	the	Depletion	Region	Width

A	step	 junction	 in	Si	 is	 such	 that	 the	n-	 and	p-sides	have	a	uniform	dopant	 concentration	of	Nd	=	10
16	and	Na	 =

1017	atoms/cm3,	respectively	(see	Examples	5.1	and	5.2).	(a)	On	which	side	will	the	depletion	layer	penetration	be
smaller?	Why?	(b)	Calculate	the	penetration	depths	on	the	n-side	and	p-side.	(c)	Calculate	the	total	depletion	layer
width	(w).

Solution
1.	 For	this	p-n	junction,	the	depletion	layer	penetration	depth	on	the	p-side	will	be

smaller	because	of	the	relatively	higher	acceptor	dopant	concentration.
2.	 From	Equations	5.48	and	5.49,

The	space	charge	width	on	the	p-side	(Xp)	is	given	by

Because	of	the	higher	dopant	concentration,	the	penetration	depth	on	the	p-side	(Xp)	is	smaller.

3.	 The	total	width	of	the	depletion	layer	(w)	will	be	=	298	+	29.8	=	327.8	nm.

Example	5.4: Calculation	of	the	Maximum	Electric	Field

A	p-n	junction	in	Si	has	Nd	=	10
16	atoms/cm3	and	the	acceptor	doping	level	is	Na	=	5	×	10

17	cm−3.

1.	 Calculate	 the	 built-in	 potential	 (V0)	 and	 (b)	 the	maximum	 electric	 field	 in	 the
depletion	region.

Solution
1.	 From	Equation	5.21,

The	built-in	voltage	(V0)	is	0.795	V.



2.	 The	maximum	electric	field	occurs	at	x	=	0,	the	metallurgical	boundary	of	the
p-n	junction.

From	Equation	5.35,	when	x	=	0,	we	get

We	calculate	Xn	value	from	Equation	5.48:

Therefore,	the	magnitude	of	the	electric	field	is

This	 is	 a	 fairly	 large	 electric	 field	 at	 ~50,000	 V/cm.	 The	 depletion	 region	 has	 almost	 no	 free
electrons	or	holes;	therefore,	there	is	very	little	drift	current	despite	this	large	built-in	electric	field.

5.9 DIFFUSION	CURRENTS	IN	A	FORWARD-BIASED	P-N	JUNCTION

The	real	utility	of	the	p-n	junction	is	that	its	ability	to	conduct	can	be	changed	with	doping	and
by	application	of	an	external	voltage.	If	the	positive	terminal	of	the	power	supply	is	connected
to	the	p-side	and	the	negative	terminal	is	connected	to	the	n-side,	it	is	called	forward	biased.

In	a	forward-biased	p-n	junction,	the	electrostatic	potential	at	the	p-side	is	increased	and	the
applied	electric	field	opposes	the	existing	internal	electric	field	at	the	junction	(Figure	5.11a).
This	means	that	the	total	height	of	the	potential	barrier	working	as	a	diffusion	barrier	will	be
reduced	(Figure	5.12b).

Electrons,	the	majority	carriers	on	the	n-side,	can	now	diffuse	more	easily	to	the	p-side.	In
the	 p-region,	 these	 injected	 electrons	 move	 toward	 the	 positive	 terminal,	 where	 they	 are
collected.	 While	 making	 their	 way	 through	 the	 p-region,	 some	 of	 the	 electrons	 will
recombine	 with	 the	 holes.	 The	 positive	 terminal	 of	 the	 power	 supply	 compensates	 for	 the
holes	 lost	as	a	result	of	 the	recombination.	The	current	due	 to	 the	electron	diffusion	 is	 thus
maintained	 by	 the	 electrons	 from	 the	 n-side.	 The	 negative	 terminal	 of	 the	 battery	 provides
these	electrons.



FIGURE	5.11 The	directions	of	particle	motion	for	the	diffusion	and	drift	of	electrons	and	their	corresponding	currents	for
the	p-n	junction	with	(a)	zero	bias,	(b)	forward	bias,	and	(c)	reverse	bias.	(From	Askeland,	D.	and	Fulay	P.,	The	Science	and
Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	5.12 (a)	The	bias	direction	for	a	forward-biased	p-n	 junction,	 (b)	electrostatic	potential	variation,	and	(c)	a	band
diagram.	(From	Streetman,	B.G.	and	Banerjee	S.,	Solid	State	Electronic	Devices,	5th	ed.,	Prentice	Hall,	Upper	Saddle	River,
NJ,	2000.	With	permission.)

Similarly,	we	can	see	on	the	electrostatic	potential	diagram	(Figure	5.12c)	that	the	energy
barrier	for	hole	diffusion	is	reduced.	This	means	that	more	holes,	the	majority	carriers	on	the
p-side,	 diffuse	 into	 the	 n-side.	 The	 holes	 injected	 in	 the	 n-side	 diffuse	 toward	 the	 negative
terminal	of	the	power	supply.	Some	holes	will	end	up	recombining	with	the	electrons	on	the
n-side.	 The	 negative	 terminal	 of	 the	 power	 supply	 replaces	 the	 electrons	 lost	 to	 the
recombination.	The	current	is	sustained	as	more	holes	continue	to	diffuse	over	to	the	n-side
(Figure	5.11b).	The	positive	terminal	of	the	power	supply	provides	these	holes.

Note	that	the	forward	bias	does	not	change	the	drift	current	(Figures	5.11a	and	5.11b).The
motion	of	 the	majority	carriers	produces	a	 forward	current	 (IF).	Under	a	sufficient	 forward
bias,	the	total	diffusion	current	increases	and	the	p-n	junction	begins	to	conduct.	The	forward
bias	also	reduces	the	depletion	layer	width	(w)	because	the	external	field	decreases	the	electric
field	 in	 the	depletion	 layer	 (Figure	5.12b).	We	can	obtain	 the	new	values	of	 the	penetration
depths	and	 the	depletion	 layer	width	by	substituting	V0	by	(V0	−	Vf)	 in	Equations	5.48,	 5.49,
and	5.51	for	these	quantities.



This	is	due	to	the	fact	that	the	minority	carrier	concentration	near	the	ends	of	the	depletion
region	is	increased.	For	example,	since	more	electrons	diffuse	from	the	n-	to	the	p-side	under
the	forward	bias,	the	electron	concentration	in	the	neutral	p-region	(i.e.,	the	minority	carrier
concentration)	 near	 the	 depletion	 region	 increases.	When	 the	 forward	 bias	 is	 applied,	 this
local	 increase	 in	 the	 minority	 carrier	 concentration	 near	 the	 ends	 of	 the	 depletion	 region
compensates	for	a	decrease	in	the	contact	potential	and	maintains	the	drift	current	as	it	was.

5.10 DRIFT	CURRENT	IN	REVERSE-BIASED	P-N	JUNCTION

Consider	a	reverse-biased	p-n	junction.	This	means	that	we	apply	the	n-side	of	the	junction	to
the	positive	terminal	of	an	external	direct	current	(DC)	voltage	supply	(Figure	5.13).

Applying	a	reverse	bias,	that	is,	connecting	the	n-side	(which	has	the	positive	space-charge
region)	to	the	positive	terminal,	causes	the	electrostatic	potential	on	the	n-side	(Vn)	to	increase
(Figure	 5.13b).	 An	 increase	 in	 the	 potential,	 in	 turn,	 increases	 the	 length	 of	 the	 depletion
region	at	the	p-n	junction.

Recall	that	electron	energy	is	related	to	electrostatic	potential	by	−q.	Thus,	with	a	reverse
bias,	 the	 Fermi	 energy	 level	 on	 the	 n-side	 is	 decreased.	 The	 band	 diagram	 for	 a	 reverse-
biased	p-n	junction	is	shown	in	Figure	5.13c.

The	internal	electric	field	and	the	external	electric	field	follow	the	same	direction,	from	the
n-side	to	the	p-side.	Consequently,	the	depletion	layer	width	(w)	for	a	reverse-biased	junction
is	larger	than	that	for	a	p-n	junction	with	no	bias	(Figure	5.13a).

We	can	calculate	the	width	of	the	depletion	region	(w)	and	the	penetration	depths	in	the	p-
and	n-regions	of	a	p-n	junction	by	substituting	(VR	+	V0)	for	V0	in	Equations	5.48,	5.49,	and
5.51	derived	in	Section	5.8.

FIGURE	 5.13 (a)	 A	 reverse-biased	 p-n	 junction	 showing	 the	 directions	 of	 built-in	 and	 applied	 electric	 fields,	 (b)	 the
variation	in	the	electrostatic	bias	potential	that	can	be	calculated,	and	(c)	a	band	diagram.	(From	Streetman,	B.G.	and	Banerjee
S.,	Solid	State	Electronic	Devices,	5th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	2000.	With	permission.)

Therefore,	for	a	reverse-biased	p-n	junction,



The	 depletion	 layer	width	 under	 the	 reverse	 bias	 can	 be	 calculated	 by	 adding	 xn	 and	 xp
values	or	by	using	the	following	equation:

In	the	reverse-biased	junction,	electrons	attempting	to	diffuse	from	the	n-side	to	the	p-side
under	a	concentration	gradient	encounter	a	larger	energy	barrier	of	height	q(V0	+	VR),	which
can	be	visualized	 easily	 on	 a	 band	diagram	 (Figure	5.13c).	The	magnitude	 of	 the	 diffusion
current	 due	 to	 the	diffusion	of	 electrons	 from	 the	n-side	 to	 the	p-side	becomes	very	 small.
Similarly,	 holes	 attempting	 to	 diffuse	 from	 the	 p-side	 to	 the	 n-side,	 again	 under	 a
concentration	gradient,	encounter	a	larger	potential	barrier	that	can	be	easily	visualized	on	the
electrostatic	 potential	 diagram	 (Figure	5.10b).	 Because	 of	 the	 increased	 energy	 barrier,	 the
magnitude	 of	 the	 total	 diffusion	 current	 due	 to	 the	 movement	 of	 holes	 and	 electrons	 is
negligible	because	of	the	increased	energy	barrier	(Figure	5.13c).

Although	the	diffusion	current	becomes	negligible,	the	drift	of	the	minority	carriers	does
not	 change	 in	 the	 reverse-biased	 state	 (Figure	5.13c).	 Therefore,	 there	 is	 a	 net	 current	 in	 a
reverse-biased	p-n	junction	due	to	the	drift	current.	Since	the	drift	current	does	not	depend	on
the	magnitude	of	the	applied	voltage,	the	electric	current	is	constant	in	the	reverse-bias	state.

Consider	 the	drift	current	of	 the	minority	carriers	 through	 the	depletion	 region.	 In	a	p-n
junction	at	room	temperature,	there	are	thermally	created	electron–hole	pairs	(EHPs)	in	both
the	neutral	regions	and	in	the	depletion	regions	of	the	p-n	junction.	The	thermal	generation	in
the	 neutral	 region	 is	 a	 major	 source	 of	 minority	 carriers	 in	 the	 neutral	 region.	 Once	 the
minority	 carriers	 are	 generated,	 they	 first	 diffuse	 to	 the	 depletion	 region	 under	 a
concentration	gradient.	For	example,	there	are	thermally	generated	holes	in	the	n-side	neutral
region	 (x	 >	 xn).	 However,	 the	 concentration	 of	 holes	 near	 the	 space-charge	 region	 is
essentially	zero	at	x	=	xn.	Thus,	the	holes	flow	from	the	neutral	region	to	the	boundary	of	the
depletion	 layer	 due	 to	 the	 concentration	 gradient.	 These	 holes	 then	 drift	 toward	 the	 n-side
under	 the	 influence	 of	 the	 electric	 field	 present	 in	 the	 depletion	 region.	 The	hole	 diffusion
length	(Lp)	is	the	distance	that	thermally	generated	holes	on	the	neutral	n-side	can	travel	from
the	transition	region	to	the	n-side	through	the	electric	field	in	the	depletion	region.	Similarly,
the	 electron	 diffusion	 length	 (Ln)	 is	 the	 average	 distance	 that	 an	 electron	 can	 travel	 before
recombining	with	a	hole.	Carriers	generated	within	 the	 length	of	 the	diffusion	distance	will
successfully	pass	to	the	depletion	layer	without	recombination.	Holes	or	electrons	generated
at	a	distance	 larger	 than	 the	diffusion	distance	 (for	 that	carrier)	will	most	 likely	 recombine
and	thus	will	not	participate	in	the	drift	through	the	depletion	region.	All	thermally	generated
carriers	therefore	do	not	end	up	contributing	to	the	drift	current,	which	is	so	called	generation
current	or	reverse	current.

The	 first	 source	 for	 the	 drift	 current	 is	 induced	 by	 the	 diffusion	 of	 thermally	 generated
minority	 carriers	 in	 the	 neutral	 region	 followed	 by	 their	 drift	 across	 the	 depletion	 region.



This	drift	current	of	the	minority	carriers	generated	in	the	outside	of	the	depletion	region	is
written	as	IShockley	and	is	calculated	by	the	Shockley	equation:

In	the	Shockley	equation,	q	is	the	magnitude	of	the	charge	on	the	electron	or	hole,	D	is	the
diffusion	coefficient,	L	 is	 the	diffusion	 length,	and	subscripts	p	and	n	refer	 to	 the	holes	and
electrons,	 respectively.	 Recall	 from	 Chapter	 4	 that	 the	 intrinsic	 carrier	 concentration	 (ni)
increases	exponentially	with	the	temperature	and	is	inversely	related	to	the	band	gap	(Eg).

The	second	source	for	the	drift	current	is	from	the	thermally	generated	carriers	inside	the
depletion	region.	The	internal	electric	field	separates	these	carriers,	and	they	drift	toward	the
neutral	regions.	This	aspect	of	the	reverse	current	is	given	by

In	Equation	5.57,	τg	is	the	mean	thermal	generation	time.	This	is	the	average	time	needed	to
thermally	 create	 an	EHP.	The	 total	 current	 due	 to	 the	drift	 of	 thermally	generated	minority
carriers,	whether	 created	 in	 the	 neutral	 region	 or	 in	 the	 space-charge	 region,	 is	 called	 the
generation	current	(I0).

Thus,	the	total	generation	current	(I0)	is	given	by	combining	Equations	5.56	and	5.57:

From	Equation	5.58,	we	can	see	that	either	the	first	term	with	 	n	or	the	second,	thermal-
generation	term	with	ni	controls	the	generation	current.	In	Figure	5.14,	the	reverse	current	for
a	germanium	(Ge)	diode	is	shown.	In	this	case,	we	show	a	dark	current	to	avoid	any	current
due	to	the	photogeneration	of	EHPs.

At	low	temperatures,	the	diffusion	of	the	minority	carriers	from	the	neutral	region	to	the
depletion	region	is	not	significant,	and	the	total	generation	current	is	controlled	(<240	K)	by
the	second	 term,	 thermal	generation	within	 the	depletion	 region.	At	 lower	 temperatures,	 the
slope	of	the	line	is	proportional	to	Eg/2	because	ni	∝	exp(−Eg/2kT).	At	higher	 temperatures,
the	diffusion	term	dominates,	and	the	current	 is	controlled	by	the	 	 term.	The	slope	of	 the
line	shown	in	Figure	5.14	is	nearly	proportional	to	the	band	gap	of	the	semiconductor	at	high
temperatures.



FIGURE	5.14 Generation	current	 (I0)	 for	 a	 germanium	diode	with	 1/T.	 The	 effect	 of	 photogenerated	 carriers	 is	 excluded
(i.e.,	 this	 is	 a	 dark	 current).	 (From	Kasap,	S.O.,	Principles	of	Electronic	Materials	 and	Devices,	McGraw	Hill,	 New	York,
2006.	With	permission.)

5.11 OVERALL	I–V	CHARACTERSTICS	IN	A	P-N	JUNCTION

The	generation	current	or	total	drift	current	(I0)	is	independent	of	the	applied	bias.	Although
the	 forward	 current	 (IF),	 which	 is	 due	 to	 the	 diffusion	 of	 majority	 carriers,	 is	 strongly
affected	 by	 the	 type	 and	 amount	 of	 bias,	 the	 magnitude	 of	 the	 generation	 current	 (I0)	 is
independent	of	the	applied	voltage	(Figure	5.11).

The	generation	current	depends	on	the	temperature	because	the	carrier	concentration	due
to	 thermal	excitation	and	 the	diffusion	of	 the	minority	carriers	 toward	 the	depletion	 region
also	depend	on	the	temperature.	Similarly,	the	absorption	of	light	energy	leads	to	the	creation
of	EHPs.	This	also	causes	an	increase	in	the	generation	current.

Thus,	the	total	current	(I)	flowing	through	the	p-n	junction	is	given	by

When	there	is	no	applied	voltage	(Figures	5.11a	and	5.15a),	 the	total	drift	current	and	the
current	due	to	the	diffusion	of	majority	carriers	are	equal	and	opposite,	that	is,

When	 the	 p-n	 junction	 is	 reverse-biased	 (Figures	 5.13c	 and	 5.15c),	 the	 diffusion	 of
majority	carriers	is	almost	negligible,	and	the	total	current	is	equal	to	the	generation	current.

Therefore,	the	generation	current	(I0)	is	also	known	as	the	reverse-bias	saturation	current
(Is).	The	generation	current	usually	 is	 in	 the	 range	of	10−14−10−12	A.	The	magnitude	of	 the
generation	 current	 depends	 on	 its	 doping	 levels,	 the	 size	 of	 the	 cross-sectional	 area	 of	 the
junction,	 temperature,	 and	 so	on	 (Equation	5.58).	 It	 does	 not	 depend	on	 the	 reverse-applied
voltage.



For	a	p-n	 junction	under	a	 forward	bias	 (Figures	5.12b	and	5.15b),	 the	 diffusion	 current
(Idiffusion)	changes	exponentially	with	the	applied	voltage	and	is	given	by

FIGURE	5.15 Summary	of	band	diagrams	and	the	changes	in	the	electric	field,	electrostatic	potential,	and	depletion	layer
width	of	a	p-n	 junction	under	(a)	zero,	(b)	forward,	and	(c)	reverse	bias.	 (From	Streetman,	B.G.	and	Banerjee	S.,	Solid	 State
Electronic	Devices,	5th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	2000.	With	permission.)



FIGURE	5.16 Half-wave	rectification	using	a	diode.

Thus,	 the	 total	 current	 under	 a	 forward	 bias	 is	 given	 by	 the	 difference	 between	 Idiff	 and
Igeneration:

Equation	5.63	is	also	known	as	the	ideal	diode	equation.	The	current–voltage	(I–V)	curve
for	a	p-n	junction	is	shown	in	Figure	5.16.

If	the	applied	bias	(V)	is	large	compared	to	the	magnitude	of	(kBT/q)	or	the	temperature	is
very	 low,	 then	 the	 exponential	 term	will	 be	much	 larger	 than	 1,	 and	 Equation	 5.63	 can	 be
rewritten	as

At	room	temperature	(T	=	300	K),	the	value	of	(q/kBT)	is	~0.026	V,	hence

The	 p-n	 junction	 behaves	 like	 a	 one-way	 electrical	 valve.	 It	 functions	 as	 a	 rectifier	 by
allowing	current	to	flow	through	under	a	forward	bias	but	not	under	a	reverse	bias.

A	summary	of	p-n	junction	band	diagrams	and	changes	in	the	electric	field	in	the	depletion
layer	width,	as	well	as	electrostatic	potential	variation	under	zero,	forward,	and	reverse	bias,
is	shown	in	Figure	5.15.

5.12 DIODE	BASED	ON	A	P-N	JUNCTION

The	electrical	symbol	for	a	diode	is	shown	in	Figure	5.17.	A	diode	can	serve	several	useful
functions—including	 rectification,	 which	 means	 the	 filtering	 of	 the	 electric	 current	 with	 a
specific	polarity.	For	an	alternating	current	voltage	(AC)	input,	the	diode	produces	the	output
voltage	shown	in	Figure	5.16.



FIGURE	5.17 Symbol	for	a	p-n	junction	diode	in	an	electrical	circuit.

Two	diodes	can	be	used	to	create	a	full-wave	rectification	of	AC	voltage.	The	p-n	junction
is	 also	 used	 as	 the	 basic	 building	 block	 for	 solar	 cells	 and	 devices	 known	 as	 transistors.
Millions	of	transistors	are	connected	to	form	miniature	circuits,	which	are	then	used	to	create
semiconductor	chips	that	are	used	in	computers	and	other	electronic	equipment.

An	 actual	 I–V	 characteristic	 curve	 for	 a	 p-n	 junction	 is	 shown	 in	Figure	5.18.	Note	 that,
under	 a	 forward	 bias,	 the	 current	 (I)	 is	 in	 milliamperes	 (mA).	 Under	 a	 reverse	 bias,	 the
current	 is	 in	 microamperes	 (µA).	 When	 the	 forward-bias	 voltage	 is	 less	 than	 the	 built-in
potential	V0,	a	small	current	is	set	up	across	the	p-n	junction.	This	built-in	potential	of	the	p-n
junction	 is	 called	 knee	 voltage.	 If	 the	 dopant	 concentrations	 are	 high,	 the	 knee	 voltage	 is
proportional	 to	 the	 band	 gap	 of	 the	 semiconductors	 (Figure	 5.19).	 As	 the	 forward-biased
voltage	becomes	 larger	 than	 the	knee	voltage,	 the	current	 also	 increases	dramatically.	Note
that	this	increase	is	nonlinear;	that	is,	it	does	not	follow	Ohm’s	law	(Figure	5.18).

For	moderately	doped	silicon	(Si),	the	knee	voltage	is	~0.7	V,	which	is	close	to	the	built-in
potential	 (V0)	of	 silicon	p-n	 junctions,	 as	 shown	 in	Example	5.1.	For	Ge	with	 the	band	gap
smaller	than	Si,	the	typical	knee	voltage	of	the	p-n	junctions	is	~0.3	V.	Since	the	band	gap	of
GaAs	is	larger	than	that	of	Si,	the	typical	knee	voltage	of	GaAs	p-n	junctions	is	more	than	1.0
V.	 A	 schematic	 of	 I–V	 curves	 expected	 for	 p-n	 junctions	 for	 different	 semiconductors	 is
shown	in	Figure	5.19.

As	the	temperature	increases	from	25°C	to	25	+	∆T,	the	knee	voltage	decreases	slightly.	At
an	elevated	 temperature,	 the	 forward	current	 (IF)	 at	 any	given	voltage	 is	higher	 than	 that	 at
25°C.	As	expected,	more	minority	carriers	are	generated	on	both	sides	of	the	p-n	junction	at
higher	temperatures.	Thus,	there	is	a	very	slight	increase	in	the	reverse-bias	current	at	higher
temperatures.	The	sketch	in	Figure	5.18	is	not	to	scale	and	exaggerates	this	difference	in	the
change	in	the	magnitude	of	the	generation	current.	Note	that	the	abrupt	increase	in	the	reverse
current	 at	 V	 =	 VBR	 in	 Figure	 5.18	 is	 not	 related	 to	 the	 drift	 current.	 This	 is	 called	 the
breakdown	of	the	diode	and	will	be	explained	in	Section	5.13.



FIGURE	 5.18 The	 I–V	 curves	 for	 representative	 silicon-based	 p-n	 junctions.	 The	 effect	 of	 increased	 temperature	 on	 the
lowering	 of	 breakdown	 and	 knee	 voltage	 is	 shown.	 Note	 the	 current	 scale	 for	 forward	 and	 reverse	 bias	 is	 in	 milli-	 and
microamperes,	respectively.	Similarly,	the	voltage	scales	for	forward	and	reverse	bias	are	different.	(From	Floyd,	T.,	Electric
Circuit	Fundamentals,	7th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	2006.	With	permission.)

FIGURE	5.19 Schematic	of	I–V	curves	for	different	semiconductors	showing	different	expected	knee	voltages	(current	axis
not	 to	 scale).	 (From	Kasap,	 S.O.,	Principles	 of	 Electronic	 Materials	 and	 Devices,	 McGraw	 Hill,	 New	 York,	 2002.	With
permission.)

Example	5.5: Current	in	a	SI	P-N	Junction	Diode

The	built-in	potential	(V0)	of	a	Si	p-n	junction	diode	is	0.8	V.	Assume	that	the	reverse-bias	saturation	current	(I0)	is

10−13	amperes	(A).	A	forward	bias	of	0.5	V	is	then	applied.
1.	 What	is	the	new	height	of	the	potential	barrier	seen	on	the	electrostatic	potential

diagram?
2.	 What	is	the	current	flowing	through	this	diode	with	a	forward	bias	of	0.5	V?
3.	 What	is	the	current	if	the	forward	bias	changes	to	0.6	V?

Compare	the	different	current	values	with	each	other.

Solution
1.	 When	 the	 applied	 voltage	 is	 0.5	V,	 the	 new	 height	 of	 the	 barrier	 seen	 on	 the

electrostatic	potential	will	be	(V0	−	VF)	=	(0.8	−	0.5)	=	0.3	V	(Figure	5.14b).
2.	 Since	the	forward	bias	applied	(V	=	0.5	V)	is	much	larger	than	kT/q	(0.0259	V),

that	 is,	 qV	 >>	 kT,	 the	 exponential	 term	 is	 much	 larger	 than	 1,	 and	 we	 use



Equation	5.65.
Therefore,

This	is	about	24	µA.

FIGURE	 5.20 A	 graphical	 illustration	 of	 the	 dynamic	 resistance	 of	 a	 p-n	 junction.	 (From	Kasap,	 S.O.,
Principles	of	Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	2002.	With	permission.)

3.	 When	the	forward	bias	is	0.6	V,	the	current	is	given	by

This	current	of	about	1	mA	is	about	40	times	greater	than	the	current	when	the	bias	of	0.5	V	was
applied.	This	shows	that	the	effective	resistance	of	the	p-n	junction	drops	by	~40	times	with	a	bias
increase	of	only	0.1	V.

The	p-n	junction	under	the	forward	bias	has	a	dynamic	resistance	 	that	changes	with	the
applied	voltage	(Figure	5.20).	Most	materials	(e.g.,	metals,	alloys	and	semiconductors)	show	a
resistance	that	is	constant	and	not	voltage-dependent.

The	dynamic	resistance	of	a	p-n	junction	can	be	calculated	from	the	slope	of	the	I–V	curve
at	a	given	value	of	voltage:

A	p-n	junction	circuit	uses	a	resistor	(RL),	known	as	the	limiting	resistor,	to	limit	the	total
current	and	 to	protect	 the	p-n	 junction	 from	damage	due	 to	excessive	current.	When	such	a
resistor	is	used	in	series	with	the	diode,	the	forward	current	is	given	by



If	a	limiting	resistor	is	not	used,	the	p-n	junction	can	be	damaged	by	Joule	heating.
If	the	dynamic	resistance	of	the	p-n	junction	is	accounted	for,	then	the	forward	current	is

given	by

The	application	of	this	equation	is	illustrated	in	Example	5.6.

Example	5.6: Forward	Current	in	a	Diode

A	Si	p-n	junction	functions	as	a	diode	and	is	connected	to	a	resistor,	RL	=	1000	Ω.	Assume	that	the	knee	voltage	is
0.7	V.
1.	 What	is	the	forward	current	if	a	4.5	V	forward	bias	is	applied?
2.	 What	 is	 the	 forward	 current,	 assuming	 that	 the	 diode	 offers	 a	 dynamic

resistance	of	10	Ω	at	the	selected	IF	value?
Solution
1.	 From	Equation	5.67,

2.	 When	 the	dynamic	 resistance	of	 the	diode	 	must	be	 accounted	 for,	we	add
that	resistance	to	the	Rlimit.

From	Equation	5.68,

As	can	be	expected	by	adding	the	dynamic	resistance,	the	magnitude	of	IF	decreases.

5.13 REVERSE-BIAS	BREAKDOWN

A	reverse	bias	is	sometimes	so	high	that	it	causes	a	reverse-bias	dielectric	breakdown	of	the	p-
n	 junction	 (Figure	 5.21).	When	 this	 happens,	 the	 current	 flowing	 through	 the	 p-n	 junction
increases	rapidly.	Critical	breakdown	voltages	(VBR)	for	silicon	diodes	generally	start	at	~60
V.	The	term	breakdown	is	a	bit	misleading;	if	the	p-n	junction	breaks	down	electrically,	this
does	 not	mean	 that	 the	 device	 is	 permanently	 damaged.	 The	 I–V	 relation	 in	 Figure	 5.21	 is
reversible.	The	reversible	breakdown	of	a	p-n	junction,	which	should	be	distinguished	from	a
broken	or	defective	p-n	junction,	is	useful	in	some	applications.



FIGURE	 5.21 The	 I–V	 characteristic	 of	 a	 p-n	 junction	 including	 a	 reverse-bias	 breakdown.	 (From	Mahajan,	 S.	 and	 Sree
Harsha	K.S.,	Principles	of	Growth	and	Processing	of	Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)

A	 limiting	 resistor	 (RL)	 is	 used	 to	 restrict	 the	 flow	 of	 current	 during	 a	 reverse-bias
breakdown.	 If	such	a	current-limiting	resistor	 is	not	used,	 the	p-n	 junction	will	be	damaged
because	of	overheating	caused	by	the	excessive	current.	This	will	occur	in	both	forward	and
reverse	bias.

The	reverse-bias	breakdown	can	occur	via	 two	mechanisms.	 In	 the	avalanche	 breakdown
mechanism,	a	high-energy	conduction	electron	drifting	through	large	electric	potential	at	the
junction	 collides	 with	 a	 silicon–silicon	 bond	 and	 knocks	 off	 a	 valence	 electron	 from	 that
bond,	 which	 makes	 this	 electron	 free.	 Consequently,	 a	 number	 of	 the	 free	 electrons	 are
doubled.	This	proliferation	process	of	the	free	electron	under	large	reverse-bias	is	known	as
impact	ionization	(Figure	5.22).

From	a	band	diagram	viewpoint,	the	impact	ionization	process	sends	an	electron	from	the
valence	 band	 to	 the	 conduction	 band,	 creating	 a	 hole	 in	 the	 valence	 band.	 The	 first	 high-
energy	 electron	 continues,	 knocking	 off	 another	 electron	 from	 one	 more	 silicon–silicon
covalent	bond	and	continuing	the	process.	The	impact	ionization	process	is	shown	on	the	band
diagram	in	Figure	5.23.

In	 the	mechanism	 known	 as	 an	 avalanche	 breakdown,	 multiple	 collisions	 from	 a	 single
high-energy	electron	can	create	many	EHPs.

A	p-n	junction	with	one	side	heavily	doped	is	known	as	a	one-sided	junction.	If	the	p-side	is
heavily	doped,	we	refer	to	this	as	a	p+-n	junction.	The	depletion	layer	of	a	p+-n	is	mainly	on
the	n-side.	The	charge	density	distribution	for	this	junction	is	shown	in	Figure	5.24.	When	this
junction	breaks	down	electrically,	the	breakdown	will	occur	on	the	n-side	at	a	location	where
the	electric	field	is	at	a	maximum.



FIGURE	 5.22 Illustration	 of	 the	 impact	 ionization	 process.	 (a)	 A	 single	 ionizing	 collision	 with	 a	 host	 lattice	 atom	 by	 an
incoming	 electron	 and	 (b)	 multiplication	 of	 carriers	 due	 to	 multiple	 collisions.	 (From	 Mahajan,	 S.	 and	 Sree	 Harsha	 K.S.,
Principles	of	Growth	and	Processing	of	Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)

FIGURE	5.23 Impact	ionization	process	illustrated	on	a	band	diagram.	(From	Streetman,	B.G.	and	Banerjee	S.,	Solid	State
Electronic	Devices,	Prentice	Hall,	Upper	Saddle	River,	NJ,	2000.	With	permission.)



FIGURE	5.24 Critical	field	at	the	breakdown	for	one-sided	abrupt	p-n	junctions	in	silicon	and	GaAs	(at	T	=	300	K).	(From
Mahajan,	S.	and	Sree	Harsha	K.S.,	Principles	of	Growth	and	Processing	of	Semiconductors,	McGraw	Hill,	New	York,	1998.
With	permission.)

FIGURE	5.25 Schematic	of	the	charge	density	for	a	p+-n	junction.	(From	Neaman,	D.,	An	Introduction	to	Semiconductor
Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Figure	5.24	shows	the	critical	breakdown	field	as	a	function	of	background	doping	for	a
one-sided	p-n	junction,	in	which	one	of	the	sides	is	very	heavily	doped.	If	the	p-side	is	heavily
doped,	the	junction	is	referred	to	as	p+-n;	if	the	n-side	is	heavily	doped,	the	junction	is	shown
as	p-n+.	The	charge	density	expected	for	a	p+-n	junction	is	shown	in	Figure	5.25.

The	breakdown	voltage	(VBR)	for	a	p+-n	junction	is	given	by



where	 Nd	 is	 the	 donor	 dopant	 concentration	 and	 Ecritical	 is	 the	 critical	 field	 that	 causes
breakdown	(Singh	2001).	The	breakdown	field	for	a	p+-n	junction	will	depend	upon	the	level
of	doping.	This	change	for	the	silicon	and	gallium	arsenide	(GaAs)	p-n	junctions	is	shown	in
Figure	5.24.

Example	5.7	shows	the	calculation	of	the	breakdown	voltage	by	the	avalanche	breakdown
mechanism.

Example	5.7: Breakdown	Voltage	for	a	P-N	Si	Diode

In	a	Si	diode,	Na	=	10
19	atoms/cm3	and	Nd	=	5	×	10

15	atoms/cm3.	If	the	critical	breakdown	field	is	4	×	105	V/cm,
what	is	the	breakdown	voltage	for	this	diode	at	T	=	300	K?

Solution
The	p-side	is	heavily	doped;	therefore,	the	breakdown	will	occur	in	the	depletion	layer	that	extends	to	the	n-side.
We	apply	Equation	5.69:

For	diodes	that	have	a	higher	breakdown	field,	the	breakdown	voltage	will	be	higher.	Thus,	such	diodes	as	those
made	 from	silicon	carbide	 (SiC),	which	has	a	high	breakdown	voltage,	 are	useful	 for	high-temperature,	high-power
applications.

As	 the	 doping	 level	 increases,	 another	 mechanism	 of	 breakdown	 can	 be	 applied.	 In	 the
Zener	tunneling	mechanism,	electrons	tunnel	across	the	p-n	junction	instead	of	climbing	over
the	 energy	 barrier.	This	 is	 commonly	 seen	 in	 heavily	 doped	 p-n	 junctions.	The	 breakdown
occurs	across	very	 thin	depletion	 regions	and	 thus	 typically	occurs	at	 low	voltages	 (~0.1–5
V).	Heavier	doping	means	a	smaller	depletion	region	width	(Equations	5.48	and	5.49).	With
Zener	tunneling,	electrons	from	the	p-side	valence	band	can	tunnel	across	into	the	conduction
band	on	the	n-side	because	the	reverse	bias	pushes	down	the	Ec	on	the	n-side	and	aligns	it	with
the	valence	band	edge	(Ev)	on	the	p-side.	The	Zener	tunneling	mechanism	is	also	known	as	the
Zener	effect	or	band-to-band	tunneling	(Figure	5.26).

The	probability	of	Zener	tunneling	(T)	is	given	by

where	 	is	the	reduced	effective	mass	of	the	electron,	Eg	is	the	band	gap,	and	E	is	the	electric
field	 (Singh	 2001).	 The	 Zener	 breakdown	 is	 important	 in	 heavily	 doped	 junctions	 and	 in
narrow-bandgap	 materials.	 The	 value	 of	 probability	 (T)	 generally	 needs	 to	 be	 ~10−6	 for
tunneling	 to	 initiate	 this	 breakdown	 process.	 Example	 5.8	 illustrates	 the	 calculation	 of	 the
tunneling	probability.



FIGURE	 5.26 Zener	 effect	 showing	 the	 breakdown	 of	 a	 heavily	 doped	 p-n	 junction.	 (From	 Kasap,	 S.O.,	 Principles	 of
Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	2002.	With	permission.)

Example	5.8: Zener	Tunneling	in	InAs

Calculate	 the	 probability	 of	 tunneling	 in	 indium	arsenide	 (InAs)	 if	 the	 applied	 electric	 field	 (E)	 is	 3	 ×	 105	V/cm.
Assure	that	the	 	for	electrons	in	InAs	is	0.02	 .	The	band	gap	of	InAs	is	0.4	eV.
Solution
From	Equation	5.70,	the	probability	of	tunneling	is

Note	the	use	of	SI	units,	including	the	conversion	of	the	electric	field	from	V/cm	to	V/m.
T	=	2.82	×	10−4,	which	is	greater	than	10−6.	Therefore,	Zener	tunneling	is	important	for	this	value	of	the	electric

field	in	InAs.

5.14 ZENER	DIODES

The	 breakdown	 by	 either	 the	Zener	 or	 the	 avalanche	mechanism	 is	 the	 basis	 for	 the	Zener
diode	(Figure	5.27a),	a	device	 that	 is	 typically	operated	under	a	reverse	bias.	The	I–V	curve
for	 a	Zener	 diode,	 including	 the	 reverse-breakdown	 region,	 is	 shown	 in	Figure	 5.27b.	 The
normal	 operating	 region	 for	 a	 regular	 p-n	 junction	 diode	 is	 also	 shown	 in	 this	 figure	 for
comparison	(Figure	5.27c).

Since	the	Zener	diode	has	an	avalanche	or	Zener	breakdown	after	a	certain	applied	voltage
is	reached,	the	voltage	across	this	diode	remains	essentially	constant.	Therefore,	Zener	diodes
are	 used	 as	 voltage	 regulators	 (Example	 5.9).	 Under	 a	 forward	 bias,	 the	 Zener	 diode	 will
function	like	a	regular	diode,	with	the	typical	knee	voltage	of	~0.7	V	for	silicon	diodes.

The	voltage	at	which	a	Zener	diode	will	begin	to	conduct	current	under	a	reverse	bias	is
known	as	the	Zener	voltage.	Diodes	can	be	designed	to	have	a	Zener	voltage	ranging	from	a
few	volts	to	a	few	hundred	volts.



FIGURE	 5.27 (a)	 Symbol	 for	 a	 Zener	 diode.	 The	 anode	 (+)	 is	 on	 the	 left	 and	 cathode	 (−)	 is	 on	 the	 right.	 The	 positive
terminal	of	the	power	supply	is	connected	to	the	cathode	of	the	Zener	diode	to	operate	under	a	reverse	bias.	(b)	Typical	I–V
curve	 for	 a	 Zener	 diode.	 (c)	 Normal	 operating	 region	 for	 a	 regular	 p-n	 junction	 diode.	 (From	 Floyd,	 T.,	 Electronics
Fundamentals:	Circuits,	Devices,	and	Applications,	4th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	1998.	With	permission.)

FIGURE	 5.28 Close-up	 of	 a	 reverse-bias	 portion	 of	 the	 I–V	 curve	 for	 a	 Zener	 diode.	 (From	 Floyd,	 T.,	 Electronics
Fundamentals:	Circuits,	Devices,	and	Applications,	4th	ed.,	Prentice	Hall,	Upper	Saddle	River,	NJ,	1998.	With	permission.)



FIGURE	5.29 A	Zener	diode	as	a	voltage	regulator	(see	Example	5.9).

In	practice,	the	Zener	I–V	curve	is	not	completely	vertical	(Figure	5.28).	We	define	∆VZ	as
the	 change	 in	 voltage	 across	 the	 reverse-biased	Zener	 diode	 as	 the	 current	 changes	 from	a
Zener	test	current	(IZT)	to	a	higher	value,	up	to	the	Zener	maximum	current	(IZM).	The	Zener
diode	impedance	or	resistance	(ZZ)	is	given	by

In	Equation	5.71,	∆IZ	=	IZM	−	IZT.
Example	 5.9	 shows	 how	 a	 Zener	 diode	 under	 a	 reverse	 bias	 functions	 as	 a	 voltage

regulator.

Example	5.9: Zener	Diode	Voltage	Regulator

Consider	 a	 voltage	 regulator	 supply	 connected	 to	 a	 200	Ω	 current-limiting	 resistance	 (RL)	 and	 a	 reverse-biased
Zener	diode.	The	knee	current	(IZK;	Figure	5.28)	is	0.2	mA,	and	the	maximum	current	(IZM)	is	100	mA.	Assume
that	 the	voltage	across	the	Zener	diode	is	always	10	V.	What	is	 the	range	of	 input	voltages	that	can	be	regulated
using	this	Zener	diode?

Solution
The	 job	 of	 this	 circuit	 (Figure	 5.29)	 is	 to	 provide	 a	 10	 V	 constant	 output	 even	 though	 the	 input	 voltage	 of	 the
variable	power	supply	will	change.	We	need	to	find	the	range	of	voltages	that	can	be	controlled	using	this	Zener
diode	and	the	200	Ω	resistor.

If	the	applied	voltage	is	too	low,	the	Zener	diode	will	not	conduct.	When	the	applied	voltage	is	just	above	the	Zener
voltage,	 the	current	 is	close	 to	 the	knee	current	of	0.2	mA.	This	current	 flows	 through	 the	Zener	diode	and	 the	200	Ω
resistor.	The	voltage	drop	across	the	resistor	is	given	by	Ohm’s	law:

Vresistor	=	I	×	R	=	IZK	×	R	=	0.2	mA	×	200	Ω	=	40	mV

The	voltage	drop	across	the	Zener	diode	is	always	10	V.	The	total	input	voltage	will	be	10	V	+	0.04	V	=	10.04	V.	This
is	the	minimum	input	voltage	that	can	be	controlled.	If	the	applied	voltage	is	lower	than	this,	then	the	Zener	diode	will	not
conduct.
If	we	now	 increase	 the	 voltage	 beyond	10.04	V,	 the	Zener	 diode	will	 conduct	 a	 current.	The	maximum	current	 this

diode	is	designed	for	is	100	mA.	The	voltage	drop	across	the	resistor	for	this	current	is	given	by

Vresistor	=	I	×	R	=	IZM	×	R	=	100	mA	×	200	Ω	=	20	V

Once	again,	the	voltage	drop	across	the	Zener	diode	is	only	10	V.	Under	these	conditions,	the	total	voltage	must	be	20
+	10	=	30	V.



This	 combination	of	 a	Zener	diode	 and	 a	 current-limiting	 resistor	would	provide	 a	 constant	 10	V	output	 even	 as	 the
input	voltage	changes	between	10.04	and	30	V.	If	the	voltage	exceeds	30	V,	it	exceeds	the	maximum	allowed	current	of
100	mA	and	will	damage	the	Zener	diode.

PROBLEMS

5.1 A	p-n	junction	is	formed	in	Ge	so	that	the	donor	and	acceptor	concentrations	are	1016
and	1017	atoms/cm3,	 respectively.	Ge	has	a	small	band	gap	(Eg	~	0.67	eV).	Based	on
this,	do	you	expect	the	built-in	potential	to	be	smaller	or	greater	than	Si	(Eg	~	1.1	eV)?
What	 is	 the	 built-in	 potential	 (V0)	 for	 this	 p-n	 junction?	 Use	 the	 intrinsic	 carrier
concentrations	for	Ge	from	Figure	3.7	and	assume	T	=	300	K.

5.2 A	p-n	 junction	 is	 formed	 in	GaAs	 so	 that	 the	 donor	 and	 acceptor	 concentrations	 are
1016	 and	 1017	 atoms/cm3,	 respectively.	 Show	 that	 the	 built-in	 potential	 for	 this	 p-n
junction	 is	1.22	V.	Use	 the	 intrinsic	carrier	concentrations	 for	GaAs	from	Figure	 3.7
and	assume	that	T	=	300	K.

5.3 A	p-n	junction	is	such	that	the	acceptor	and	donor	dopant	levels	are	0.16	eV	from	the
nearest	band	edge.	The	doping	level	on	both	sides	is	1016	atoms/cm3.	What	is	the	built-
in	potential	for	this	junction?

5.4 A	Si	p-n	junction	at	300	K	is	P-doped	on	one	side	such	that	Nd	=	5	×	1016	atoms/cm3.
On	 the	 acceptor	 side,	 the	 B	 dopant	 level	 is	 1016	 atoms/cm3.	 Calculate	 the	 contact
potential,	maximum	 electric	 field,	width	 of	 the	 depletion	 region,	 and	 the	 penetration
depths	 on	 each	 side.	 It	may	 be	 easier	 to	 set	 up	 a	 spreadsheet	 to	 solve	 this	 and	 other
problems.

5.5 For	 the	 junction	 described	 in	 Example	 5.3,	 calculate	 the	 maximum	 electric	 field	 in
V/cm.

5.6 For	 the	 p-n	 junction	 discussed	 in	Equation	5.4,	 calculate	 the	 value	 of	 the	 penetration
depth	on	the	p-side	and	the	width	of	the	depletion	layer	(w).

5.7 What	is	the	forward	current	in	a	diode	as	discussed	in	Example	5.6,	if	the	forward	bias
is	0.4	and	0.7	V?

5.8 What	is	the	breakdown	field	for	a	Si	p+-n	junction	where	the	Nd	=	5	×	1016	atoms/cm3?
Assume	that	 the	p-side	 is	very	heavily	doped	and	 the	breakdown	therefore	occurs	on
the	n-side.	Use	the	data	in	Figure	5.25.

5.9 What	is	the	breakdown	voltage	for	the	diode	discussed	in	Example	5.8,	if	Nd	=	2	×	1017

atoms/cm3?
5.10 What	is	the	breakdown	voltage	for	a	diode	in	a	diamond	p-n	junction?	Assume	that	the

breakdown	field	is	107	V/cm	and	Nd	=	1016	atoms/cm3.	How	does	this	value	compare
with	the	breakdown	voltage	for	a	similar	diode	made	from	Si?

5.11 What	donor	doping	level	will	be	needed	for	a	Si	p+-n	diode	if	the	breakdown	voltage	is
30	V?	Use	the	data	in	Figure	5.25	and	assume	that	the	p-side	is	heavily	doped	so	that	the
breakdown	occurs	on	the	n-side.



5.12 What	 is	 the	minimum	voltage	 that	 can	be	 regulated	using	 a	Zener	 diode	with	 a	 knee
current	(IZK)	of	2	mA	and	a	VZ	of	15	V?

5.13 True	or	false:	The	Zener	diode	operates	on	a	breakdown	mechanism	by	avalanche	or
tunneling.	Explain.

GLOSSARY

Avalanche	mechanism:	A	high-voltage	breakdown	mechanism	occurring	in	diodes	in	which	a
conduction	electron	with	high	energy	scatters	a	valence	electron	and	transfers	it	into	the
conduction	band,	 creating	 a	hole	 in	 the	valence	band.	This	 is	 different	 from	 the	Zener
mechanism,	which	occurs	at	lower	voltages.

Band-to-band	tunneling:	A	tunneling	mechanism	in	which	electrons	from	the	valence	band
of	 the	 p-side	 tunnel	 flow	 into	 the	 conduction	 band	 on	 the	 n-side.	 See	 also	 Zener
tunneling.

Built-in	electric	field:	See	Internal	electric	field.

Built-in	potential	(V0):	See	Contact	potential.

Contact	 potential	 (V0):	 This	 is	 the	 potential	 difference	 that	 appears	 when	 a	 junction	 is
formed	between	different	materials	 (also	 known	 as	 the	 built-in	 potential).	On	 the	 band
diagram,	this	is	expressed	as	energy	qV0.	We	need	to	apply	a	voltage	greater	than	V0	or
provide	energy	greater	than	qV0	to	cause	the	p-n	junction	to	conduct.

Dark	current:	A	current	measured	for	a	nonilluminated	p-n	 junction	 in	order	 to	avoid	any
current	 due	 to	 the	 photogeneration	 of	 electron–hole	 pairs,	 as	 opposed	 to	 thermal
generation.

Depletion	region:	A	region	at	 the	electrical	 interface	between	the	n-	and	p-regions	of	a	p-n
region	that	is	depleted	of	charge	carriers,	that	is,	electrons	and	holes.	A	built-in	electric
field	exists	over	this	region.

Diffusion:	The	motion	of	electrons,	holes,	and	ions	from	a	region	of	high	concentration	and
chemical	potential	to	a	region	of	low	concentration.

Diffusion	potential:	See	Contact	potential.

Drift:	The	motion	of	charge	carriers	under	 the	 influence	of	an	 internal	or	external	electric
field.

Dynamic	resistance	 	:	The	voltage-dependent	resistance	of	a	p-n	junction	under	a	forward
bias	when	the	applied	voltage	is	less	than	the	voltage	near	the	knee	of	the	I–V	curve.

Einstein	relation:	An	equation	that	describes	the	relationship	between	the	mobility	of	species
and	their	diffusion	coefficient.



Electron	 diffusion	 length	 (Ln):	 The	 average	 distance	 an	 electron	 can	 diffuse	 before
recombining	with	a	hole.

Forward	 bias:	 A	 voltage	 applied	 to	 a	 p-n	 junction	 in	 which	 the	 positive	 terminal	 of	 an
external	 voltage	 supply	 is	 connected	 to	 the	 p-side	 of	 the	 p-n	 junction.	 This	 bias	 can
overcome	the	built-in	electric	field	and	cause	the	p-n	junction	to	conduct.

Forward	current	(IF):	The	current	in	a	p-n	junction	under	a	forward	bias.

Generation	current	(I0):	The	 total	 current	 due	 to	 the	drift	 of	 thermally	generated	 carriers
under	the	influence	of	an	electric	field	in	the	depletion	region.	These	go	from	the	n-side
to	the	p-side.

Hole	diffusion	length	(Lp):	The	average	distance	a	hole	can	diffuse	before	recombining	with
an	electron.

Ideal	 diode	 equation:	 The	 equation	 that	 describes	 the	 I–V	 characteristics	 of	 an	 ideal	 p-n
junction	(Equation	5.63):

Impact	ionization:	A	process	in	which	a	high-energy	electron	collides	with	other	electrons,
breaking	bonds	in	a	material	and	causing	one	of	the	valence	electrons	to	move	into	the
conduction	 band,	 which	 creates	 a	 hole.	 This	 process	 eventually	 leads	 to	 an	 avalanche
breakdown	in	a	p-n	junction.

Internal	electric	field:	The	electric	field	developed	by	positively	charged	donor	ions,	which
are	 left	 behind	 as	 the	 electrons	 diffuse	 from	 the	 n-side	 to	 the	 p-side,	 and	 negatively
charged	acceptor	ions,	which	are	left	behind	as	the	holes	diffuse	from	the	p-side	to	the	n-
side.

Knee	voltage:	The	voltage	on	the	I–V	curve	for	a	diode,	at	which	the	forward	current	begins
to	increase	exponentially.	This	value	is	very	close	to	the	built-in	potential	(V0)	for	the	p-n
junction.

One-sided	p-n	junction:	A	p-n	junction	in	which	one	side	is	very	heavily	doped.	This	side	is
indicated	with	a	+	 superscript	 (e.g.,	 a	p+-n	 junction	 is	where	 the	p-side	 is	 very	heavily
doped).

Poisson’s	 equation:	 An	 equation	 relating	 the	 gradient	 of	 an	 electric	 field	 to	 the	 charge
density	and	the	dielectric	permittivity	of	the	material	(ε),	given	by	Equation	5.30:



Reverse	bias:	A	voltage	applied	to	a	p-n	junction	so	that	the	negative	terminal	of	the	external
voltage	supply	is	connected	to	the	p-side	of	the	p-n	junction.	This	reverse	bias	adds	to	the
built-in	electric	field	and	makes	the	p-n	junction	nonconducting.

Reverse-bias	 dielectric	 breakdown:	 A	 high	 value	 of	 reverse-bias	 applied	 voltage,	 which
causes	a	high	level	of	current	in	the	p-n	junction.

Reverse-bias	 saturation	 current	 (Is):	 A	 current	 resulting	 from	 the	 drift	 of	 thermally
generated	carriers	in	a	p-n	junction,	which	is	the	same	as	the	generation	current	(I0).	It	is
independent	of	the	applied	voltage.

Shockley	equation:	An	equation	that	describes	one	source	of	the	generation	current	in	a	p-n
junction	 originating	 from	 the	 diffusion	 of	 minority	 carriers	 that	 are	 generated	 in	 the
neutral	regions	of	the	p-n	junction	(Equation	5.56):

Space-charge	layer:	See	Depletion	region.

Space-charge	region:	See	Depletion	region.

Step	junction:	A	p-n	junction	in	which	the	transition	from	the	p-side	to	the	n-side	is	abrupt.

Zener	breakdown	mechanism:	A	low-voltage	breakdown	mechanism	in	which	a	p-n	junction
breaks	down	when	electrons	tunnel	across	the	p-n	junction	instead	of	climbing	over	the
energy	barrier.	Electrons	from	the	p-side	valence	band	tunnel	across	into	the	conduction
band	on	the	n-side	because	the	reverse	bias	pushes	down	the	Ec	on	the	n-side	and	aligns	it
with	the	valence	band	edge	(Ev)	on	the	p-side.	This	is	seen	more	often	in	heavily	doped
junctions	with	smaller	band	gaps.

Zener	diode:	A	diode	based	on	a	Zener	or	avalanche	breakdown	occurring	in	a	p-n	junction.

Zener	 tunneling:	 The	 tunneling	 seen	 in	 the	 Zener	 breakdown	 mechanism,	 also	 known	 as
band-to-band	tunneling.

Zener	voltage:	The	voltage	at	which	a	Zener	diode	begins	to	carry	current	under	a	reverse
bias	(typical	values	~1–200	V).
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6 Semiconductor	Devices

KEY	TOPICS

Metal–semiconductor	junctions
Schottky	and	ohmic	contacts
Solar	cells
Light-emitting	diodes	(LEDs)
The	operation	of	a	bipolar	junction	transistor	(BJT)
Principle	of	the	field-effect	transistor	(FET)

In	Chapter	6,	we	will	discuss	several	semiconductor	devices	utilizing	a	metal–semiconductor
junction,	 semiconductor–semiconductor	 junction,	 and	 semiconductor–dielectric	 interface.
The	devices	of	interest	are	Schottky/ohmic	contacts,	light-emitting	diodes	(LEDs),	and	several
transistors.	The	solar	cell	 is	another	very	 important	device	based	on	the	p-n	 junction	of	 the
semiconductor,	 and	 we	 will	 briefly	 study	 it	 in	 this	 chapter	 after	 we	 discuss	 the	 optical
properties	of	materials.	In	addition	to	our	coverage	in	this	chapter,	the	optical	aspect	of	LEDs
will	also	be	reviewed	in	Chapter	8.	This	combined	knowledge	regarding	semiconductors	and
optical	materials	will	help	readers	better	understand	solar	cells	and	LEDs	more	effectively.

6.1 METAL–SEMICONDUCTOR	CONTACTS

In	 semiconductor	 device	 fabrication,	 metals	 are	 often	 deposited	 as	 electrodes	 onto
semiconductor	surfaces.	The	deposition	of	a	metallic	material	onto	a	semiconductor	results	in
an	ohmic	contact	or	in	a	Schottky	contact.	The	ohmic	contact	between	a	metallic	material	and
a	semiconductor	is	such	that	there	is	no	energy	barrier	to	block	the	flow	of	carriers	in	either
direction	at	the	metal–semiconductor	junction.	In	some	cases,	however,	the	contact	between	a
metal	and	a	semiconductor	is	rectifying;	this	type	of	contact	is	known	as	the	Schottky	contact.

To	 better	 understand	 the	 origin	 of	 Schottky	 and	 ohmic	 contacts,	 recall	 that	 the	 work
function	of	a	material	is	the	energy	(E)	required	to	remove	an	electron	from	its	Fermi	energy
level	(EF)	and	set	it	free	(Figure	6.1).	Note	that,	although	there	are	electrons	at	E	=	EF	 for	a
metal,	there	are	no	electrons	at	E	=	EF	for	a	semiconductor.

Therefore,	we	define	the	electron	affinity	of	a	semiconductor	(qχS)	as	the	energy	needed	to
remove	an	electron	from	the	conduction	band	and	set	it	free	(Figure	6.1).	It	is	not	the	lowest
energy	 required	 to	 remove	 an	 electron	 because	 when	 an	 electron	 is	 removed	 from	 the
conduction	band,	another	electron	must	move	from	the	valence	band	to	the	conduction	band,
which	requires	additional	energy.

For	 semiconductors,	we	usually	 refer	 to	 the	values	of	electron	affinity	and	not	 the	work
function	 because	 electrons	 are	 present	 in	 the	 conduction	 band	 but	 not	 at	E	 =	EF.	 The	work
function	 and	 electron	 affinity	 values	 for	 different	metals	 and	 semiconductors	 are	 shown	 in



Table	6.1.	The	 values	 of	 the	 electron	 affinity	 and	 the	work	 function	 are	 often	 expressed	 as
potential	in	volts	(V)	or	as	energy	in	electron	volts.

FIGURE	6.1 Energy	diagrams	for	a	junction	between	a	metal	and	an	n-type	semiconductor	(ϕM	>	ϕS)	 (a)	before	contact
and	(b)	after	contact,	when	 the	Fermi	 levels	agree	(EFM	=	EFS).	 (From	Solymar,	L.	and	Walsh	D.,	Electrical	Properties	of
Materials,	6th	ed.,	1998,	by	permission	of	Oxford	University	Press.)



TABLE	6.1

Some	Metal	Work	Function	(qϕM)	and	Semiconductor	Electron	Affinity	(qχs)	Values

6.2 SCHOTTKY	CONTACTS

A	Schottky	contact	is	a	rectifying	contact	between	a	metal	and	a	semiconductor.	It	can	function
as	a	diode,	known	as	the	Schottky	diode	(Figure	6.2).

The	Schottky	contact	is	formed	if	ϕM	<	ϕS	for	a	p-type	semiconductor	or	ϕM	>	ϕS	for	an	n-
type	 semiconductor.	 The	 subscripts	 “M”	 and	 “S”	 stand	 for	 metal	 and	 semiconductor,
respectively.

FIGURE	6.2 Symbol	for	a	Schottky	diode.

6.2.1 BAND	DIAGRAMS

Consider	 a	 metal–semiconductor	 system	 in	 which	 the	 work	 function	 of	 the	 metal	 (ϕM)	 is
greater	than	that	for	an	n-type	semiconductor	(ϕS;	Figure	6.1a).

We	 will	 construct	 a	 band	 diagram	 for	 this	 metal–semiconductor	 junction	 using	 the
principle	 of	 the	 invariance	 of	 Fermi	 energy.	We	will	 follow	 steps	 similar	 to	 those	 used	 in
Chapter	5	for	creating	a	band	diagram	for	a	p-n	junction.	At	this	metal–n-type	semiconductor
junction,	where	ϕM	>	χS,	electrons	flow	from	the	higher-energy	states	of	 the	semiconductor
conduction	 band	 to	 the	 lower-energy	 states	 of	 the	metal.	 This	 creates	 a	 positively	 charged
depletion	 region	 in	 the	 n-type	 semiconductor.	 A	 negative	 surface	 charge	 builds	 up	 on	 the
metal.	Since	 the	free	electron	concentration	in	a	metal	 is	very	high,	 this	charge	 is	within	an
atomic	 distance	 from	 the	 surface.	 A	 built-in	 electric	 field	 is	 directed	 from	 the	 n-type



semiconductor	to	the	metal.	The	associated	built-in	potential	(V0)	prevents	the	further	flow	of
electrons	from	the	n-type	semiconductor	to	the	metal	(Figure	6.3).

As	we	can	see	in	Figure	6.3,	there	is	also	a	barrier	(qϕB)	to	the	flow	of	electrons	from	the
metal	to	the	n-type	semiconductor:

This	barrier,	called	the	Schottky	barrier	(qϕB),	prevents	any	further	injection	of	electrons
into	 the	 n-type	 semiconductor	 from	 the	 metal.	 When	 a	 metal	 is	 deposited	 onto	 a
semiconductor,	 we	 may	 think	 that	 the	 electrons	 from	 the	 metal	 flow	 easily	 into	 the
semiconductor.	However,	this	is	not	always	the	case.

The	 magnitude	 of	 the	 built-in	 potential	 (qV0)	 for	 transferring	 an	 electron	 from	 the
conduction	band	of	the	semiconductor	to	the	Fermi	energy	level	metal	is	given	by

where	qVn	 is	 the	energy	difference	between	Ec	and	EF	 of	 the	 n-type	 semiconductor	 (Figure
6.3).

FIGURE	 6.3 Formation	 of	 a	 Schottky	 contact	 between	 a	metal	 and	 an	 n-type	 semiconductor	 (qϕM	>	qϕS).	 (From	 Sze,
S.M.:	Semiconductor	Devices,	Physics,	and	Technology,	2nd	ed.	2002.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.
Reproduced	with	permission.)

Substituting	for	the	Schottky	barrier	from	Equation	6.1	(qϕB)	as	 (qϕM	−	qχS)	 in	Equation
6.2,	we	get

qV0	=	qϕM	−	qχS	−	qVn

qV0	=	qϕM	−	qχS	−	(qϕS	−	qχS)



qV0	=	qϕM	−	qϕS

Thus,	 the	built-in	potential	barrier	 (qV0)	 is	 equal	 to	 the	difference	between	 the	 two	work
functions	of	the	materials	forming	the	Schottky	contact.

6.2.2 SURFACE	PINNING	OF	THE	FERMI	ENERGY	LEVEL

It	may	seem	from	Equation	6.1	that,	for	different	metals	deposited	on	a	given	semiconductor
(e.g.,	silicon	[Si]),	the	barrier	height	(qϕB)	changes	with	the	work	function	of	the	metal	(qϕM).
However,	 in	practice,	 the	Schottky	barrier	height	does	not	 change	appreciably	 for	different
metals	deposited	onto	a	given	semiconductor	(Table	6.2).	As	shown	in	Table	6.2,	the	Schottky
barrier	height	of	~0.8	eV	essentially	is	independent	of	the	metal	deposited	for	n-type	silicon.
For	n-type	gallium	arsenide	(GaAs),	the	Schottky	barrier	height	is	~0.9	eV.

Many	 metals	 deposited	 on	 silicon	 are	 thermodynamically	 unstable,	 so	 that	 when	 the
semiconductor–metal	contact	 is	exposed	 to	high	 temperatures	during	processing,	 the	metals
react	with	the	silicon	and	form	a	silicide	intermetallic	compound.	For	example,	platinum	(Pt)
reacts	with	 silicon	 and	 forms	 platinum	 silicide	 (PtSi).	 This	 lowers	 the	 Schottky	 barrier	 by
~0.06	eV,	from	0.90	for	platinum	to	0.84	eV	for	PtSi.	Tantalum	silicide	(TaSi2)	and	 titanium
silicide	 (TiSi2)	 are	 the	 preferred	 materials	 for	 forming	 Schottky	 contacts	 in	 silicon
semiconductor	processing.	The	values	of	the	Schottky	barrier	for	some	silicides	are	listed	in
Table	6.2.

TABLE	6.2

Schottky	Barrier	Heights	(in	Electron	Volts)	for	Metals	and	Alloys	on	Different	Semiconductors



The	Schottky	barrier	 is	 independent	of	the	metal	or	alloy	used	to	create	it	because	of	the
surface	pinning	 of	 the	 semiconductor ’s	 Fermi	 energy	 level	 in	 the	 interface	 region	 (Figure
6.4).

At	the	semiconductor	surface	or	at	its	interface	with	another	metal	or	material,	additional
energy	 levels	 are	 introduced	 into	 the	 otherwise	 forbidden	band	gap.	The	 physical	 interface
between	the	semiconductor	and	its	surroundings	(another	metal,	surrounding	atmosphere,	and
so	on)	is	not	perfect;	there	are	dangling	or	incomplete	bonds,	which	means	the	atoms	at	the
surface	 or	 interface	 are	 not	 fully	 coordinated	 with	 the	 other	 atoms.	 For	 example,	 inside	 a
single	 crystal	 of	 silicon,	 an	 atom	 of	 silicon	 should	 be	 coordinated	with	 four	 other	 silicon
atoms	in	a	tetrahedral	fashion.	However,	this	is	not	the	case	for	silicon	atoms	at	the	surfaces
or	 interfaces	 with	 other	 metals	 or	 materials.	 The	 interface	 between	 a	 metal	 and	 a
semiconductor	is	not	sharp	at	an	atomistic	level.	There	is	a	very	small	region	at	the	interface
in	which	 it	 is	 unclear	whether	 the	material	 is	 a	metal	 or	 a	 semiconductor.	Nanoscale	oxide
particles,	intermetallic	compounds,	and	so	on	may	be	present	at	this	interface.	These	surface
atoms	 have	 incomplete	 bonds	 and	 other	 imperfections	 and	 introduce	 a	 large	 number	 of
energy	 states	 or	 available	 defect-related	 energy	 levels	 into	 the	 interface	 region	 of	 the
semiconductor ’s	band	gap	(Figure	6.4).

Thus,	 although	 theoretically	 there	 are	 no	 energy	 levels	 allowed	 in	 the	 band	 gap,	 some
energy	 levels	 occur	 in	 the	band	gap	near	 the	 surface	or	 interface	 region	 in	 the	bulk	of	 the
semiconductor.	These	states	effectively	pin	the	Fermi	energy	level	of	the	semiconductor	in	the
interface	region.

Surface	 pinning	 means	 that	 the	 Fermi	 energy	 level	 in	 the	 surface	 region	 of	 the
semiconductor	 is	at	a	 fixed	 level	 (ϕ0)	 that	does	not	change	with	 the	addition	or	 removal	of
electrons	in	the	rest	of	the	semiconductor	(via	doping).	This	also	means	that	the	position	of
the	semiconductor ’s	conduction	band	edge	is	fixed	in	the	interfacial	region.	Thus,	regardless
of	the	metal	deposited,	the	Fermi	energy	level	of	the	metal	must	align	with	the	pinned	Fermi
energy	 level	 (ϕ0;	Figure	6.4).	When	 the	 Fermi	 energy	 level	 is	 pinned,	 the	 Schottky	 barrier
height	(qϕB)	for	the	injection	of	electrons	from	a	metal	into	the	semiconductor	is	given	by

The	Schottky	barrier	of	different	metals	deposited	on	a	given	semiconductor	essentially	is
constant	(Table	6.2).



FIGURE	 6.4 Pinned	 Fermi	 energy	 level	 (qϕ0)	 in	 semiconductors.	 (From	 Singh,	 J.:	 Semiconductor	 Devices:	 Basic
Principles.	2001.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)

6.2.3 CURRENT–VOLTAGE	CHARACTERISTICS	FOR	SCHOTTKY	CONTACTS

We	now	consider	the	ideal	current–voltage	(I–V)	curve	for	a	Schottky	contact	between	an	n-
type	 semiconductor	 and	 a	metal,	 such	 that	qϕM	>	qχS.	When	 there	 is	 no	 applied	 bias,	 some
electrons	on	the	semiconductor	side	will	have	a	high	enough	energy	to	overcome	the	built-in
potential	 barrier	 (qV0)	 and	 flow	 onto	 the	 metal	 side.	 This	 process	 of	 thermionic	 emission
creates	 the	 thermionic	 current.	 If	 the	 n-type	 semiconductor	 is	 heavily	 doped,	 the	 depletion
layer	 is	 thin,	and	 it	 is	possible	 for	electrons	 to	 tunnel	 from	the	n-side	semiconductor	 to	 the
metal.	 Thermionic	 emission	 and	 tunneling	 both	 create	 a	 flow	 of	 electrons	 from	 the
semiconductor	 to	 the	 metal.	 The	 resultant	 conventional	 current	 (IMS)	 is	 directed	 from	 the
metal	to	the	semiconductor	(Figure	6.5).	This	current	is	balanced	by	the	conventional	current
resulting	 from	 the	 flow	 of	 electrons	 from	 the	 metal	 to	 the	 semiconductor	 (ISM).	 These
currents	cancel	each	other	out	in	a	Schottky	contact	under	equilibrium.

A	forward	bias	is	applied	to	this	Schottky	contact	by	connecting	the	positive	terminal	of	a
power	 supply	 to	 the	 metal	 side.	 The	 applied	 voltage	 is	 opposite	 the	 internal	 field	 and	 is
directed	 from	 the	 n-type	 semiconductor	 to	 the	metal.	 The	 potential	 barrier	 for	 the	 flow	 of
electrons	 from	the	semiconductor	 to	 the	metal	 is	 reduced	 from	qV0	 to	q(V0	 −	VF).	There	 is
therefore	an	increased	flow	of	electrons	from	the	semiconductor	to	the	metal.	This	means	that
the	 current	 directed	 from	 the	 metal	 to	 the	 n-type	 semiconductor	 (IMS)	 increases.	 This	 is
represented	in	Figure	6.5b	by	the	relatively	thicker	and	longer	arrow	for	IMS.

Note	 that	 since	 the	 Schottky	 barrier	 does	 not	 change	 much	 for	 a	 given	 semiconductor
(Table	6.2),	 the	current	 due	 to	 the	motion	of	 electrons	 from	 the	metal	 to	 the	 semiconductor
(ISM)	does	not	change.	Thus,	the	value	of	ISM	does	not	change	under	an	applied	bias.	The	net



result	is	that,	under	a	forward	bias,	the	overall	conventional	current	flow	from	the	metal	to	the
semiconductor	(ISM)	increases.

FIGURE	6.5 Current	 flows	 in	 a	 Schottky	 contact:	 (a)	 no	 bias;	 (b)	 forward	 bias;	 (c)	 reverse	 bias;	 and	 (d)	 the	 I–V	 curve.
(From	Mahajan,	S.	and	Sree	Harsha	K.S.,	Principles	of	Growth	and	Processing	of	Semiconductors,	McGraw	Hill,	New	York,
1998.	With	permission.)

Under	a	reverse	bias—that	is,	when	the	metal	side	is	connected	to	the	negative	terminal	of	a
DC	 power	 supply,	 the	 potential	 barrier	 for	 the	 flow	 of	 electrons	 from	 the	 semiconductor
toward	the	metal	increases	from	qV0	to	q(V0	+	Vr).	This	causes	the	resultant	IMS	 to	decrease,
whereas	 the	 value	 of	 ISM	 remains	 unchanged	 (Figure	 6.5c).	 The	 resultant	 current–voltage
(I–V)	curve	for	a	Schottky	diode	is	shown	in	Figure	6.5d.

We	 have	 considered	 a	 Schottky	 contact	 formed	 between	 an	 n-type	 semiconductor	 and	 a
metal	 (Figure	 6.6a	 and	 b).	 This	 type	 of	 rectifying	 contact	 can	 occur	 between	 a	 p-type
semiconductor	and	a	metal	when	ϕM	<	ϕS	(Figure	6.6).

The	current	through	a	Schottky	diode	is	given	by	the	following	equation:



where	IS	is	the	reverse	saturation	current,	V	is	the	applied	bias,	and	η	is	the	ideality	factor	for
a	Schottky	diode.	The	value	of	η	is	between	1	and	2	and	is	closer	to	1	for	a	Schottky	diode.
The	reverse-bias	saturation	current	(IS)	is	given	by

where	A	is	the	area	through	which	the	Schottky	current	flows.

The	term	 	is	known	as	the	effective	Richardson	constant	(R*).

where	m*	is	the	carrier	effective	mass	and	m0	is	the	carrier	rest	mass.

FIGURE	6.6 Energy-band	diagrams	of	a	metal/p-type	semiconductor	contact	with	ϕM	<	ϕS:	(a)	two	materials	isolated	from
each	other	 and	 (b)	 at	 thermal	 equilibrium	after	 the	 contact	 is	made.	 (From	Mahajan,	 S.	 and	Sree	Harsha	K.S.,	Principles	 of
Growth	and	Processing	of	Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)



TABLE	6.3

Effective	Richardson	Constants	for	Semiconductors

Carriers	and	Semiconductor Effective	Richardson	Constant	(R*)	(A	·	cm−2	·	K−2)

Electrons	in	silicon	(Si) 110

Holes	in	silicon	(Si) 32

Electrons	in	GaAs 8

Holes	in	GaAs 74

FIGURE	6.7 Comparison	of	the	I–V	curves	for	a	p-n	junction	and	a	Schottky	diode.	(From	Neaman,	D.,	An	Introduction	to
Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Instead	of	the	saturation	current	(IS),	we	can	write	Equation	6.7	in	the	form	of	a	saturation
current	density	(JS)	as

The	values	 of	 the	 effective	Richardson’s	 constant	 (R*),	 predicted	 from	Equation	 6.7,	 are
high.	Values	from	more	detailed	calculations	are	shown	in	Table	6.3.

The	Schottky	diode	I–V	curve	(Figure	6.5)	appears	very	similar	to	that	for	a	p-n	junction
diode.	However,	 there	are	 important	differences	 in	 the	magnitude	of	 the	currents,	which	are
illustrated	in	Example	6.1	and	Figure	6.7.



Example	6.1: Schottky	Diode	Current

A	Schottky	diode	made	from	a	Si	and	tungsten	(W)	junction	has	a	saturation	current	density	(Js)	of	10
−11	A/cm2.

(a)	What	is	the	current	density	if	the	applied	forward	bias	(V)	is	0.3	V?	(b)	If	the	cross-sectional	area	of	this	diode	is
5	×	10–4	cm2,	what	is	the	value	of	the	current	(I)	in	mA?

Solution
1.	 We	rewrite	Equation	6.5	as

We	 assume	 that	 under	 a	 forward	 bias	 of	 0.3	 V,	 the	 exponential	 term	 is	much	 larger	 than	 1.	 This	 is
because	(kBT/q)	~0.026	V	at	300	K.	We	also	assume	η	=	1.	Therefore,

2.	 The	magnitude	of	the	current	is	I	=	10.25	A/cm2	×	 (5	×	10−4	cm2)	=	5.12	mA.
This	is	a	large	forward	current.	A	typical	Si	p-n	junction	diode,	with	a	built-in
potential	of	~0.7	V,	hardly	carries	any	current	for	a	forward	voltage	of	0.3	V.

Schottky	diodes	have	 a	 lower	voltage	drop	compared	 to	p-n	 junction	diodes	because	 they	are	made	 from	a	metal–
semiconductor	junction	not	a	p-n	junction.	A	forward	current	of	~1	mA	can	be	achieved	for	forward	voltages	as	small	as
~0.1–0.4	V.

6.2.4 ADVANTAGES	OF	SCHOTTKY	DIODES

The	Schottky	diode	is	considered	a	majority	device,	 that	is,	minority	carriers	do	not	play	an
important	role.	Therefore,	Schottky	diodes	exhibit	faster	switching	times.	The	lower	forward
voltage	 means	 that	 a	 Schottky	 diode	 does	 not	 dissipate	 as	 much	 power.	 Because	 of	 these
advantages,	Schottky	diodes	are	used	in	high-speed	computer	circuits.

The	 junction	 capacitance	of	 a	Schottky	diode	 is	 lower	 compared	 to	 that	 of	 a	 typical	 p-n
junction	based	on	 the	 same	 semiconductor.	Since	 the	 reverse	 saturation	 current	 is	 high,	 the
voltage	and	current	ratings	of	a	Schottky	diode	for	a	forward	bias	are	lower.

Silicon	 Schottky	 diodes	 have	 relatively	 smaller	 breakdown	 voltages.	 The	 silicon	 diodes
work	 well	 up	 to	 a	 breakdown	 voltage	 of	 ~100	 V.	 The	 resistance	 of	 the	 diode	 increases
significantly	 in	 silicon	diodes	 that	 have	 larger	breakdown	voltages.	For	 any	given	 forward
voltage	drop,	the	value	of	the	current	decreases	significantly	with	higher	breakdown	voltage
diodes.	 This	 limits	 the	 use	 of	 silicon	 Schottky	 diodes	 to	 rectify	 relatively	 lower	 voltages
(Figure	6.8).



FIGURE	6.8 Calculated	forward	V–I	characteristics	for	silicon	Schottky	diodes.	BV	=	breakdown	voltage.	(From	Baliga,
B.J.,	Silicon	Carbide	Power	Devices,	World	Scientific,	Singapore,	2005.	With	permission.)

FIGURE	6.9 Calculated	forward	V–I	characteristics	for	silicon	carbide	Schottky	diodes.	BV	=	breakdown	voltage.	(From
Baliga,	B.J.,	Silicon	Carbide	Power	Devices,	World	Scientific,	Singapore,	2005.	With	permission.)

We	 can	 use	 semiconductors	 with	 higher	 breakdown	 voltages	 to	 control	 currents	 and
voltages	 in	 high-powered	 electronics.	 For	 example,	 there	 is	 considerable	 interest	 in	 using
silicon	 carbide	 (SiC)	 Schottky	 diodes.	 The	 forward	 current	 characteristics	 for	 a	 form	 of
silicon	carbide	(known	as	4H-SiC)	are	shown	in	Figure	6.9.

Compared	to	silicon	diodes,	these	diodes	have	a	higher	Schottky	barrier	height	of	~1.1	eV.
They	can	also	be	designed	for	higher	breakdown	voltages	and	still	offer	a	lower	resistance.



Thus,	compared	to	silicon,	Schottky	diodes	made	using	SiC	are	better	suited	for	high-power
applications	that	involve	higher	voltages	and	currents.

6.3 OHMIC	CONTACTS

Ohmic	 contacts	 are	 necessary	 in	 many	 semiconductor	 devices,	 such	 as	 in	 solar	 cells	 and
transistors.	Ohmic	contacts	are	formed	when	ϕM	<	ϕS	for	an	n-type	semiconductor	or	ϕM	>	ϕS
for	a	p-type	semiconductor.	These	contacts	are	nonrectifying,	meaning	that	there	is	no	energy
barrier	 to	 block	 current	 flow	 in	 either	 direction.	 The	 use	 of	 the	 word	 ohmic	 does	 not,
however,	mean	that	the	resistance	of	the	contact	is	constant	with	voltage.

6.3.1 BAND	DIAGRAM

The	band	diagrams	for	a	metal–semiconductor	junction	forming	an	ohmic	contact	are	shown
in	Figure	6.10.

Ohmic	contacts	can	be	formed	on	semiconductor	surfaces	using	different	strategies	such
as	 those	 shown	 in	 Figure	 6.11.	 The	 usual	 approach	 is	 to	 make	 tunneling	 possible	 using	 a
Schottky	barrier	of	a	lower	height	and	then	doping	to	reduce	the	depletion	layer	width.

Aluminum	(Al)	metallization	is	often	used	to	create	an	ohmic	contact	on	silicon.	As	we	can
see	 from	Table	 6.2,	 aluminum	 can	 form	 a	 Schottky	 contact	 on	 silicon	 by	 itself.	 However,
when	an	evaporated	aluminum	film	on	p-type	silicon	is	heated	to	~450−550°C,	the	aluminum
diffuses	 into	 the	 silicon	 and	 creates	 a	 heavily	 doped	 (p+)	 layer	 at	 the	 interface	 between	 the
aluminum	 and	 p-type	 silicon.	 Silicon	 can	 also	 diffuse	 out	 into	 aluminum	 and	 form	 an
aluminum–silicon	alloy.	The	contact	between	the	p+	layer	of	silicon	and	the	aluminum–silicon
alloy	is	ohmic	in	nature.	Similarly,	gold	(Au)	containing	a	small	concentration	of	antimony
(Sb),	when	deposited	on	n-type	silicon,	can	create	an	ohmic	contact	by	diffusing	some	of	the
antimony	into	the	n-type	silicon	and	creating	an	n+	layer	at	the	interface.	Electrons	can	tunnel
through	this	barrier	and	create	an	ohmic	contact.	The	current–voltage	(I–V)	characteristics	of
an	ohmic	contact	and	a	Schottky	contact	are	compared	in	Figure	6.12.



FIGURE	6.10 Band	 diagram	 for	 ohmic	metal–semiconductor	 contact:	 (a)	 ϕM	<	ϕS	 for	 an	 n-type	 semiconductor,	 (b)	 the
corresponding	equilibrium	band	diagram	for	the	junction,	(c)	ϕM	>	ϕS	for	a	p-type	semiconductor,	and	(d)	the	corresponding
band	 diagram	 for	 the	 junction.	 (From	 Mahajan,	 S.	 and	 Sree	 Harsha	 K.S.,	 Principles	 of	 Growth	 and	 Processing	 of
Semiconductors,	McGraw	Hill,	New	York,	1998.	With	permission.)



FIGURE	 6.11 Strategies	 for	 creating	 ohmic	 contacts	 on	 n-GaAs:	 (a)	 Thermionic	 emission	 barrier;	 (b)	 field	 emission
(tunneling)	barrier;	 (c)	graded	composition	 low-resistance	barrier;	 (d)	heterojunction	contact	 reduced	barrier;	 and	 (e)	graded
composition	 enhanced	 barrier.	 (Adapted	 from	Mahajan,	 S.	 and	 Sree	 Harsha	 K.S.,	Principles	 of	 Growth	 and	 Processing	 of
Semiconductors,	McGraw	Hill,	New	York,	1998.)

FIGURE	 6.12 A	 comparison	 of	 the	 I–V	 curves	 for	 an	 ohmic	 and	 a	 Schottky	 contact.	 (From	 Singh,	 J.:	 Semiconductor
Devices:	Basic	Principles.	2001.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)

6.4 SOLAR	CELLS



A	solar	cell	is	a	p-n	junction–based	device	that	generates	an	electric	voltage	or	current	upon
optical	illumination.	In	this	section,	the	basic	characteristics	of	the	solar	cells	are	addressed.
We	will	study	detailed	operating	principles	and	advanced	device	design	concepts	of	solar	cells
in	Chapter	9	 after	we	 discuss	 optical	materials.	 Solar	 cells	 are	 useful	 in	 alternative	 energy
technologies	that	are	greener	and	utilize	resources	such	as	energy	from	the	sun	and	wind.	The
field	 of	 research	 and	 development	 converting	 light	 energy	 into	 electricity	 is	 known	 as
photovoltaics.

The	sun	emits	most	of	 its	energy	 in	 the	wavelength	of	0.2	 to	4	μm.	Solar	cells	are	made
using	semiconductors	 that	can	absorb	energy	 in	 this	wavelength	spectrum.	The	band	gap	of
the	 semiconductors	 used	 is	 hν	 >	Eg,	 where	 ν	 is	 the	 frequency	 of	 light.	Absorptivity	 is	 the
ability	of	 the	semiconductor	 to	absorb	solar	 radiation.	This	also	 is	 important	 to	solar	cells.
The	 semiconductors	 used	 in	 solar	 cells	 include	 crystalline	 silicon,	 amorphous	 silicon
(a:Si:H),	 polycrystalline	 silicon,	 silicon	 ribbons,	 nanocrystalline	 silicon,	 and	 GaAs.
Polycrystalline	silicon	is	the	most	widely	used	because	it	costs	less	than	single-crystal	silicon,
the	second	most	widely	used	(Green	2003).	Amorphous	silicon	is	attractive	because	it	can	be
used	for	deposition	on	large	areas.	Other	compound	semiconductors	such	as	copper	 indium
diselenide	(CuInSe2,	CIS)	and	cadmium	telluride	(CdTe)	can	also	be	used,	and	they	provide	a
very	high	absorption	of	incident	light.	A	schematic	of	the	structure	of	a	solar	cell	is	shown	in
Figure	6.13.

Usually,	the	top	layer	in	a	solar	cell	is	an	n-type	material	and	the	bottom	layer	is	a	p-type
semiconductor.	There	are	other	elements	in	the	solar	cell	structure,	such	as	an	antireflective
coating	(Figure	6.13).	The	coating	helps	capture	as	much	of	the	light	energy	incident	on	the
solar	 cell	 as	 possible	 by	 minimizing	 reflection	 losses.	 Similarly,	 in	 addition	 to	 the	 p-n
junction,	electrical	ohmic	contacts	are	required	for	operating	an	electrical	circuit.	The	bottom
contact	 is	made	 using	metals	 such	 as	 aluminum	 or	molybdenum.	 The	 top	 contact	 is	 in	 the
form	of	metal	grids	or	transparent	conductive	oxides	such	as	indium	tin	oxide	(ITO)	so	that
light	 can	 still	 get	 through	 to	 the	 p-n	 junction.	 The	 symbol	 for	 a	 solar	 cell	 in	 an	 electrical
circuit	is	shown	in	Figure	6.14.

FIGURE	6.13 Schematic	of	the	structure	of	a	solar	cell.	(Courtesy	of	Solar	Energy	Technology	Program,	U.S.	Department
of	Energy,	Washington,	DC.)



FIGURE	6.14 Symbol	for	a	solar	cell	in	an	electrical	circuit.

Experimental	data	for	a	silicon	solar	cell	I–V	curve	is	shown	in	Figure	6.15.	From	this	I–V
curve,	we	 can	 characterize	 the	major	 performance	 parameters	 of	 the	 solar	 cell	 (maximum
output	 current,	 maximum	 output	 voltage,	 and	 power	 conversion	 efficiency).	 Note	 that	 the
open-circuit	voltage	is	slightly	less	than	0.7	V	and	the	contact	potential	(V0)	for	silicon	is	~0.7
V.	If	the	incident	photons	in	solar	cells	have	an	energy	(hv)	less	than	the	band	gap	energy	(Eg),
then	no	electron–hole	pairs	are	produced	and	the	incident	energy	is	wasted—that	is,	it	is	not
used	for	conversion	into	electrical	energy.	Similarly,	if	the	incident	photon	energy	(hv)	is	too
high	 compared	 to	Eg,	 then	 electron–hole	 pairs	 are	 created,	 and	 the	 difference	 (hν–Eg)	will
appear	as	heat.	This	will	also	make	the	solar	cell	inefficient.	Thus,	the	efficiency	of	the	solar
cell	conversion	is	maximized	by	better	matching	the	semiconductor	band	gap	with	the	solar
spectrum.	 Details	 about	 the	 relation	 between	 the	 band	 gap	 of	 the	 semiconductor	 and	 the
theoretical	efficiency	of	the	solar	cell	can	be	found	in	Chapter	9.

Note	that	both	direct	and	indirect	band	gap	semiconductors	can	be	used	in	solar	cells.	This
is	 different	 from	 the	 requirement	 of	 LED	 semiconductors.	 Since	 electrons	 and	 holes
recombine	 to	produce	photons,	LEDs	are	built	on	direct	band	gap	semiconductors.	 In	some
ways,	 the	 solar	 cell	 and	 the	 LED	 make	 use	 of	 opposite	 effects.	 Currently,	 the	 best	 power
conversion	 efficiency	 of	 a	 single-junction	 GaAs	 solar	 cell	 is	 29.1%;	 however,	 it	 is	 more
expensive	 than	 silicon.	 The	 state-of-the-art	 silicon	 solar	 cell	 has	 a	 power	 conversion
efficiency	of	25.0%,	which	is	lower	than	the	GaAs	solar	cell.	Thin	film	solar	cells	of	direct
band	gap	semiconductors	(CuInSe2,	CdTe)	offer	the	highest	conversion	efficiencies—slightly
more	 than	 21%.	 More	 complex	 solar	 cells	 based	 on	 multiple	 layers	 of	 different
semiconductors	offer	higher	efficiencies	(up	to	40%)	because	as	the	band	gap	varies	across
the	thickness	of	the	solar	cell,	we	can	capture	photons	of	different	energies.	However,	the	cost
of	these	solar	cells	is	relatively	high	because	they	require	a	complicated	fabrication	process.
There	 also	 is	 a	 growing	 interest	 in	 using	 the	 nanoparticles	 of	 semiconductors	 and	 organic
materials	for	solar	cell	applications.



FIGURE	6.15 Experimental	I–V	 curve	 for	 a	 silicon	 solar	 cell.	 (Courtesy	 of	 Professor	Martin	Green,	University	 of	New
South	Wales,	Australia.)

6.5 LIGHT-EMITTING	DIODES

An	LED	normally	uses	 a	 direct	 band	gap	 semiconductor	 in	which	 the	process	 of	 electron–
hole	recombination	results	in	spontaneous	emission	of	light.	The	symbol	for	an	LED	is	shown
in	 Figure	 6.16.	 In	 this	 section,	we	will	 focus	 on	 the	 electrical	 aspect	 of	 LEDs.	 The	 optical
aspect	of	LEDs	and	 further	 information	about	using	 the	 semiconductor	 junction	 for	 a	 laser
diode	are	discussed	in	Chapter	8.

FIGURE	6.16 Symbol	for	an	LED.

The	first	practical	LED	was	reported	by	Holonyak	at	General	Electric	in	1962.	He	built	red
light	emitting	LEDs	using	III–V	compound	semiconductors.	Later,	multicolor	emitting	LEDs
were	 fabricated,	 which	 was	 followed	 by	 the	 invention	 of	 organic	 light-emitting	 diodes
(OLEDs).

6.5.1 OPERATING	PRINCIPLE

The	underlying	operating	principle	of	an	LED	has	already	been	mentioned	in	Chapter	5	in	a
discussion	 of	 indirect	 and	 direct	 band	 gap	 semiconductors	 as	 well	 as	 the	 processes	 of
radiative	 and	 nonradiative	 electron–hole	 recombination	 (Figure	 6.17).	 The	 recombination
dynamics—how	rapidly	the	electrons	and	holes	can	recombine	and	produce	light—determine
the	 speed	at	which	an	LED	can	be	 turned	on	and	off.	The	 speed	with	which	an	LED	can	be
turned	on	and	off	is	important	in	some	fiber-optic	applications.



Most	 LEDs	 are	 made	 using	 direct	 band	 gap	 materials.	 However,	 as	 has	 been	 noted	 in
Chapter	5,	it	 is	possible	to	use	indirect	band	gap	materials	to	make	LEDs,	provided	a	defect
energy	 level	 can	be	 introduced	by	doping	 (see	Section	6.5.3).	This	defect	 level	provides	 an
intermediate	state	in	which	radiative	recombination	is	possible.

LEDs	are	constructed	as	forward-biased	p-n	 junctions	made	most	often	from	direct	band
gap	semiconductors	(Figure	6.18).	When	the	p-n	junction	forming	an	LED	is	forward-biased,
the	electrons	with	a	high	energy	can	overcome	the	built-in	potential	barrier	and	arrive	at	the
p-side	of	the	junction.	These	minority	carriers	then	combine	with	the	holes	(i.e.,	the	majority
carriers)	on	the	p-side.

Similarly,	 some	 of	 the	 holes	 from	 the	 p-side	 of	 the	 junction	 also	 make	 it	 across	 the
depletion	layer	onto	the	n-side	and	recombine	with	the	electrons	there.	These	recombination
processes	 result	 in	 the	 emission	 of	 light	 in	 direct	 band	 gap	 materials	 (Figure	 6.18).	 For
indirect	 band	 gap	materials	 such	 as	 silicon	 or	 germanium,	 the	 recombination	 process	 also
leads	 to	 the	generation	of	heat.	Thus,	no	LEDs	are	made	using	silicon	or	germanium.	Note
that	 even	 in	 direct	 band	 gap	materials,	 some	 nonradiative	 recombination	 occurs	 and	 has	 a
negative	effect	on	LED	efficiency.

FIGURE	6.17 Illustration	of	radiative	and	nonradiative	recombination:	(a)	Radiative	recombination	of	an	electron–hole	pair
accompanied	by	the	emission	of	a	photon	with	energy	hν	=	Eg.	(b)	In	nonradiative	recombination	events,	the	energy	released
during	 the	 electron–hole	 recombination	 is	 converted	 to	 phonons.	 (From	 Schubert,	 E.F.,	 Light-Emitting	 Diodes,	 Cambridge
University	Press,	Cambridge,	UK,	2006.	With	permission.)



FIGURE	6.18 LED	operating	principle.

6.5.2 LED	MATERIALS

The	 light	emitted	 from	an	LED	may	be	 in	 the	visible,	 infrared,	or	ultraviolet	 ranges.	LEDs
that	 emit	 in	 the	 visible	 range	 are	 widely	 used	 in	 displays	 and	 many	 other	 consumer
applications.	Figure	6.19	shows	some	of	the	materials	used	for	making	LEDs.

The	response	of	the	eye	to	different	wavelengths	corresponding	to	various	colors	is	also
shown	 in	 this	 figure.	 The	wavelength	 of	 light	 emitted	 (λ)	 is	 related	 to	 the	 band	 gap	 of	 the
semiconductor	(Eg)	by	the	following	equation:

LEDs	 that	 emit	 in	 the	 infrared	 range	 are	 used	 in	 fiber-optic	 systems.	 Gallium	 nitride
(GaN)–based	LEDs	 are	 relatively	 new	 and	 emit	 in	 the	 near-ultraviolet	 and	 blue	 range.	 The
band	 gap	 of	 GaN	 is	 ~3.4	 eV.	 GaN	 is	 alloyed	 with	 other	 nitrides	 (e.g.,	 indium	 nitride	 and
aluminum	nitride)	to	obtain	blue,	amber,	or	green	LEDs	(Figure	6.20).



FIGURE	 6.19 Semiconductors	 used	 in	 LEDs	 relative	 to	 (a)	 color	 wavelengths	 and	 relative	 eye	 response	 and	 (b)
wavelength	emitted.	(From	Sze,	S.M.:	Semiconductor	Devices,	Physics	and	Technology,	2nd	ed.	2002.	Copyright	Wiley-VCH
Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)



FIGURE	 6.20 Band	 gaps	 of	 LEDs	 emitting	 different	 visible	 colors	 of	 light.	 IR	 =	 infrared.	 (From	 Schubert,	 E.F.,	 Light-
Emitting	Diodes,	Cambridge	University	Press,	Cambridge,	UK,	2006.	With	permission.)

Thus,	 the	band	gap	of	semiconductors	used	for	making	LEDs	can	be	intentionally	varied
by	 forming	 solid	 solutions	 among	 multiple	 semiconductors.	 This	 band	 gap	 engineering
approach	leads	to	variations	in	the	color	of	the	light	emitted.	For	example,	GaAs	is	a	direct
band	gap	material	with	a	band	gap	of	1.43	eV	and	a	corresponding	wavelength	of	870	nm	in
the	 infrared	 range.	 However,	 it	 can	 be	 alloyed	 with	 aluminum	 arsenide	 (AlAs)	 and	 other
materials	to	form	LEDs	of	different	colors.

The	quality	of	materials	used	in	the	manufacture	of	durable	LEDs	is	extremely	important
from	the	viewpoint	of	the	presence	of	atomic	level	defects	such	as	vacancies	and	dislocations.
For	example,	as	pointed	out	by	Nakamura	et	al.	(1995),	scientists	knew	for	a	long	time	that	a
blue	or	ultraviolet	LED	could	be	made	using	GaN-based	materials.	However,	until	 recently,
the	 available	 materials	 had	 too	 many	 defects—such	 as	 certain	 types	 of	 dislocations—that
prevented	the	creation	of	a	blue	LED.	Thus,	defects	such	as	dislocations	should	be	minimized
in	LED	device	materials.
Organic	 light-emitting	 diodes	 (OLEDs)	 or	 polymer	 light-emitting	 diodes	 (PLEDs)	 have

recently	been	developed	in	which	there	is	an	electron-injecting	cathode	instead	of	an	n-layer.
There	 also	 is	 a	 hole-injecting	 anode.	This	 technology	 has	 considerable	 promise	 as	 a	more
energy-efficient	 alternative	 to	 lighting	 by	 conventional	 sources	 such	 as	 incandescent	 or
fluorescent	lights.	Several	companies	have	recently	introduced	high-quality	displays	based	on
OLEDs.

6.5.3 LEDS	BASED	ON	INDIRECT	BAND	GAP	MATERIALS

Gallium	phosphide	(GaP)	has	an	indirect	band	gap	of	2.26	eV.	When	solid	solutions	of	GaAs,
a	direct	band	gap	material,	are	formed	with	GaP,	the	band	gap	of	the	solid	solution	GaAs1−xPx
is	direct	until	x	=	0.45	(Figure	6.21a).	 In	 fact,	 the	most	 commonly	used	composition	 in	 this
system	is	GaAs0.6P0.4,	which	emits	in	the	red	region	(with	Eg	~	1.9	eV).



FIGURE	6.21 Schematic	 of	 the	 band	 diagram	 for	 (a)	GaAs1−xPx	(x	 <	 0.45)	with	 a	 direct	 band	 gap;	 (b)	 nitrogen-doped
indirect	band	gap	GaAs1−xPx	(x	>	0.45);	and	(c)	transitions	in	direct	band	gap	GaAs,	crossover	GaAsP,	and	indirect	band	gap
GaP.	(From	Schubert,	E.F.,	Light-Emitting	Diodes,	Cambridge	University	Press,	Cambridge,	UK,	2006.	With	permission.)

As	the	mole	fraction	x	of	phosphorus	(P)	in	the	GaAs1−xPx	increases,	the	materials	become
an	 indirect	 band	 gap.	 These	materials	 can	 be	 doped	with	 a	 dopant	 such	 as	 nitrogen	 (N)	 to
make	LEDs	that	emit	yellow	to	green	wavelengths.	When	nitrogen,	an	isoelectronic	dopant,	is
added	 to	 these	materials,	 it	 substitutes	 for	 some	of	 the	phosphorus	 atoms	at	 their	 locations.
Although	the	valence	of	phosphorus	and	nitrogen	is	the	same	(+5),	the	positive	nucleus	of	a
nitrogen	atom	is	 less	shielded	than	the	positive	nucleus	of	a	phosphorus	atom.	Isoelectronic
impurities	such	as	nitrogen	atoms	tend	to	bind	the	conduction	electrons	more	tightly,	that	is,
the	 electron	 wave	 function	 is	 highly	 localized.	 According	 to	 the	 Heisenberg	 uncertainty
principle	because	the	location	of	the	electron	is	more	fixed	(i.e.,	Δx	is	small),	its	momentum	is
spread	 out	 (i.e.,	 Δx	 is	 large).	 Hence,	 there	 are	 two	 possible	 vertical	 transitions	 via	 the
isoelectronic	nitrogen	defect	level.	One	of	these	is	a	radiative	transition,	in	which	the	nitrogen
atoms	 introduce	 a	 defect	 energy	 level	 near	 the	 conduction	band	of	GaP	or	GaAs1−xPx.	 The
change	 in	 momentum	 that	 occurs	 when	 an	 electron	makes	 the	 transition	 from	 the	 indirect
conduction	band	(labeled	X)	to	the	valence	band	(labeled	Γ)	is	absorbed	by	the	impurity	atom
(Figure	6.21c).	This	enables	the	emission	of	light	with	an	energy	that	is	slightly	less	than	that
for	the	band	gap	of	GaP	or	GaAs1−xPx.

6.5.4 LED	EMISSION	SPECTRAL	RANGES

We	usually	think	of	an	LED	as	a	device	that	emits	the	light	of	one	wavelength.	In	practice,	the
light	emitted	from	an	LED	is	not	all	at	one	wavelength	corresponding	to	 the	band	gap	(Eg).
The	reason	for	this	spectral	width	is	that	carriers	in	semiconductors	have	a	range	of	energies.
Thus,	some	electrons	with	an	energy	higher	than	Ec	show	a	vertical	recombination	with	holes
in	 the	 valence	 band	 without	 a	 change	 in	 carrier	 momentum.	 For	 these	 electrons,	 which
recombine	with	holes	at	a	higher	energy,	the	frequency	of	light	emitted	is	also	higher	(shown
as	hν2;	Figure	6.22).

The	maximum	emission	intensity	occurs	at



At	half	mask,	the	full	width	of	the	luminescence	intensity	as	a	function	of	energy	is	1.8	kBT.
Thus,	the	width	of	the	energy	is	given	by

The	spectral	width	(Δλ)	is	given	by

FIGURE	6.22 Vertical	 recombination	of	 electrons	and	holes	with	energy	E	=	Eg	 and	higher.	 (From	Schubert,	E.F.,	Light-
Emitting	Diodes,	Cambridge	University	Press,	Cambridge,	UK,	2006.	With	permission.)

where	λ	 is	 the	wavelength	of	 light	 emitted	corresponding	 to	 the	band	gap	energy	 (Eg).	 For
example,	 a	GaAs	LED	emitting	 at	 870	nm	has	 a	 spectral	width	 (Δλ)	of	~28	nm,	 that	 is,	 the
wavelengths	range	from	870	nm	(E	=	Eg	=	1.43	eV)	to	870	–	28	nm	=	842	nm.	Note	that	higher
electron	energies	mean	 that	 the	wavelength	of	 light	 emitted	 is	 smaller.	Thus,	 an	LED	emits
wavelengths	 in	 the	 range	 of	 λ	 to	 (λ	 −	 Δλ).	 Compared	 to	 the	 human	 eye’s	 sensitivity,	 this
spectral	 range	 is	small;	hence,	 for	all	practical	purposes,	 the	color	of	a	given	LED	appears
monochromatic.

Although	spectral	purity	is	not	a	major	concern	in	display	applications,	it	is	very	important
for	 some	 applications	 in	 fiber-optic	 systems.	 In	 these	 applications,	LEDs	 cannot	 be	 used	 to
send	signals	over	 longer	distances	because	 the	signal	spreads;	 that	 is,	different	wavelengths
start	 at	 the	 same	 point	 but	 arrive	 at	 the	 destination	 at	 different	 times.	 In	 such	 applications,
devices	known	as	laser	diodes	must	be	used.	In	a	laser	diode,	photons	of	a	given	energy	and
wave	 vector	 are	 absorbed	 by	 the	 semiconductor,	 causing	 the	 generation	 of	 electrons	 and
holes.	The	 electrons	 and	 holes	 recombine	 and	 release	 stimulated	radiation,	 an	 emission	 of
coherent	photons;	that	is,	the	photons	emitted	are	in	phase	with	the	incident	photons	(i.e.,	with



the	same	energy	and	wave	vector).	Blue	laser	diodes	based	on	GaN	offer	a	higher	resolution
for	writing	a	digital	video	disk	(DVD)	and	are	used	in	the	latest	DVDs.	This	laser	diode	also
forms	the	basis	of	the	so-called	Blu-ray	disks	and	disk	drives.

6.5.5 I–V	CURVE	FOR	LEDS

Because	 LEDs	 are	 usually	 operated	 as	 forward-biased	 p-n	 junctions,	 their	 I–V	 curves	 are
similar	to	the	curves	we	have	seen	for	regular	silicon-based	p-n	junctions.	The	I–V	curves	for
different	LED	materials	are	compared	to	those	for	silicon	in	Figure	6.23.

As	we	can	expect,	the	knee	of	these	various	curves	appears	at	a	voltage	close	to	the	built-in
potential	 for	 these	different	materials.	Thus,	 for	 germanium,	 the	knee	occurs	 around	0.4	V.
For	 silicon,	which	cannot	be	used	 to	make	LEDs	because	of	 its	 indirect	band	gap,	 the	knee
occurs	at	~0.7	V.	This	is	close	to	the	built-in	potential	for	a	silicon	p-n	junction.

The	 typical	 forward	 voltage	 required	 to	 drive	 an	 LED	 is	 about	 1.2–3.2	V.	 This	 is	much
greater	than	that	for	a	silicon-based	diode.	Similarly,	the	reverse-bias	breakdown	voltage	of	a
typical	LED	is	~3	to	10	V.	This	is	much	smaller	than	that	for	a	silicon	diode.

FIGURE	6.23 Room-temperature	I–V	curves	for	different	LED	materials	and	silicon.	 (From	Schubert,	E.F.,	Light-Emitting
Diodes,	Cambridge	University	Press,	Cambridge,	UK,	2006.	With	permission.)

A	 typical	 LED	 circuit	 uses	 a	 series	 resistance	 (Rs)	 to	 limit	 the	 forward	 current	 and	 to
prevent	any	damage	to	the	LED	because	of	excessive	current	and	associated	heat.	This	series
resistance	(Rs)	is	separate	from	the	internal	resistance	associated	with	the	LED	itself.	The	use
of	a	series	resistance	is	discussed	in	Example	6.2.

Example	6.2: LED	Circuits	with	Series	Resistance

An	LED	is	driven	by	a	maximum	voltage	supply	of	8	V.	For	the	driving	voltage	across	an	LED	of	1.8–2.0	V,	what
should	be	the	series	resistance	(Rs)?	Assume	that	the	LED	current	is	16	mA.



Solution
In	this	example,	the	maximum	voltage	for	the	circuit	shown	in	Figure	6.24	is	8	V.	This	voltage	appears	between	the
resistor	(Rs)	 and	 the	LED.	We	assume	 that	 the	 resistance	of	 the	LED	 itself—that	 is,	 the	 smaller	 resistance	of	 the
neutral	parts	of	the	p-n	junction—is	small	(~5	Ω)	and	can	be	ignored.
Supplied	voltage	is	divided	to	LED	and	series	resistance.	Therefore,	forward	current	(IF)	is	given	by

This	can	be	rounded	to	390	Ω.	Therefore,	we	connect	a	390-Ω	resistor	in	the	series	to	ensure	that	the	current	in
this	LED	does	not	exceed	16	mA.

FIGURE	6.24 LED	circuit	showing	a	series	resistance	(RS).

6.5.6 LED	EFFICIENCY

The	 efficiency	 of	 an	 LED	 depends	 on	 what	 happens	 inside	 the	 active	 region	 in	 which	 the
recombination	 of	 holes	 and	 electrons	 occurs—that	 is,	 the	 efficiency	 of	 the	 spontaneous
emission	process.	The	efficiency	of	an	LED	device	also	depends	on	what	happens	to	the	light
that	is	emitted.



The	photons	that	are	emitted	can	be	lost	due	to	reabsorption	into	the	semiconductor,	which
leads	to	regeneration	of	electron–hole	pairs.	Some	photons	are	reflected	at	the	p-n	junction–
air	 interface	and	some	are	 lost	 (i.e.,	 they	do	not	come	out	of	 the	LED	structure)	because	of
total	 internal	 reflection.	 To	 minimize	 the	 losses	 by	 reflection	 at	 the	 semiconductor–air
interface,	the	LED	is	encapsulated	in	a	dielectric	dome.

In	advanced	LED	structures,	the	two	sides	of	the	junction	are	made	from	different	materials
(Figure	6.25).	An	LED	with	p-	and	n-sides	made	from	different	semiconductors	is	known	as	a
heterojunction	 LED.	 In	 these	 LEDs,	 an	 active	 region	 is	 sandwiched	 between	 two	 layers	 of
different	semiconductors.	The	compositions	are	selected	such	that	the	emitted	photons	are	not
absorbed	by	the	top	or	bottom	layer.	As	a	result,	these	heterojunction	LEDs	are	more	efficient
than	homojunction	LEDs	(Figure	6.26),	in	which	both	sides	of	the	p-n	junction	are	made	from
the	same	semiconductor.

As	 a	 light	 source,	 LEDs	 are	more	 efficient	 than	 conventional	 light	 sources	 such	 as	 the
incandescent	lamp	(Figure	6.27).

FIGURE	 6.25 Schematic	 of	 a	 heterojunction	 LED.	 (From	 Singh,	 J.,	Optoelectronics:	 An	 Introduction	 to	 Materials	 and
Devices,	McGraw	Hill,	New	York,	1996.	With	permission.)



FIGURE	6.26 Schematic	of	a	homojunction	LED.	(From	Sparkes,	J.J.,	Semiconductor	Devices,	Chapman	and	Hall,	London,
1994.	With	permission.)

FIGURE	6.27 The	performance	of	LEDs	and	OLEDs	compared	to	incandescent	and	fluorescent	lamps.	(From	Bergh,	A.,	et
al.,	Physics	Today,	54,	12,	2001.	With	permission.)

6.5.7 LED	PACKAGING

In	addition	to	the	p-n	junction,	an	LED	used	as	a	light	source	has	other	parts.	Almost	all	LEDs
are	mounted	into	a	package	that	has	two	electrical	leads.	The	anode	lead	is	usually	longer.	The
assembly	also	has	a	reflector	with	a	hemispherical	epoxy	encapsulant	(Figure	6.28).



Some	high-powered	LEDs	are	mounted	on	a	heat	sink	and	use	a	silicone	encapsulant	and	a
plastic	 cover	 (Figure	 6.29).	 Packaging	 of	 OLEDs	 used	 in	 flat-panel	 displays	 and	 as	 light
panels	is	also	a	very	important	area	of	research	and	development.

6.6 BIPOLAR	JUNCTION	TRANSISTOR

The	term	transistor	is	an	abbreviation	of	transfer	resistor,	a	device	whose	electrical	resistance
can	be	changed	by	an	external	voltage.	Therefore,	 the	 transistor	can	amplify	voltage	and/or
current	of	the	input	signal.	On	December	16,	1947,	Bardeen,	Brattain,	and	Shockley	reported	a
device	known	as	the	point	contact	transistor.	They	received	the	Nobel	Prize	in	Physics	in	1956
for	the	discovery	of	the	transistor	effect.

Transistors	are	an	 indispensable	component	of	modern-day	 integrated	circuits	 (ICs).	The
two	major	 types	 of	 transistors	 are	 the	bipolar	 junction	 transistor	 (BJT)	 and	 the	 field-effect
transistor	(FET).	A	type	of	FET	known	as	a	metal	oxide	semiconductor	field-effect	transistor
(MOSFET)	is	the	most	widely	used	transistor	in	ICs	(see	Section	6.11).	Millions	of	MOSFETs
are	 integrated	 onto	 semiconductor	 chips.	 Transistors	 play	 a	 vital	 role	 in	 running	 most
computers	and	other	state-of-the-art	electronic	equipment.	In	this	section,	we	discuss	the	BJT.
We	will	discuss	the	FET	in	Section	6.7.

The	term	bipolar	is	used	to	describe	the	BJT	because	this	particular	type	of	transistor	uses
both	electrons	and	holes	in	its	operation.	In	the	BJT,	the	transistor	action	involves	controlling
the	voltage	at	one	terminal	by	applying	voltages	at	two	other	terminals.

6.6.1 PRINCIPLES	OF	OPERATION	OF	THE	BIPOLAR	JUNCTION	TRANSISTOR

The	BJT	has	two	p-n	junctions	that	are	connected	back-to-back	(Figure	6.30).	In	the	BJT,	there
are	 three	 regions:	 an	 emitter,	 a	 base,	 and	 a	 collector	 (Figure	 6.30a).	 In	 the	 so-called	 npn
transistor	(Figure	6.30b),	the	emitter	is	the	most	heavily	donor-doped	n-type	(n++).	The	base
is	a	p-type	region	that	is	relatively	thin,	moderately	doped	(p+),	and	sandwiched	between	two
n-regions.	The	collector	is	a	lightly	doped	n-type	region.	A	similar	logic	applies	to	how	the
different	 regions	are	arranged	 in	a	pnp	 transistor	 (Figure	6.30c;	 see	Section	6.6.8).	Doping
levels	are	~1019,	1017,	and	1015	cm−3	for	the	emitter,	base,	and	collector	regions,	respectively.
The	npn	transistors	are	more	popular	than	pnp	transistors	because	the	former ’s	electrons	have
a	higher	mobility.



FIGURE	 6.28 LED	 packaging:	 (a)	 LED	 with	 hemispherical	 encapsulant	 and	 (b)	 LEDs	 with	 cylindrical	 and	 rectangular
encapsulant.	 (From	 Schubert,	 E.F.,	 Light-Emitting	 Diodes,	 Cambridge	 University	 Press,	 Cambridge,	 UK,	 2006.	 With
permission.)

FIGURE	 6.29 Packaging	 for	 high-powered	 LEDs	 showing	 the	 heat	 sink.	 (From	 Schubert,	 E.F.,	 Light-Emitting	 Diodes,
Cambridge	University	Press,	Cambridge,	UK,	2006.	With	permission.)



FIGURE	 6.30 Schematic	 of	 bipolar	 junction	 transistors:	 (a)	 basic	 epitaxial	 planar	 structure;	 (b)	 npn;	 and	 (c)	 pnp.	 (From
Floyd,	 T.L.,	Electronics	 Fundamentals:	 Circuits,	 Devices,	 and	 Applications,	 4th	 ed.,	 Chapman	 &	 Hall,	 Boca	 Raton,	 FL,
1998.	With	permission.)

As	we	will	discuss	in	Section	6.6.2,	the	terms	emitter,	base,	and	collector	originate	from	the
transistor	operation.	The	emitter	region	is	the	main	source	of	injecting	or	emitting	carriers,
hence	the	name	emitter.	Carriers	are	emitted	by	the	emitter	and	flow	through	the	base	and	into
the	collector	region.	The	original	transistor	reported	in	1947	used	a	germanium	(Ge)	crystal
as	a	mechanical	base.	This	is	how	the	term	base	came	into	being.

The	symbols	for	npn	and	pnp	transistors	and	their	schematics	showing	different	terminals
and	junctions	are	shown	in	Figure	6.31.

The	 BJT	 is	 a	 three-terminal,	 two-junction	 device.	 The	 direction	 of	 the	 arrow	 on	 the
transistor	symbols	shows	the	direction	of	conventional	current	flow	under	active	mode	 (see
Section	6.6.6).

Thus,	 for	 the	 npn	 transistor	 in	 active	 mode,	 the	 conventional	 current	 flows	 from	 the
collector	to	the	base	and	then	to	the	emitter.	For	the	npn	transistor,	a	majority	of	the	electrons
injected	from	the	emitter	flow	into	the	base	and	then	into	the	collector.

Similarly,	 for	 a	 pnp	 transistor	 in	 active	mode,	 the	 conventional	 current	 flows	 from	 the
emitter	to	the	base	to	the	collector	(Figure	6.31b).	In	this	case,	the	positively	charged	holes	are
injected	from	the	emitter	into	the	base	and	then	into	the	collector.

6.6.2 BIPOLAR	JUNCTION	TRANSISTOR	ACTION

Consider	the	current	flows	for	the	npn	transistor	in	the	forward	active	mode	(Figure	6.32).	In
this	 mode,	 the	 base–emitter	 junction	 is	 forward-biased.	 The	 base–collector	 junction	 is
reverse-biased.	This	is	considered	the	active	mode	or	forward	active	mode	 for	 the	 transistor.
The	band	diagram	for	an	npn	transistor	under	these	biases	is	shown	in	Figure	6.33.	The	band
diagram	for	an	npn	transistor	without	bias	is	also	shown	for	comparison.

The	 resultant	 current	 flows	 for	an	npn	 transistor	 in	an	active	mode	are	 shown	 in	Figure
6.33.

In	 the	common	base	 (CB)	configuration,	 the	base	electrode	 is	common	to	 the	emitter	and
collector	 circuits.	 The	 transistor	 can	 also	 be	 connected	 in	 other	 configurations	 such	 as
common	emitter	(CE)	and	common	collector	(CC;	Figure	6.34).



6.6.3 CURRENT	FLOWS	IN	AN	NPN	TRANSISTOR

To	 better	 understand	 the	 following	 discussion,	 the	 reader	 should	 review	 Sections	 5.10	 and
5.11	concerning	current	flows	in	a	forward-biased	p-n	junction.

FIGURE	6.31 Symbols	for	bipolar	junction	transistors:	(a)	npn	and	(b)	pnp.	(From	Floyd,	T.L.,	Electronics	Fundamentals:
Circuits,	Devices,	and	Applications,	4th	ed.,	Chapman	&	Hall,	Boca	Raton,	FL,	1998.	With	permission.)

FIGURE	6.32 Common	base	configuration	of	current	 flows	 for	an	npn	 transistor	 in	 forward	active	mode.	 (From	Neamen,
D.,	An	Introduction	to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

FIGURE	 6.33 Band	 diagram	 for	 an	 npn	 transistor	 (a)	 without	 bias	 and	 (b)	 in	 active	 mode.	 (From	 Neamen,	 D.,	 An
Introduction	to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)



FIGURE	6.34 Common	base	(CB),	common	emitter	(CE),	and	common	collector	(CC)	configurations	for	an	npn	BJT.	(From
Singh,	J.:	Semiconductor	Devices:	Basic	Principles.	 2001.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced
with	permission.)

Consider	the	current	flows	in	the	CB	configuration	and	in	active	mode	(Figure	6.32):

1.	 The	 base–emitter	 junction	 is	 forward-biased.	 Electrons	 from	 the	 emitter	 region	 are
injected	into	the	base	region.	This	flow	of	negatively	charged	carriers	sets	up	one	part	of
the	 emitter	 current	 (IE,1)	 from	 the	 base	 toward	 the	 emitter	 because	 electrons	 have	 a
negative	charge.

2.	 The	base–collector	junction	is	under	a	reverse	bias.	Thus,	at	the	collector–base	interface,
there	is	a	very	low	concentration	of	electrons.

3.	 Therefore,	 on	 one	 side	 of	 the	 base,	 at	 the	 emitter–base	 junction,	 there	 is	 a	 significant
injection	of	electrons	 into	 the	base.	On	 the	other	side	of	 the	base,	at	 the	collector–base
interface,	there	is	a	very	low	electron	concentration.	There	is	a	significant	concentration
gradient	of	electrons	across	the	base,	so	that	electrons	diffuse	across	the	base	region	into
the	collector	region.

4.	 Once	the	electrons	enter	the	collector	region,	they	are	driven	by	the	internal	electric	field
in	the	base–collector	space-charge	region.	Note	that	this	field	is	directed	from	the	n-type
collector	 toward	 the	p+	 base	 region.	This	means	 that	 electrons	are	attracted	 toward	 the
positively	charged	depletion	layer	on	the	n-side.

5.	 To	summarize,	for	an	npn	transistor	 in	an	active	mode,	electrons	are	injected	from	the
n++	 region	 into	 the	 base	 region	 and	 continue	 on	 to	 the	 collector.	 Recombination	 of
electrons	occurs	as	they	travel	through	the	p-type	base	region.

6.	 One	of	 the	goals	 in	 the	design	of	npn	 transistors	 is	 to	 transfer	 as	much	of	 the	 current
from	the	emitter	into	the	collector.	This	means	that	recombination	occurring	in	the	base
region	must	be	minimized.	One	way	is	to	minimize	the	width	of	the	base	region	(i.e.,	the
p-region,	 in	 this	 case).	 A	 narrow	 base	 region	 is	 desirable	 because	 it	 minimizes	 the
recombination	 of	 holes	 and	 electrons.	 The	 length	 of	 the	 neutral	 p-type	material	 in	 the
base	must	be	much	smaller	than	the	diffusion	length	of	electrons	(Ln).

7.	 The	number	 of	 electrons	 that	 flows	 into	 the	 collector	 is	 controlled	 by	 the	 injection	 of
electrons	 in	 the	 base.	The	 injection	 of	 electrons	 depends	 on	 the	 voltage	 applied	 to	 the
base–emitter	 voltage	 (VBE).	 This	 is	 the	 transistor	 action.	 In	 a	 BJT,	 the	 current	 at	 one
terminal	is	controlled	by	the	voltage	at	the	other	two	terminals.	In	this	case,	the	output—



that	is,	the	collector	current	(IC)—is	controlled	by	the	input	voltage	across	the	base	and
the	emitter	(VBE).

8.	 Note	that	the	transistor	action	is	possible	only	if	the	two	p-n	junctions	connected	back	to
back	 are	 interacting	 p-n	 junctions.	 This	 means	 that	 junctions	 are	 designed	 so	 that	 the
carriers	injected	from	forward	biasing	of	the	emitter–base	junction	flow	into	the	base–
collector	junction.	For	example,	if	the	base	region	is	very	wide,	then	the	injected	carriers
simply	 recombine	 and	 no	 transistor	 action	 results.	 This	 is	 the	 difference	 between	 a
transistor	and	two	diodes	(p-n	junctions)	connected	back-to-back.

9.	 In	 terms	 of	 magnitude,	 there	 are	 secondary	 current	 flows	 in	 addition	 to	 this	 flow	 of
electrons	from	the	emitter	to	the	collector.	They	are	very	important	in	terms	of	the	use	of
transistors	as	amplifiers.

10.	 In	an	npn	transistor,	some	of	 the	electrons	are	 injected	from	the	emitter	 into	 the	p-type
base	region	and	recombine	with	the	holes.	The	base	contact	connected	to	a	power	source
supplies	the	replacement	of	these	holes.	This	is	one	component	of	the	base	current	(IB,1).

11.	 For	 the	 forward-biased	 emitter–base	 junction,	 holes	 diffuse	 from	 the	 p-doped	 base
region	to	the	emitter	n++	region.	This	is	the	second	component	of	the	base	current	(IB,2)
and	also	makes	up	the	second	component	of	the	emitter	current	(IE,2).	Since	the	base	is
lightly	 doped	 compared	 to	 the	 emitter,	 the	 current	 caused	 by	 the	 diffusion	 of	 holes	 is
relatively	small.

12.	 There	is	also	a	small	reverse-bias	current	associated	with	the	base–collector	junction.

6.6.4 TRANSISTOR	CURRENTS	AND	PARAMETERS

6.6.4.1 Collector	Current

Due	to	the	injection	of	electrons	from	the	emitter	into	the	base	region	and	their	journey	into
the	 collector	 region,	 the	 collector	 current	 (IC)	 in	 an	 npn	BJT	 is	 related	 to	 the	 base–emitter
voltage	(VBE)	by	the	following	equation.	This	is	also	one	part	of	the	emitter	current	(IE,1).

Equation	6.13	describes	the	transistor	action.	We	control	the	current	at	the	collector	(IC)	by
controlling	the	base–emitter	voltage	(VBE).

6.6.4.2 Emitter	Current
The	total	emitter	current	(IE)	in	the	npn	transistor	has	two	components.	The	first	component
(IE,1)	is	due	to	the	injection	of	electrons	from	the	emitter	into	the	base,	which	is	equal	to	the
collector	current	(IC;	Equation	6.13).	The	second	component	(IE,2)	 is	due	to	 the	diffusion	of
holes	 from	 the	p-type	base	 into	 the	n-type	emitter.	Note	 that	 this	 current,	 IE,2,	 is	 part	 of	 the
emitter	current	only.	It	does	not	become	part	of	the	collector	current.	The	expression	for	this
current	(IE,2)	is



where	IS,2	involves	the	minority-carrier	(i.e.,	the	hole,	in	this	case)	parameters	in	the	emitter.
Thus,	the	total	emitter	current	(IE)	is	given	by

where	ISE	represents	the	sum	of	IS,1	(Equation	6.13)	and	IS,2	(Equation	6.14).
The	ratio	of	the	collector	current	(IC)	to	the	emitter	current	(IE)	 is	known	as	the	common

base	current	gain	(α).

Note	that	the	IE,2	component	is	not	a	part	of	the	collector	current.	Therefore,	IC	is	always
smaller	 than	 IE.	 Thus,	 the	 common	 base	 current	 gain	 (α)	 is	 smaller	 than	 1	 and	 should	 be
closer	to	1.

6.6.4.3 Base	Current
For	 the	 npn	 transistor	 in	 a	 forward	 active	 mode,	 some	 of	 the	 electrons	 injected	 from	 the
emitter	into	the	base	recombine	with	the	holes	in	the	p-region.	These	holes	must	be	replaced
by	 a	 flow	of	 positive	 charge	 into	 the	 base.	This	 is	 the	 first	 component	 to	 the	 base	 current,
(IB,1).	This	part	of	the	current	is	proportional	to	the	rate	at	which	the	holes	are	recombining
with	the	electrons	being	injected	into	the	base	region.	This,	in	turn,	is	related	to	the	VBE,	 the
magnitude	 of	 the	 forward	 bias.	 The	 other	 part	 of	 the	 base	 current	 (IB,2	 or	 IE,2)	 in	 an	 npn
transistor	is	due	to	the	diffusion	of	holes	from	the	p-type	base	into	the	n-type	emitter.

There	 are	 two	 components	 of	 the	 base	 current	 (IB),	 both	 of	 which	 are	 proportional	 to
exp(VBE/Vt).	The	 ratio	of	 the	 collector	 current	 (IC)	 to	 the	base	 current	 (IB)	 is	 known	as	 the
base-to-collector	current	amplification	factor	(β).

This	parameter	is	also	known	as	the	common	emitter	current	gain	(β).	The	base	current	(IB)
is	usually	small,	and	the	value	of	β	is	>100.	The	directions	of	the	conventional	current	flow	in
npn	and	pnp	 transistors	are	 summarized	 in	Figure	6.35.	The	 relationship	between	 transistor
parameters	is	shown	in	Example	6.3.



FIGURE	6.35 Directions	of	conventional	current	flows	in	bipolar	junction	transistors:	(a)	npn,	(b)	pnp,	(c)	npn,	and	(d)	pnp.
(From	Floyd,	T.L.,	Electronics	Fundamentals:	Circuits,	Devices,	and	Applications,	 4th	 ed.,	Chapman	&	Hall,	Boca	Raton,
FL,	1998.	With	permission.)

Example	6.3: The	Relationship	between	Transistor	Parameters	α	and	β

Show	 that	 the	 common	 base	 current	 gain	 (α)	 and	 common	 emitter	 current	 gain	 (β)	 are	 related	 by	 the	 following
equation:

Solution
The	emitter	current	(IE)	is	equal	to	the	sum	of	collector	and	base	currents:

Divide	both	sides	of	this	equation	by	IC:

IE/IC	=	1	+	(IB/IC)

The	common	base	current	gain	α	=	IC/IE	and	the	common	emitter	gain	(β)	is	IC/IB.
Therefore,	we	get

(1/α)	=	1	+	(1/β)

or

Thus,	 the	 closer	 the	value	of	α	 to	1	 (i.e.,	 the	 closer	 a	 transistor	 is	 to	 getting	most	 of	 the	 emitter	 current	 to	 the
collector),	the	higher	the	value	of	β.



6.6.5 ROLE	OF	BASE	CURRENT

The	base	current	(IB)	is	small	in	magnitude,	but	it	is	controllable	and	therefore	plays	a	very
important	 role	 in	 the	 functioning	of	 a	BJT.	We	have	 focused	on	 showing	 that	 the	 collector
current	 (IC)	 can	 be	 restricted	 by	 controlling	 the	 emitter	 current	 (IE)	 through	 VBE.	 Small
variations	in	the	base	current	(IB)	can	lead	to	large	changes	in	IC.	This	is	how	a	BJT	can	be
used	 as	 a	 current	 amplifier.	 A	 similar	 amplification	 effect	 is	 seen	 in	 situations	 involving
alternating	current	(AC),	as	shown	in	Figure	6.36.

FIGURE	 6.36 Schematic	 of	 the	 amplification	 achieved	 in	 a	 common	 emitter	 transistor	 circuit.	 Small	 changes	 in	 the	 base
current	(IB)	cause	large	changes	in	 the	collector	current	(IC).	(From	Streetman,	B.G.	and	Banerjee	S.,	Solid	State	Electronic
Devices,	5th	ed.,	Prentice-Hall,	Englewood	Cliffs,	NJ,	2000.	With	permission.)

Consider	an	npn	transistor	in	an	active	mode.	Assume	that	the	supply	of	holes	available	to
compensate	for	the	holes	lost	in	recombination	is	now	limited.	If	the	electron	injection	from
the	emitter	 continues	 into	 the	base	 region,	 the	negative	 charge	builds	up	 in	 the	base,	which
causes	reduction	of	the	forward	bias	for	the	emitter–base	junction.	This	in	turn	creates	a	loss
of	 electron	 injection	 and	 thus	 reduces	 the	 collector	 current	 (IC).	 By	 controlling	 the	 base
current	(IB),	we	can	control	the	collector	current	(IC).	This	situation	is	similar	to	the	way	the
smallest	step	in	a	chemical	reaction	controls	its	overall	kinetics,	or	how	the	weakest	link	in	a
structure	determines	its	overall	strength.	Therefore,	the	base	current	(IB)	is	sometimes	known
as	the	controlling	current,	while	the	collector	current	(IC)	or	the	emitter	current	(IE)	is	known
as	the	controlled	current.

6.6.6 TRANSISTOR	OPERATING	MODES

The	BJT	is	similar	to	a	two-way	valve	that	can	be	turned	on	in	either	direction	and	can	deliver
either	a	desired	level	of	flow	or	no	flow	at	all.	We	have	considered	a	situation	in	which	the
emitter–base	junction	was	forward-biased	and	the	collector–base	junction	was	reverse-biased.
This	combination	of	biases	 results	 in	an	active	mode	 for	 transistor	operation.	 In	 this	active
region,	we	use	the	base	current	to	control	the	collector	current.	We	can	also	use	the	emitter–
base	voltage	to	control	the	collector	current.

If	both	the	emitter–base	and	collector–base	junctions	are	forward-biased,	the	transistor	is
said	to	be	in	saturation	mode.	A	small	biasing	voltage	results	in	a	large	current;	the	transistor
is	in	the	on	state.	If	both	junctions	are	reverse-biased,	the	transistor	is	in	cutoff	mode,	in	which
no	current	flows.	This	is	the	off	or	cutoff	state	of	the	transistor.	When	the	roles	of	the	emitter



and	 the	 collector	 are	 switched—that	 is,	 when	 the	 collector–base	 is	 forward-biased	 and	 the
emitter–base	 is	 reverse-biased—the	 transistor	 is	 in	 inverted	 or	 inverse	 active	 mode.	 The
polarities	of	 the	 two	 junctions	 that	describe	 the	different	modes	of	operation	 for	a	BJT	are
summarized	in	Figure	6.37.

6.6.7 CURRENT–VOLTAGE	CHARACTERISTICS	OF	THE	BIPOLAR	JUNCTION	TRANSISTOR

Consider	the	BJT	in	CB	configuration	(Figure	6.34).	The	I–V	characteristics	of	a	BJT	in	this
configuration	are	shown	by	plotting	the	collector	current	(IC)	as	a	function	of	reverse-biased
VBC	 on	 the	 base–collector	 junction	 for	 various	 fixed	 values	 of	 IE	 (Figure	 6.38).	 Note	 the
negative	sign	associated	with	VBC	on	the	x-axis.

For	a	BJT	in	CB	configuration,	when	the	transistor	is	in	a	cutoff	mode,	the	emitter	current
(IE)	is	nearly	zero	(a	fraction	of	a	microampere).	This	is	shown	as	ICBO	in	Figure	6.39.	The
emitter	 current	 increases	exponentially	with	base–emitter	voltage	 (VBE;	Equation	 6.15).	 The
collector	current	(IC)	increases	with	increasing	emitter	current	(IE).	Once	the	emitter	current
(IE)	 is	 finite,	 the	 collector	 current	 is	 not	 zero	 for	 VBC	 =	 0.	 The	 collector	 current	 (IC)	 is
independent	of	the	base–collector	voltage	(VBC).

FIGURE	6.37 Different	modes	for	operating	a	bipolar	junction	transistor.



FIGURE	 6.38 I–V	 characteristics	 of	 a	 bipolar	 junction	 transistor	 in	 common	 base	 configuration.	 (From	 Kasap,	 S.O.,
Principles	of	Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	2002.	With	permission.)

FIGURE	 6.39 I–V	 characteristics	 of	 a	 bipolar	 junction	 transistor	 in	 a	 common	 emitter	 configuration.	 (From	 Kasap,	 S.O.,
Principles	of	Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	2002.	With	permission.)

In	Figure	6.38,	we	have	shown	the	IC	to	be	nearly	constant	with	VBC.	The	slight	increase	in
the	 emitter	 current	with	 a	 reverse-biased	 base–collector	 voltage	 (VBC),	 shown	 by	 the	 solid
lines,	 is	 called	 the	 early	 effect.	 As	 VBC	 increases,	 the	 width	 of	 the	 depletion	 layer	 (W)
associated	with	the	base–collector	junction	increases.	This	means	that	the	width	of	the	neutral
part	of	the	base	region	through	which	the	electrons	must	travel	to	get	to	the	collector	becomes
shorter,	and	the	number	of	electrons	lost	to	the	recombination	with	holes	is	reduced.	This	in
turn	causes	a	slight	increase	in	IC	as	a	function	of	the	increasing	reverse	bias	(VBC).

If	the	polarity	of	a	base–collector	junction	is	changed	so	that	it	is	forward-biased,	then	the
collector	 current	 is	 the	 difference	 between	 the	 forward	 currents	 associated	 with	 the	 two
junctions	because	the	two	forward	currents	subtract	from	each	other.

The	collector	current	(IC)	for	an	npn	BJT	in	a	CE	configuration	is	shown	as	a	function	of
the	emitter–collector	voltage	(VEC)	in	Figure	6.39.

In	Example	6.4,	we	show	the	actual	calculations	of	the	transistor	voltages	and	currents	in	a
CE	circuit.



6.6.8 CURRENT	FLOWS	IN	A	PNP	TRANSISTOR

The	current	flows	in	a	pnp	transistor	are	similar	in	concept	to	those	seen	in	Section	6.6.7	for
an	npn	transistor	(Figure	6.38).	The	doping	levels	follow	a	similar	pattern;	that	is,	the	emitter
has	 the	 highest	 level	 of	 doping	 (p++),	 the	 n-type	 base	 is	 moderately	 doped,	 and	 the	 p-type
collector	is	lightly	doped.

FIGURE	6.40 Summary	of	current	and	carrier	flows	in	a	pnp	transistor	in	active	mode.

In	 this	 case,	when	 the	 emitter–base	 junction	 is	 forward-biased,	 the	 emitter	 region	 injects
holes	into	the	base	region.	These	holes	flow	through	the	relatively	small,	n-type	base	region
and	are	 then	swept	up	by	 the	 internal	electric	 field	at	 the	base–collector	 junction,	ultimately
arriving	at	the	collector.	Similar	to	an	npn	transistor,	there	is	a	current	due	to	the	diffusion	of
electrons	from	the	base	to	the	emitter	region,	shown	with	a	filled	arrow	in	Figure	6.40.	The
resultant	current	is	directed	from	the	emitter	to	the	base	because	the	electrons	are	negatively
charged	(Figure	6.40).	There	 is	 also	 a	 recombination	of	 injected	holes	 and	 electrons	 in	 the
base	 region.	 The	 electrons	 lost	 to	 the	 recombination	 are	 made	 up	 for	 by	 the	 base	 power
supply.	 Similar	 to	 the	 npn	 transistor,	 there	 is	 a	 base	 current	 (IB).	 A	 small	 reverse-biased
current	also	exists	at	the	base–collector	junction.	The	particle	motions	and	currents	associated
with	this	are	not	shown	in	Figure	6.40.

The	 relationships	 among	 the	 base,	 emitter,	 and	 collector	 currents,	 as	 well	 as	 transistor
parameters	 α	 and	 β,	 are	 the	 same	 as	 those	 defined	 in	 Equations	 6.16	 and	 6.17	 for	 the	 npn
transistor.

6.6.9 APPLICATIONS	OF	BIPOLAR	JUNCTION	TRANSISTORS

The	BJT	can	be	used	as	an	on-and-off	switching	device.	In	this	application,	the	devices	switch
between	the	cutoff	and	saturation	regions	(Figure	6.41).



A	 transistor	 can	 be	 used	 as	 current	 amplifier	 (Figure	 6.36).	 The	 current	 and	 voltage
analysis	for	a	BJT	can	be	performed	as	shown	in	Example	6.4.

Example	6.4: Current	and	Voltage	Analysis	for	a	Bipolar	Junction	Transistor

Consider	 the	 transistor	 circuit	 shown	 in	Figure	6.42.	The	value	of	 resistance	RC	connected	 between	 the	 collector
and	its	power	supply	is	200	Ω.	The	resistance	(RB)	connected	between	the	base	and	the	power	supply	is	15	kΩ.	(a)
Is	 this	 a	 pnp	 or	 npn	 transistor?	 (b)	 In	 what	 configuration	 is	 the	 transistor	 connected?	 (c)	 In	 what	 mode	 is	 the
transistor?	(d)	What	are	the	voltages	across	the	different	terminals	(VCB,	VCE,	and	VBE)?	What	are	the	transistor
currents	IC,	IE,	and	IB?	Assume	that	β	=	200,	VBB	=	5	V,	and	VCC	=	20	V.	Calculate	the	voltage	drops	across	the
resistors	RB	and	RC.

Solution
1.	 The	arrow	on	the	transistor	symbol	in	Figure	6.42	indicates	the	direction	of	the

conventional	 current	 flow.	 In	 this	 transistor,	 the	 conventional	 current	 flows
from	the	collector	→	base	→	emitter,	so	the	electrons	flow	from	the	emitter	→
base	→	collector.	Therefore,	this	is	an	npn	transistor	(Figure	6.31a).

2.	 In	the	circuit	diagram	shown	in	Figure	6.42,	we	can	see	 that	 this	 is	a	common
emitter	configuration,	in	which	the	emitter	junction	is	common	to	the	base	and
collector	circuits.

3.	 The	 base–emitter	 junction	 is	 forward-biased	 because	 the	 p-type	 base	 is
connected	 to	 the	 positive	 of	 the	 voltage	 supply	 (VBB).	 The	 collector–emitter
junction	is	reverse-biased	because	the	n-type	emitter	is	connected	to	the	positive
of	the	power	supply	(VCC).	Therefore,	this	transistor	is	in	forward	active	mode.

FIGURE	6.41 A	transistor	operating	as	a	switch:	(a)	cutoff,	open	switch	and	(b)	saturation,	closed	switch.
(From	Floyd,	T.L.,	Electronics	Fundamentals:	Circuits,	Devices,	 and	Applications,	 4th	 ed.,	 Chapman	&
Hall,	Boca	Raton,	FL,	1998.	With	permission.)



FIGURE	 6.42 A	 transistor	 circuit	 for	 current	 and	 voltage	 analysis.	 (From	 Floyd,	 T.L.,	Electric	 Circuit
Fundamentals,	7th	ed.,	Chapman	&	Hall,	Boca	Raton,	FL,	2006.	With	permission.)

4.	 Since	 the	 base–emitter	 junction	 is	 forward-biased,	 the	 voltage	 drop	 at	 this
junction	is	~0.7	V,	similar	to	most	other	forward-biased	Si	p-n	junctions.	Thus,
VBE	=	0.7	V,	and	the	voltage	(VRB)	across	the	resistor	(RB)	is

VRB	=	VBB	−	VBE

(VRB	=	5	−	0.7	=	4.3	V)

By	examining	 the	base–emitter	 side	of	 the	circuit	 and	applying	Kirchhoff’s	 law,	which	 states	 that	 the	algebraic
sum	of	voltage	drops	around	a	closed	loop	is	zero,	the	current	IB	is	given	by

VBB	=	(IB	×	RB)	+	VBE

Therefore,

Since	the	current	gain	(β)	is	200,	from	Equation	6.17,	we	get

Since	the	emitter	current	IE	=	IC	+	IB,	we	get

IE	=	57.3	mA	+	0.287	mA	=	57.587	mA



We	will	now	look	at	 the	collector	side	of	 the	circuit	(Figure	6.42).	The	voltage	drop	(VRC)	across	 the	 resistor
RC	is	given	by

VRC	=	IC	×	RC	=	57.3	×	10–3	A	×	200	Ω	=	11.46	V

Since	the	voltage	VCC	is	20	V	and	the	voltage	across	the	resistor	RC	is	11.46	V,	the	voltage	VCE	is

VCE	=	VCC	−	VRC	=	20.0	−	11.46	=	8.54	V

If	we	 complete	 two	 electrical	 paths	 around	 the	 transistor,	 one	 from	 the	 collector	 to	 the	 base	 directly	 and	 the
other	from	the	collector	to	the	emitter	via	the	base,	then	the	following	relationship	will	be	true:

The	collector	base	voltage	VCB	=	VCE	−	VBE.
Therefore,	VCB	=	8.54	−	0.7	=	7.84	V.

To	summarize,	the	base	current	for	this	circuit	IB	=	0.287	mA,	and	the	collector	current	IC	is	200	times	larger	at
57.3	mA.	The	emitter	current	(IE)	is	the	sum	of	these	two	currents:	IE	=	57.587	mA.
The	base–emitter	junction	is	forward-biased,	so	VBE	=	0.7	V	(assumed	for	a	typical	p-n	junction).	The	values	of

VCE	and	VCB	are	8.54	and	7.84	V,	respectively.

6.7 FIELD-EFFECT	TRANSISTORS

The	concept	of	the	FET	is	relatively	simple	and	was	proposed	in	1926	by	Lilienfeld	(Figure
6.43)	 before	 the	 discovery	 of	 the	 BJT.	 An	 FET	 is	 a	 device	 whose	 electrical	 resistance	 is
controlled	by	the	voltage.

The	 discovery	 of	 BJT	 was	 serendipitous,	 in	 that	 the	 research	 originally	 aimed	 at
developing	the	FET	led	to	the	discovery	of	the	BJT.	Although	the	concept	of	the	FET	existed
for	 several	 years,	 the	 quality	 of	materials	 and	 especially	 interfaces	 required	 to	 achieve	 the
effect	 did	 not	 exist.	 Therefore,	 the	 initial	 FETs	 were	 based	 on	 the	 BJT.	 Today,	 however,
millions	of	types	of	FETs	(known	as	MOSFETs)	are	routinely	integrated	onto	computer	chips
(see	Section	6.11).

In	 an	 FET,	 the	 source	 and	drain	 regions	 are	 separated	 by	 the	 channel	 region.	A	gate	 is
located	between	the	source	and	the	drain.	The	conductivity	of	the	channel	region	is	affected	by
the	applied	electric	 field	at	 the	gate.	This	 is	known	as	 the	 field	effect,	hence	 the	name	field-
effect	transistor.	One	of	the	main	distinctions	between	the	FET	and	the	BJT	is	that	in	an	FET,
the	current	mainly	is	carried	by	one	type	of	carrier	(electrons	or	holes).	Therefore,	an	FET	is
a	unipolar	device,	whereas	a	BJT	is	a	bipolar	device.

The	gate	of	an	FET	controls	the	flow	of	carriers	between	the	source	and	the	drain	and	must
be	electrically	isolated	from	the	channel	so	that	it	can	influence	the	flow	of	carriers	without
having	 to	 draw	 any	 significant	 amount	 of	 current	 flowing	 from	 the	 source	 to	 the	 drain
through	the	channel	region.

6.8 TYPES	OF	FIELD-EFFECT	TRANSISTORS



FIGURE	6.43 Illustration	of	the	underlying	principle	for	a	field-effect	transistor.	(From	Singh,	J.:	Semiconductor	Devices:
Basic	Principles.	2001.	Copyright	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	Reproduced	with	permission.)

The	manner	in	which	the	gate	isolation	is	achieved	defines	the	different	types	of	FETs	(Figure
6.44).	As	shown	in	Figure	6.44,	there	are	two	main	strategies	for	gate	isolation.	We	have	seen
both	of	the	basic	effects	associated	with	these	strategies	in	the	current	flows	at	a	p-n	junction.
The	 first	 strategy	 relies	 on	 changes	 in	 the	width	 (W)	 of	 the	 depletion	 layer	 in	 the	 channel
region	 as	 a	 function	 of	 biasing	 voltage	 applied	 at	 the	 gate	 electrode.	 The	 second	 strategy
relies	on	increasing	or	decreasing	the	conductivity	of	the	channel	region	by	creating	a	higher
or	lower	carrier	concentration.

FIGURE	 6.44 Different	 types	 of	 field-effect	 transistors	 based	 on	 different	 ways	 of	 isolating	 the	 gate	 region	 from	 the
channel.

In	 the	 first	 strategy,	 we	 create	 a	 reverse-biased	 p-n	 junction	 or	 a	 Schottky	 contact.	 If	 a
reverse-biased	 p-n	 junction	 is	 used	 for	 gate	 isolation,	we	 refer	 to	 the	 device	 as	 a	 junction
field-effect	transistor	(JFET).	If	a	Schottky	contact	is	used	for	gate	isolation,	then	we	refer	to
the	device	as	a	metal	semiconductor	field-effect	transistor	(MESFET).	These	devices	are	used
mainly	with	 III–V	 semiconductors	 such	 as	GaAs	 and	 indium	 phosphide	 (InP).	 In	 JFET	 and



MESFET,	we	use	a	doped	semiconductor	to	provide	free	carriers	(electrons	or	holes).	When
we	apply	a	bias	to	the	gate,	we	change	the	depletion	layer	width	in	the	channel	region	width
(W).	This	in	turn	changes	the	flow	of	the	current	between	the	source	and	the	drain	for	a	given
voltage	bias	applied	between	the	source	and	the	drain.	We	can	then	turn	the	JFET	or	MESFET
on	and	off.

In	the	second	strategy	for	gate	isolation,	we	use	an	insulator	deposited	on	the	gate	region.
We	 deposit	 a	 metal	 contact	 onto	 the	 insulator.	 The	 device	 is	 known	 as	 a	metal	 insulator
semiconductor	field-effect	transistor	(MISFET).	The	most	widely	used	version	of	the	MISFET
is	 silicon	 oxide	 (SiO2)	 as	 a	 gate	 dielectric.	 This	 device	 is	 known	 as	 the	 metal	 oxide
semiconductor	field-effect	transistor	(MOSFET).

There	 are	 two	 variations	 on	MOSFET	 operation.	 In	 the	 first,	 the	 channel	 region	 is	 not
conducting;	that	is,	the	transistor	is	in	the	off	state.	When	we	apply	a	voltage	to	the	gate,	we
create	a	small	region	with	a	high	carrier	concentration	underneath	the	gate	insulator.	After	a
voltage	is	applied	between	the	source	and	drain	regions,	a	current	begins	to	flow	through	the
channel,	turning	on	the	transistor.	This	mode	is	known	as	the	enhancement-mode	MOSFET.

In	 the	 second	 variation,	 the	 channel	 region	 already	 has	 a	 high	 conductivity;	 that	 is,	 the
transistor	is	in	the	on	state.	When	we	apply	a	reverse	bias	to	the	gate,	we	deplete	the	carrier
concentration	 in	 the	channel	 region	underneath	 the	gate.	 If	we	now	apply	a	voltage	between
the	 source	 and	 the	 drain,	 the	 transistor	 will	 not	 conduct	 because	 carriers	 are	 absent	 in	 the
channel	 region,	 and	 thus	 the	 transistor	 is	 turned	 off.	 This	way	 of	 operating	 a	MOSFET	 is
known	as	the	depletion-mode	MOSFET.

We	 will	 first	 discuss	 the	 operation	 of	 MESFET	 in	 Section	 6.9,	 and	 then	 MISFET	 and
MOSFET	in	Sections	6.10	and	6.11,	respectively.

6.9 MESFET	I–V	CHARACTERISTICS

6.9.1 MESFET	WITH	NO	BIAS

A	MESFET	uses	a	change	in	the	width	of	the	depletion	layer	(W)	as	a	means	of	controlling	the
current	flow	from	the	source	to	the	drain.

For	a	MESFET	with	no	bias	applied	to	the	gate	(VGS;	Figure	6.45a),	when	a	small	bias	 is
applied	between	the	source	and	the	drain	(VDS),	a	small	amount	of	current	flows	to	the	drain
(ID).	 The	 magnitude	 of	 this	 current	 is	 given	 by	 (VDS/R),	 where	R	 is	 the	 resistance	 of	 the
channel	 region.	 Thus,	 initially,	 there	 is	 an	 ohmic	 region	 in	 that	 ID	 increases	 with	 the
increasing	drain	bias	 (VDS).	As	 the	voltage	VDS	 increases	 further,	 the	 depletion	 layer	width
also	 increases	 (Figure	6.45).	 This	 causes	 the	 cross-sectional	 area	 of	 the	 channel	 current	 to
decrease.	 This	 area	 is	 labeled	 as	 the	 conducting	 channel	 in	 Figure	 6.45b.	 The	 channel
resistance	 increases.	The	net	 result	 is	 that	 the	channel	current	decreases.	Therefore,	with	an
additional	drain	bias	(VDS),	the	drain	current	(ID)	increases	but	at	a	slower	rate.	A	typical	I–V
characteristic	curve	for	a	MESFET,	labeled	VGS	=	0,	shows	this	trend	(Figure	6.46).

As	 the	 drain	 bias	 voltage	 increases	 even	more,	 the	 depletion	 layer	width	 also	 increases.
This	is	shown	as	the	shaded	area	under	the	gate	region	in	Figure	6.45b.	Since	the	increase	in
the	voltage	from	0	(at	the	source)	to	VDS	(at	the	drain)	is	not	uniform	across	the	channel,	the



width	of	the	depletion	layer	actually	is	higher	on	the	drain	side.	The	increase	of	VDS	can	be	so
high	 that	 it	 can	 actually	 pinch	 off	 the	 channel	 and	 saturate	 the	 drain	 current.	 If	 the	 applied
drain	bias	(VDS)	increases	further,	the	device	will	break	down	at	V	=	VB	(Figure	6.46).

FIGURE	 6.45 Changes	 in	 the	 width	 of	 the	 depletion	 layer	 with	 (a)	 zero	 bias	 and	 (b)	 non-zero	 bias.	 (From	 Singh,	 J.:
Semiconductor	 Devices:	 Basic	 Principles.	 2001.	 Copyright	 Wiley-VCH	 Verlag	 GmbH	 &	 Co.	 KGaA.	 Reproduced	 with
permission.)



FIGURE	6.46 Typical	I–V	characteristics	of	a	MESFET.	(From	Singh,	J.,	Semiconductor	Devices:	Basic	Principles,	Wiley,
New	York,	2001.	With	permission.)

6.9.2 MESFET	WITH	A	GATE	BIAS

When	the	gate	bias	(VGS)	is	>	0	(Figure	6.46),	the	depletion	layer	width	of	the	channel	region
decreases	and,	overall,	the	value	of	the	drain	current	(ID)	increases	for	a	given	value	of	drain
bias	VDS.	 If	 the	gate	bias	 is	 negative	 (VGS	<	0),	 the	depletion	 layer	width	 increases,	 and	 the
overall	ID	decreases	for	a	given	value	of	drain	bias.	The	channel	region	pinch-off	then	occurs
at	lower	voltages	(Figure	6.46).

6.10 METAL	INSULATOR	SEMICONDUCTOR	FIELD-EFFECT	TRANSISTORS

The	 second	 strategy	 for	 gate	 isolation	 involves	 the	 use	 of	 an	 electrical	 insulator,	 that	 is,	 a
dielectric,	 nonconducting	 material,	 with	 a	 relatively	 large	 band	 gap	 (Figure	 6.44)	 that	 is
known	as	the	gate	dielectric.	To	apply	a	voltage	to	the	gate,	a	metal	or	metal-like	material	is
deposited	onto	the	gate	dielectric.	This	device,	in	which	a	metal	is	deposited	onto	an	insulator
to	form	an	FET,	 is	known	as	 the	MISFET.	One	of	 the	best	dielectrics	for	silicon	 is	SiO2.	A
MISFET	 with	 silica	 as	 the	 gate	 dielectric	 is	 known	 as	 a	 MOSFET.	 A	 high	 conductivity
polycrystalline	silicon	known	as	polysilicon	 (poly-Si	or	polysil),	 is	used	as	 a	gate	 electrode
instead	 of	 a	 metal	 in	 the	 semiconductor	 processing	 of	 a	 MOSFET.	 The	 device	 is	 still
traditionally	referred	to	as	a	MOSFET.

A	thorough	analysis	and	discussion	of	the	operating	principles	for	different	FETs	and	the
analysis	 of	 related	 circuits	 is	 beyond	 the	 scope	 of	 this	 book.	 Please	 consult	 introductory



electrical	engineering	textbooks	on	microelectronics	for	a	detailed	discussion	of	these	topics.
In	Section	6.11,	we	present	an	overview	of	 the	MOSFET,	which	is	 the	most	commonly	used
transistor.

6.11 METAL	OXIDE	SEMICONDUCTOR	FIELD-EFFECT	TRANSISTORS

6.11.1 MOSFET	IN	INTEGRATED	CIRCUITS

The	 MOSFET	 is	 the	 most	 important	 transistor	 device	 in	 ICs.	 Millions	 of	 transistors	 are
integrated	into	a	very	small	area	of	a	silicon	chip.	The	number	of	transistors	on	a	computer
chip	 has	 grown	 exponentially	 due	 to	 significant	 advances	 in	 the	 science	 and	 technology	 of
silicon	microelectronic	device	processing	(Figure	6.47).

FIGURE	6.47 Transistor	dimension	scale	to	improve	performance,	reduce	power,	and	reduce	cost	per	transistor.	(Courtesy
of	Intel	Corporation,	US.)

The	chart	shown	in	Figure	6.47	is	consistent	with	Moore’s	law	 (named	for	Roger	Moore,
cofounder	 of	 Intel	 Corporation),	 which	 states	 that	 the	 number	 of	 active	 devices	 on	 a
semiconductor	chip	doubles	every	18	months.

6.11.2 ROLE	OF	MATERIALS	IN	MOSFET
The	 structure	 of	 a	 conventional	MOSFET	 is	 shown	 in	Figure	 6.48a.	 The	 current	MOSFET
design	uses	silica	(SiO2)	as	the	gate	dielectric	and	polysilicon	as	the	conductor	that	forms	the
gate	electrode.

Since	 the	 goal	 and	 trend	 in	 microelectronics	 has	 been	 to	 make	 transistors	 as	 small	 as
possible	 (Figure	 6.47),	 the	 thickness	 of	 the	 SiO2	 used	 as	 a	 gate	 dielectric	 has	 been	 getting
smaller.	The	SiO2	layer	in	state-of-the-art	transistors	currently	is	only	~1.2	nm	(12	Å;	Figure
6.49).	The	thinness	of	the	gate	dielectric	layer	provides	a	serious	challenge	in	scaling	down
the	 overall	 size	 of	 transistors	 in	 the	 future.	Very	 thin	 oxide	 layers	 such	 as	 SiO2	 can	 break



down	electrically	and	start	 to	 leak	 current	due	 to	 the	 fact	 that	 the	oxide	 layer	experiences	a
very	high	electric	field.

Researchers	are	therefore	developing	new	gate	dielectrics	that	insulate	at	even	very	small
thicknesses.	 In	 2007,	 the	 Intel	 Corporation	 reported	 a	 new	 hafnium	 oxide	 (HfO2)–based
insulator	with	a	dielectric	constant	(k	or	εr)	of	~25	(Figure	6.48b).	The	dielectric	constant	of
SiO2	 is	 ~3.8.	 These	 higher	 dielectric	 constant	 materials,	 known	 as	 high-k	 gate	 dielectrics,
allow	the	use	of	higher	gate	insulator	thicknesses.	The	capacitance	of	a	capacitor	is	directly
proportional	 to	 its	 dielectric	 constant	 and	 inversely	 proportional	 to	 its	 thickness.	 Thus,
higher-k	gate	dielectrics	can	be	used	with	a	higher	insulator	thickness,	instead	of	using	lower-
k	materials	with	smaller	thickness.

The	 higher	 thickness	 of	 the	 gate	 dielectric	 in	 turn	 helps	 reduce	 the	 current	 leakage,	 and
thus,	 less	 energy	 is	 wasted	 as	 heat,	 resulting	 in	 a	 higher	 energy	 efficiency.	 Therefore,	 a
computer	can	run	for	a	 longer	 time	using	 the	same	battery	power.	Similarly,	 researchers	 in
the	 semiconductor	 industry	 are	 also	 developing	 new	 alloys	 to	 replace	 polysilicon	 gate
electrodes	(Figure	6.48)	because	polysilicon	is	not	compatible	with	HfO2-based	oxide.

6.11.3 NMOS,	PMOS,	AND	CMOS	DEVICES

The	term	MOS	simply	means	a	metal	oxide	semiconductor	such	as	SiO2	on	silicon.	MOSFETs
can	 be	 designed	 so	 that	 the	 current	 from	 the	 source	 to	 the	 drain	 is	 carried	 by	 electrons	 or
holes;	 these	 devices	 are	 known	 as	 NMOS	 (or	 n-channel)	 and	 PMOS	 (or	 p-channel),
respectively.	Since	the	mobility	of	holes	is	less,	the	PMOS	transistor	occupies	more	area	than
a	typical	NMOS	transistor.



FIGURE	6.48 Structure	of	a	conventional	MOSFET	based	on	(a)	silicon	oxide	and	polysilicon;	(b)	new	high-k	 dielectrics
and	conductors;	 (c)	 silica	gate	dielectric	with	polysilicon	gate	electrode	 (65	nm	transistor);	and	 (d)	hafnium-based	dielectric
with	metal	gate	electrode	(45	nm	transistor).	(Courtesy	of	Intel	Corporation,	US.)

FIGURE	6.49 A	transmission	electron	microscope	image	of	a	transistor	cross-section	showing	the	gate	oxide	layer	(1.2	nm);
(a)	 low	 magnification	 image,	 (b)	 high	 magnification	 image	 of	 an	 area	 marked	 with	 a	 rectangle	 in	 (a).	 (Courtesy	 of	 Intel
Corporation,	US.)

To	create	an	NMOS	transistor,	we	start	with	a	p-type	substrate	(e.g.,	silicon;	Figure	6.50).
We	 then	create	n-type	source	and	drain	 regions,	 shown	as	n+.	The	gate	 is	 isolated	 from	 the



channel	using	SiO2,	and	an	n-type	polysilicon	is	used	to	create	the	gate	electrode.	Note	that	the
channel	region	is	a	p-type	semiconductor.

When	a	positive	voltage	is	applied	to	the	gate,	a	channel	of	electrons	is	created	between	the
source	and	the	drain.	This	MOSFET	is	known	as	an	n-channel	MOSFET.	The	regions	outside
the	transistor	channel	are	heavily	doped	with	acceptors,	shown	as	p+,	to	electrically	isolate	the
drain	 and	 source	 regions	 from	 the	 substrate.	 This	 ability	 to	 electrically	 isolate	 devices	 is
extremely	 important	 in	 integrating	 a	 large	 number	 of	 transistors	 into	 the	 small	 area	 of	 a
silicon	chip.	When	the	gate	voltage	is	sufficient	with	respect	to	the	substrate	or	source	(VGS),
there	 is	 a	 flowing	 drain	 current	 (ID)	 shown	 in	 the	 transfer	 characteristics	 of	 an	 NMOS
transistor	(Figure	6.51a).	These	are	different	from	the	so-called	output	characteristics,	which
refer	to	the	change	in	the	drain	current	(ID)	as	a	function	of	source-to-drain	voltage	(VGS)	for
a	fixed-gate	bias.



FIGURE	6.50 Schematic	of	an	NMOS	device:	 (a)	 structure	and	 (b)	cross-sectional	view.	 (From	Singh,	 J.,	Semiconductor
Devices:	Basic	Principles,	Wiley,	New	York,	2001.	With	permission.)

We	 can	 also	 create	 a	 device	 that	 is	 complementary	 to	 the	NMOS	 transistor.	 In	 a	 PMOS
transistor,	there	is	an	n-type	substrate.	The	source	and	the	drain	are	p+	type.	The	gate	region
has	an	insulator	with	an	electrode.	When	a	negative	voltage	is	applied	to	the	gate,	a	region	of
n-type	substrate	under	the	gate	develops	a	positive	charge.	The	channel	is	then	p-type,	and	the
device	is	known	as	a	p-channel	or	PMOS	transistor.	When	a	sufficiently	large,	negative	gate
voltage	 is	 applied,	 the	PMOS	 transistor	 shows	 a	 drain	 current.	This	 appears	 in	 the	 transfer
characteristics	of	the	PMOS	transistor	in	enhancement	mode	(Figure	6.51b).



We	can	also	operate	the	NMOS	and	PMOS	devices	in	depletion	mode	(see	Section	6.11.6).
For	 an	 NMOS	 in	 depletion	mode,	 we	 can	 turn	 off	 the	 channel	 conductivity	 by	 applying	 a
negative	 gate	 voltage	 (Figure	 6.51c).	 For	 a	 PMOS	 in	 depletion	 mode,	 we	 turn	 off	 the
transistor	by	applying	a	positive	voltage	to	the	gate	to	deplete	carriers	in	the	channel	(Figure
6.51d).

FIGURE	6.51 Transfer	characteristics	for	the	enhancement	and	depletion	modes	of	an	NMOS	(a)	and	(c)	and	a	PMOS	(b)
and	(d).	(From	Dimitrijev,	S.,	Principles	of	Semiconductor	Devices,	2006,	by	permission	of	Oxford	University	Press.)

FIGURE	6.52 An	illustration	of	a	CMOS	device.	(From	Singh,	J.,	Semiconductor	Devices:	Basic	Principles,	Wiley,	New
York,	2001.	With	permission.)

We	can	integrate	the	NMOS	and	PMOS	devices	onto	the	same	substrate.	This	is	known	as	a
complementary	 MOSFET,	 or	 CMOS.	 CMOS	 devices	 consume	 relatively	 less	 power	 than
NMOS	and	PMOS	and	are	used	in	many	applications	of	microelectronics	(Figure	6.52).

6.11.4 ENHANCEMENT-MODE	MOSFET
MOSFET	can	be	operated	 in	 two	modes	 (see	Section	6.8).	 In	 enhancement-mode	MOSFET,
the	conductivity	of	the	channel	region	increases	when	a	voltage	is	applied	to	the	gate	region
and	a	current	begins	 to	 flow	from	 the	source	 to	 the	drain.	This	 is	called	 the	on	state	of	 the



transistor.	 Enhancement-mode	 MOSFET	 can	 be	 NMOS	 (n-channel)	 or	 PMOS	 (p-channel;
Figures	6.53	and	6.51a	and	b).

When	no	voltage	is	applied	to	the	gate	and	the	resistance	of	the	channel	region	is	too	high,
no	 current	 flows	 through	 from	 the	 source	 to	 the	 drain.	This	 is	 called	 the	 “off”	 state	 of	 the
transistor.	Typical	voltage–current	 characteristics	 are	 shown	 in	Figure	6.54.	This	 shows	 the
increase	in	the	drain	current	(ID)	as	a	function	of	drain	bias	with	respect	to	the	source	(VDS).
We	assume	that	the	source	and	the	substrate	or	the	body	are	connected,	but	this	is	not	always
the	case.	If	a	voltage	is	applied	between	the	body	or	the	substrate	and	the	source,	this	is	known
as	the	body	effect	and	can	be	accounted	for	when	estimating	ID.

FIGURE	 6.53 Schematic	 of	 (a)	 NMOS	 (n-channel)	 and	 (b)	 PMOS	 (p-channel)	 enhancement-mode	 MOSFETs.	 (From
Neaman,	D.,	An	Introduction	to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

FIGURE	6.54 Typical	I–V	curves	for	MOSFETs.	(From	Singh,	J.,	Semiconductor	Devices:	Basic	Principles,	Wiley,	New
York,	2001.	With	permission.)



In	enhancement-mode	MOSFET,	applying	a	bias	between	the	gate	and	 the	substrate	(VGS)
increases	the	conductivity	of	the	channel	region.	The	mechanism	through	which	this	occurs	is
very	different	from	that	in	MESFET,	which	makes	use	of	changes	in	the	width	of	the	depletion
layer	(see	Section	6.9).

6.11.5 MECHANISM	FOR	ENHANCEMENT	MOSFET
Consider	 an	 n-channel	 MOSFET,	 that	 is,	 an	 NMOS	 made	 from	 a	 p-type	 semiconductor
(Figure	6.50).	The	gate	dielectric	forms	a	parallel	plate	capacitor.	The	dielectric	of	a	capacitor
normally	 is	 sandwiched	 between	 two	 electrodes.	 However,	 in	 this	 case,	 one	 side	 of	 the
capacitor	 is	 a	 conductor	 (polysilicon	 or	 some	 other	 metal),	 and	 there	 is	 a	 semiconductor
underneath	the	gate	dielectric.	When	a	positive	bias	is	applied	to	the	gate	electrode,	negative
charges	 are	 induced	 on	 the	 other	 side,	 that	 is,	 the	 dielectric–semiconductor	 interface.	 At	 a
certain	 voltage	 called	 the	 threshold	 voltage	 (VTH),	 a	 very	 thin	 layer	 of	 the	 original	 p-type
semiconductor	begins	to	behave	like	an	n-type	semiconductor.	This	is	known	as	an	inversion
layer.	When	a	small	drain	bias	(VDS)	is	applied,	electrons	can	then	flow	from	the	source	to	the
drain	(Figure	6.54).

If	 the	 drain	 bias	 (VDS)	 increases	 even	 more,	 then	 the	 voltage	 between	 the	 gate	 and	 the
inversion	layer	near	the	drain	decreases	as	does	the	concentration	of	electrons	near	the	drain
region.	 This	 can	 continue	 with	 increasing	 VDS.	 Eventually,	 this	 reaches	 a	 point	 where	 the
voltage	difference	between	the	gate	and	the	channel	becomes	so	small	that	an	inversion	layer
cannot	be	maintained.	This	will	pinch	off	 the	channel	region	because	 there	usually	are	very
few	electrons	 left	near	 the	drain	 region.	This	process	causes	 the	drain	current	 (ID)	 value	 to
saturate	(Figure	6.54).

If	 the	 gate	 bias	 with	 respect	 to	 the	 substrate	 (VGS)	 increases,	 then	 the	 concentration	 of
electrons	present	in	the	inversion	layer	increases.	This	causes	an	increase	in	the	drain	current
when	a	small	bias	is	applied	to	the	drain	(Figure	6.54).

The	 I–V	 characteristics	 for	 an	enhancement-type	MOSFET	 (Figure	6.54)	 and	 those	 for	 a
MESFET	 look	 similar	 (Figure	 6.46).	 However,	 the	 fundamental	 underlying	 phenomena
responsible	for	their	operations	are	very	different.	For	a	MESFET,	we	change	the	depletion
layer	width	(W)	of	the	channel	region	as	a	function	of	the	gate	bias	(see	Section	6.9).	For	an
enhancement-type	MOSFET	 (either	 NMOS	 or	 PMOS),	 we	 create	 an	 inversion	 layer	 in	 the
channel	region	by	inducing	a	charge	at	the	insulator–semiconductor	interface.

The	most	common	MOSFET	used	is	the	n-channel	or	an	NMOS	in	enhancement	mode.

6.11.6 DEPLETION-MODE	MOSFET
In	a	depletion-mode	MOSFET,	a	MOSFET	 is	created	such	 that	 it	 is	normally	 in	an	on	state
without	 any	 bias	 to	 the	 gate.	 This	 is	 a	 ready-to-go	 state	 that	 is	 achieved,	 for	 example,	 by
creating	a	highly	doped	n-type	region	that	forms	a	conductive	channel	between	the	source	and
the	 drain.	 In	 this	 case,	 the	 substrate	 is	 p-type.	 The	 free	 carriers	 in	 the	 n-type	 conductive
channel	are	from	donor	doping.	Similarly,	we	can	create	a	p-channel	MOSFET	and	operate	it
under	the	depletion	mode.	The	structures	of	a	depletion	n-channel	and	p-channel	MOSFET	are
shown	in	Figure	6.55.



When	a	negative	voltage	is	applied	to	the	gate	of	an	NMOS,	the	conductivity	of	the	channel
region	 decreases	 because	 the	 carriers	 are	 depleted	 from	 the	 region.	 This	 switches	 the
transistor	 into	 its	 off	 state,	 shown	 in	 the	 transfer	 characteristics	 (Figure	 6.51c).	 When	 a
positive	gate	voltage	 is	applied	 to	a	PMOS	in	depletion	mode,	 the	 transistor	 is	switched	off
(Figure	6.51d).	The	I–V	curves	for	an	NMOS	depletion-layer	MOSFET	are	shown	in	Figure
6.56.

FIGURE	6.55 Schematic	of	depletion-mode	(a)	n-channel	and	(b)	p-channel	MOSFET.	(From	Neaman,	D.,	An	Introduction
to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

FIGURE	6.56 Characteristic	I–V	curves	for	an	n-channel	MOSFET	in	depletion	mode.	(From	Neaman,	D.,	An	Introduction
to	Semiconductor	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Thus,	if	we	consider	the	threshold	voltage	to	be	the	gate	voltage	that	is	required	to	either
just	 form	 the	 channel	or	 to	 just	deplete	 it	 in	 the	 case	of	depletion-mode	MOSFET,	 then	 the
gate	voltage	is	positive	for	the	enhancement-mode	NMOS	and	is	negative	for	depletion-mode
NMOS	(Figure	6.51a	and	c).	For	PMOS,	the	threshold	voltage	is	negative	for	the	enhancement
type	and	positive	for	the	depletion	type	(Figure	6.51b	and	d).

PROBLEMS



6.1 Define	the	terms	“work	function”	and	“electron	affinity.”	Why	do	we	use	the	term	work
function	for	metals	and	electron	affinity	for	semiconductors?

6.2 Sketch	the	band	diagrams	for	a	Schottky	contact	and	an	ohmic	contact	from	an	n-type
semiconductor	in	contact	with	a	metal.

6.3 What	is	the	principle	by	which	a	solar	cell	operates?
6.4 A	Si	p-n	junction	has	an	open-circuit	voltage	of	0.6	V.	What	value	of	JL	is	required	to

produce	this	open-circuit	voltage?	Assume	T	=	300,	ni	=	1.5	×	1010	cm–3;	Na	=	1018	and
Nd	=	1016	atoms/cm3;	Ln	=	10	μm	and	Lp	=	25	μm;	and	Dp	=	20	and	Dn	=	10	cm2/s.

6.5 Use	 the	 diffusion	 coefficient	 values	 in	 the	 previous	 example	 to	 calculate	 the	 carrier
lifetimes.

6.6 Show	that	the	maximum	possible	open-circuit	voltage	for	a	p-n	junction	in	Si	with	Na	=
1017	and	Nd	=	3	×	1016	atoms/cm3	is	0.782	V.

6.7 If	the	photocurrent	density	JL	is	150	mA/cm2,	what	is	the	open-circuit	voltage	for	the	p-
n	junction	in	Example	6.2?

6.8 Consider	a	Si	p-n	junction	solar	cell	with	electron	and	hole	lifetimes	of	3	×	10–7	s	and
10–7	 s,	 respectively.	 If	 the	 acceptor	 and	 donor	 doping	 levels	 are	 3	 ×	 1017	 and	 1016
atoms/cm3,	respectively,	what	is	the	open-circuit	voltage	(VOC)?	Assume	Dp	=	20,	Dn	=
10	cm2/s,	and	JL	=	10	mA/cm2.

6.9 A	solar	cell	with	an	area	of	1	cm2	has	IL	of	15	mA.	If	the	saturation	current	(IS)	is	3	×
10–11	A,	(a)	calculate	the	open-circuit	voltage	(VOC)	and	(b)	calculate	the	short-circuit
current	in	milliamperes.	(c)	If	the	fill	factor	is	0.7,	what	is	the	power	extracted	for	each
solar	cell	in	milliwatts?

6.10 Why	is	GaAs	better	suited	than	Si	for	making	efficient	solar	cells?	Why,	then,	is	it	not
widely	used?

6.11 Do	solar	cells	require	indirect	or	direct	band	gap	semiconductors?	Explain.

FIGURE	6.57 I–V	curve	for	a	solar	cell.	(From	Edwards-Shea,	L.,	The	Essence	of	Solid-State	Electronics,	Prentice	Hall,
Englewood	Cliffs,	NJ,	1996.	With	permission.)



6.12 The	I–V	curve	for	a	solar	cell	is	shown	in	Figure	6.57.	Calculate	the	fill	factor	for	this
solar	 cell.	 (Hint:	 Draw	 the	 largest	 possible	 rectangle	 that	 fits	 inside	 the	 given	 I–V
curve.)

6.13 For	the	I–V	curve	shown	in	Figure	6.20,	what	is	the	open-circuit	voltage	(Voc)	for	this
solar	cell?	Show	that	the	fill	factor	for	this	solar	cell	is	about	0.8.

6.14 What	is	the	basic	principle	of	an	LED?	How	is	it	different	from	that	of	a	solar	cell?
6.15 What	is	the	difference	between	spontaneous	and	stimulated	radiation?
6.16 Do	LEDs	always	require	a	direct	band	gap	semiconductor?
6.17 What	mechanisms	cause	LEDs’	overall	efficiency	to	be	lower?
6.18 What	techniques	can	one	use	to	produce	LEDs	that	emit	a	“white”	light?
6.19 In	Example	6.3,	what	is	the	current	through	the	circuit	with	a	resistance	of	390	Ω	that	is

used	in	a	series?	Assume	that	the	voltage	driving	the	LED	changes	to	2.0	V.
6.20 In	Example	6.3,	what	is	the	current	through	the	circuit	with	a	resistance	of	800	Ω	that	is

used	in	a	series?	Assume	that	the	voltage	driving	the	LED	changes	is	1.8	V.
6.21 What	is	the	minimum	drive	voltage	for	a	blue	LED	that	emits	at	470	nm?
6.22 Show	that	the	minimum	drive	voltage	for	an	LED	that	emits	at	1550	nm	is	0.8	V.
6.23 Why	is	the	BJT	considered	a	bipolar	device?
6.24 An	 engineer	 uses	 a	 Si	 crystal	 to	 create	 two	 p-n	 junctions	 connected	 back-to-back.

However,	he	or	she	finds	that	this	device	does	not	function	as	a	transistor.	Explain	why.
6.25 A	transistor	has	a	base	current	of	50	μA.	If	the	collector	current	is	3.7	mA,	what	is	the

value	of	emitter	current	(IE)?	What	are	the	values	of	transistor	parameters	α	and	β?
6.26 In	Example	6.4,	what	is	the	value	of	α?
6.27 In	the	circuit	shown	in	Example	6.4	(Figure	6.42),	assume	that	the	values	of	RB	=	10	kΩ,

RC	=	100	Ω,	VBB	=	5	V,	and	VCC	=	10	V.	Assume	that	the	current	gain	is	100.	Calculate
the	transistor	currents	and	voltages	across	different	junctions.

6.28 In	the	circuit	shown	in	Example	6.4	(Figure	6.42),	assume	that	the	values	of	RB	=	50	kΩ,
RC	 =	 500	 Ω,	 VBB	 =	 5	 V,	 and	 VCC	 =	 10	 V.	 Assume	 that	 the	 current	 gain	 (β)	 is	 90.
Calculate	the	transistor	currents	and	voltages	across	different	junctions.

6.29 What	does	the	term	“field	effect”	mean?
6.30 Explain	how	the	different	gate-isolation	strategies	used	for	JFET	and	MESFET	differ

from	those	used	for	MOSFET.
6.31 What	does	enhancement-mode	MOSFET	mean?	How	is	 this	different	from	depletion-

mode	MOSFET?
6.32 Explain	the	need	for	developing	new	high-k	gate	dielectrics	for	MOSFETs.

GLOSSARY

Active	mode:	An	npn	transistor	in	which	the	emitter–base	junction	is	forward	0	biased	and	the
base–collector	junction	is	reverse	0	biased	(Figure	6.37)	is	an	example	of	a	transistor	in
active	mode.

Base:	The	moderately	doped	middle	region	sandwiched	between	the	collector	and	the	emitter



of	a	transistor.

Base	 current:	 A	 flow	 of	 positive	 charge	 into	 the	 base;	 controls	 the	 collector	 and	 emitter
currents.

Base-to-collector	current	amplification	factor	(β):	The	ratio	of	the	collector	current	to	the
base	current	β	=	IC/IB.	Typical	values	are	~>100,	also	known	as	common	emitter	current
gain.

Bipolar	device:	Any	microelectronic	device	the	function	of	which	depends	on	the	motions	of
both	electrons	and	holes	(e.g.,	BJT).

Bipolar	 junction	 transistor	 (BJT):	 A	 device	 with	 three	 terminals	 (emitter,	 base,	 and
collector)	based	on	two	interacting	p-n	junctions	connected	back-to-back.	The	current	at
the	collector	can	be	controlled	by	regulating	the	voltage	between	the	two	other	terminals,
the	emitter	 and	 the	base.	The	most	 commonly	used	BJT	 is	 the	npn	 type	because	of	 the
higher	mobility	of	the	electrons.

CMOS:	A	MOSFET	in	which	both	NMOS	and	PMOS	transistors	are	integrated.	The	acronym
stands	for	complementary	metal	oxide	silicon.	The	term	FET	is	implied.

Collector:	The	lightly	doped	region	in	a	transistor	that	ultimately	receives	the	charge	carriers
emitted	by	the	emitter.

Common	 base	 (CB)	 configuration:	 A	 BJT	 configuration	 in	 which	 the	 base	 electrode	 is
common	 to	 the	emitter	 and	collector	 circuits.	The	 transistor	 can	be	connected	 in	other
configurations	as	well	(e.g.,	common	emitter).

Common	base	 current	 gain	 (α):	 The	 ratio	 of	 collector	 current	 to	 the	 emitter	 current:	 α	 =
IC/IE.	Maximum	value	possible	is	1.

Common	emitter	(CE)	configuration:	A	BJT	configuration	in	which	the	emitter	electrode	is
common	to	the	base	and	collector	circuits.

Common	emitter	current	gain	(β):	The	ratio	of	the	collector	current	to	the	base	current	β	=
IC/IB.	 Typical	 values	 are	 ~>100,	 also	 known	 as	 the	 base-to-collector	 current
amplification	factor.

Controlled	current:	A	collector	or	emitter	current,	which	is	controlled	by	the	base	current.

Controlling	current:	See	Base	current.

Copper	 indium	 diselenide	 (CuInSe2):	 A	 compound	 semiconductor	 material	 for	 high-
efficiency	solar	cells.	Also	known	as	CIS.

Current	amplifier:	The	use	of	a	BJT	in	which	a	small	change	in	the	base	current	(IB)	causes
large	changes	in	the	collector	current	(IC).



Cut-off	mode:	A	mode	of	an	npn	operation	in	which	both	the	emitter–base	and	base–collector
junctions	are	reverse-biased.

Depletion	mode:	A	MOSFET	that	is	normally	in	the	“on”	state	without	bias.	This	is	achieved
by	creating	a	highly	doped	region	forming	a	conductive	channel.	When	a	negative	bias	is
applied	to	the	gate	region,	the	conductivity	of	the	channel	region	decreases	and	can	turn
off	the	device	(Figure	6.55).

Early	effect:	In	a	BJT	with	a	common	base	configuration,	when	VBC	reverse	bias	increases,
the	 width	 of	 the	 depletion	 layer	 (W)	 associated	 with	 the	 base–collector	 junction	 gets
larger.	 This	means	 the	width	 of	 the	 base	 region	 through	 carrier	 diffusion	 gets	 a	 little
shorter,	causing	a	slight	increase	in	IC	as	a	function	of	VBC.

Effective	Richardson	constant:	The	 term	 	 that	 is	 related	 to	 the	reverse	saturation

current	due	to	thermionic	emissions	in	a	Schottky	contact.

Electron	 affinity	 of	 a	 semiconductor	 (qχS):	 The	 energy	 required	 to	 remove	 an	 electron
from	the	conduction	band	and	set	it	free.

Emitter:	The	heavily	doped	region	in	a	transistor	that	injects	minority	carriers	into	the	base.

Enhancement	mode:	The	mode	in	which	a	potential	forward	or	reverse	bias	is	applied	to	the
gate	 region	of	 a	MOSFET	 that	 normally	 is	 turned	off;	 the	 conductivity	 of	 the	 channel
region	 increases	 and	a	 current	 can	begin	 to	 flow	 from	 the	 source	 to	 the	drain	 (Figure
6.53).

Fill	factor	(Ff):	The	ratio	of	Vm	×	Im	to	Voc	×	Ioc.	Most	solar	cells	have	a	fill	factor	of	~0.7.

Field	effect:	The	effect	of	an	applied	electric	field	on	the	conductivity	of	the	channel	region.

Field-effect	transistor	(FET):	A	unipolar	device	based	on	the	control	of	charge	carrier	flow
between	a	source	and	a	drain,	using	voltage	applied	to	a	region	known	as	the	gate.	The
applied	 electric	 field	 changes	 the	 conductivity	 of	 the	 channel	 region,	 hence	 the	 name
field-effect	transistor.

Forward	active	mode:	See	Active	mode.

Gate:	The	region	in	an	FET	between	the	source	and	the	drain.

Gate	dielectric:	A	nonconducting,	dielectric	material	that	isolates	the	gate	electrode	from	the
channel	 region.	 Usually	 the	 gate	 dielectric	 is	 silicon	 oxide	 (SiO2),	 although	 new	 gate
dielectrics	with	higher	dielectric	constant	are	being	developed.

Heterojunction:	 A	 p-n	 junction	 in	 which	 the	 n-	 and	 p-sides	 are	made	 using	 two	 different
semiconductors.



High-k	gate	dielectrics:	Recently	developed	materials	used	as	gate	insulators	(e.g.,	hafnium
oxide	 with	 k	 ~25).	 These	 materials	 allow	 for	 a	 higher	 thickness	 of	 the	 dielectric
compared	 to	 silica,	 which	 leads	 to	 smaller	 leakage	 of	 current	 and	 more	 efficient
computer	chips.

Homojunction:	 A	 p-n	 junction	 in	 which	 the	 n-	 and	 p-sides	 are	 made	 using	 the	 same
semiconductor.

Interacting	p-n	junctions:	Two	p-n	junctions	connected	back-to-back	and	designed	such	that
transistor	action	is	possible.	This	means	that	the	carriers	injected	from	forward	biasing
of	 the	emitter–base	 junction	 flow	 into	 the	base–collector	 junction.	 If	 the	base	 region	 is
too	long,	injected	carriers	simply	recombine	and	there	is	no	transistor	action.

Inverse	active	or	inverted	mode:	A	mode	of	npn	transistor	operation	in	which	the	roles	of
emitter	and	collector	are	reversed—the	emitter–base	is	reverse-biased	and	the	collector–
base	is	forward-biased.

Inversion	layer:	In	a	MOSEFT,	a	thin	layer	underneath	the	gate	that	exhibits	semiconductivity
opposite	to	that	of	the	rest	of	the	substrate	when	a	voltage	is	applied.	In	a	p-type	substrate,
it	becomes	enriched	with	electrons	and	behaves	as	an	n-type.

Junction	field-effect	transistor	(JFET):	An	FET	in	which	a	 reverse-biased	p-n	 junction	 is
used	to	isolate	the	gate	region	from	the	channel	current	flow.	This	is	used	mainly	for	III–
V	semiconductors	such	as	GaAs.

Laser	diode:	 In	 a	 laser	 diode,	 electrons	 and	 holes	 are	 generated	when	 photons	 of	 a	 given
energy	 and	 wave	 vector	 are	 absorbed	 by	 the	 semiconductor.	 The	 electrons	 and	 holes
recombine	 and	 cause	 a	 stimulated	 emission	 of	 coherent	 photons;	 that	 is,	 the	 photons
emitted	are	in	phase	with	the	incident	photons	that	have	the	same	energy	and	wave	vector.

Majority	device:	A	device	such	as	a	Schottky	diode	in	which	currents	are	generated	primarily
through	the	motions	of	majority	carriers.	The	motion	of	minority	carriers	does	not	play
a	primary	role.

Metal	 insulator	 semiconductor	 field-effect	 transistor	 (MISFET):	 An	 FET	 in	 which	 a
dielectric	material	 is	 used	 to	 isolate	 the	 gate	 region	 from	 the	 channel	 current	 flow.	A
metal	 electrode	 forming	 an	ohmic	 contact	with	 the	dielectric	 allows	 application	of	 the
gate	voltage.

Metal	oxide	 semiconductor	 field-effect	 transistor	 (MOSFET):	An	FET,	usually	based	on
silicon,	 in	 which	 SiO2	 is	 used	 as	 a	 dielectric	 for	 isolating	 the	 gate	 region	 from	 the
channel	current	flow.	A	relatively	high-conductivity	polysilicon	(in	this	context,	a	metal)
forms	the	electrode	that	allows	application	of	the	gate	voltage.

Metal	 semiconductor	 field-effect	 transistor	 (MESFET):	 An	 FET	 in	 which	 a	 metal	 that
forms	a	Schottky	contact	with	the	semiconductor	is	used	to	isolate	the	gate	region	from
the	channel	current	flow.	This	is	used	mainly	for	III–V	semiconductors	such	as	GaAs.



Moore’s	law:	Named	after	Roger	Moore,	cofounder	of	Intel	Corporation,	this	law	states	that
the	number	of	active	devices	on	a	semiconductor	chip	doubles	every	18	months.

MOS:	A	metal	oxide	semiconductor,	for	example,	silicon	oxide	on	silicon.	It	is	usually	used
to	indicate	a	MOSFET	whose	operation	can	be	explained	using	an	MOS	capacitor.

n-channel:	 The	 conduction	 from	 the	 source	 to	 the	 drain	 in	 the	 channel	 (which	 is	 p-type)
occurs	by	electrons;	hence,	the	channel	is	known	as	an	n-channel	or	an	NMOS	device.

NMOS:	A	MOSFET	in	which	electrons	carry	the	channel	current	from	source	to	drain.

npn	 transistor:	 A	 BJT	 with	 a	 p-type	 base	 sandwiched	 between	 the	 n-type	 emitter	 and	 the
source.

Ohmic	contact:	A	contact	between	a	metallic	material	and	a	semiconductor	such	that	there	is
no	barrier	to	block	the	flow	of	current	at	the	junction.	The	contact	resistance	may	or	may
not	follow	Ohm’s	law.	This	contact	is	seen	if	ϕM	<	ϕS	for	an	n-type	semiconductor	or	if
ϕM	>	ϕS	for	a	p-type	semiconductor.

Open-circuit	voltage	(Voc):	The	maximum	possible	voltage	generated	from	a	solar	cell.

Optical	 generation:	 The	 generation	 of	 carriers	 (electrons	 and	 holes)	 as	 a	 result	 of	 the
absorption	of	light	energy	in	a	semiconductor	or	a	p-n	junction.	This	process	forms	the
basis	for	solar	cell	operation.

Organic	 light-emitting	 diodes	 (OLEDs):	 Diodes	 based	 on	 organic	 materials	 with	 an
electron-injecting	 cathode	 instead	 of	 the	 n-layer	 and	 a	 hole-injecting	 anode.	 These
devices	have	considerable	promise	for	energy-efficient	lighting	and	are	also	used	in	flat-
screen	displays.

Output	characteristics:	The	plot	of	the	drain	current	(ID)	as	a	function	of	the	source	to	drain
voltage	 (VDS)	 for	 a	 given	 value	 of	 gate	 bias.	 These	 are	 different	 from	 the	 transfer
characteristics.

p-channel:	 The	 conduction	 from	 the	 source	 to	 the	 drain	 in	 the	 channel	 (which	 is	 n-type)
occurs	by	holes;	the	channel	is	known	as	p-channel	or	PMOS.

Photocurrent	(IL):	A	current	directed	 from	 the	n-	 to	 the	p-side	of	a	p-n	 junction	 resulting
from	the	process	of	photogeneration.	Also	known	as	the	short-circuit	current,	it	flows	in
an	external	circuit	with	no	resistance.

Photogeneration:	See	Optical	generation.

Photovoltaic	effect:	The	appearance	of	forward	voltage	across	an	illuminated	p-n	junction.

Photovoltaics:	A	field	of	research	and	development	involving	the	conversion	of	light	energy
into	electricity.



PMOS:	A	MOSFET	in	which	the	current	from	source	to	drain	is	carried	by	holes.

pnp	transistor:	A	BJT	with	an	n-type	base	sandwiched	between	a	p-type	emitter	and	source.

Polymer	organic	light-emitting	diodes	(PLEDs):	See	Organic	light-emitting	diodes.

Polysilicon	 (poly-Si	 or	 polysil):	 A	 polycrystalline	 form	 of	 silicon.	 A	 relatively	 high-
conductivity	 form	 of	 this	 material	 is	 used	 as	 a	 gate	 electrode	 for	 MOSFET	 and	 is
referred	to	as	a	metal	in	this	context.

Richardson	constant	(R*):	See	Effective	Richardson	constant.

Saturation	mode:	A	mode	for	operating	an	npn	transistor	in	which	both	the	emitter–base	and
base–collector	junctions	are	forward-biased.

Schottky	barrier	(ϕB):	The	barrier	 that	prevents	 injection	of	electrons	from	a	metal	 into	a
semiconductor.	Often,	 this	barrier	height	is	 independent	of	the	metal	because	the	Fermi
energy	is	pinned	at	the	interface.

Schottky	contact:	The	rectifying	contact	between	a	metal	and	a	semiconductor,	seen	if	ϕM	<
ϕS	for	a	p-type	semiconductor	or	if	ϕM	>	ϕS	for	an	n-type	semiconductor.

Schottky	diode:	A	diode	based	on	a	metal–semiconductor	junction,	requiring	ϕM	<	ϕS	for	a
p-type	semiconductor	or	ϕM	>	ϕS	for	an	n-type	semiconductor.

Short-circuit	 current	 (Isc):	 The	 same	 as	 a	 photocurrent	 (IL),	 this	 refers	 to	 the	 maximum
current	flowing	when	a	solar	cell	 is	connected	to	an	external	circuit	with	zero	external
resistance.

Silicides:	Intermetallic	compounds	formed	by	reactions	of	elements	with	silicon.

Solar	cell:	A	p-n	junction–based	device	that	generates	electric	voltage	or	current	upon	optical
illumination.

Solar	cell	conversion	efficiency	(ηconv):	The	ratio	of	maximum	power	delivered	to	the	power
that	is	incident	(Pin):

where	 Im	 and	 Vm	 are	 the	 current	 and	 voltage,	 respectively,	 leading	 to	 maximum
power.

Spontaneous	emission:	Radiation	 of	 photons	 by	 electron–hole	 recombination	 such	 that	 the
emitted	 photons	 have	 no	 particular	 phase	 relationship	 with	 one	 another	 and	 are	 thus
incoherent.



Stimulated	 emission:	 Radiation	 of	 photons	 by	 electron–hole	 recombination	 such	 that	 the
emitted	photons	are	coherent;	that	is,	they	have	the	same	energy	and	wave	vector	as	the
photons	that	cause	the	emission	to	occur.

Surface	pinning:	A	 constant	 energy	 level	 that	 does	not	 depend	upon	doping.	Defects	 at	 the
surface	or	interface	of	a	semiconductor	cause	the	Fermi	energy	of	the	semiconductor	to
be	pinned	at	a	band	gap	level.	Surface	pinning	of	the	Fermi	energy	level	causes	the	same
Schottky	barrier	heights	for	different	metals	deposited	on	a	semiconductor.

Thermionic	emission:	The	process	in	which	electrons	on	the	semiconductor	side	that	have	a
high	enough	energy	overcome	the	built-in	potential	(V0)	and	flow	onto	the	metal	side	in
a	Schottky	contact.	This	creates	a	current	known	as	the	thermionic	current.

Threshold	voltage	(VTH):	The	gate	voltage	that	is	required	to	either	just	form	the	channel	or
just	deplete	it.

Transfer	characteristics:	The	plot	of	drain	current	(ID)	as	a	function	of	the	gate	voltage	for
an	NMOS	or	a	PMOS.	These	are	different	from	the	output	characteristics	that	refer	to	the
change	in	drain	current	(ID)	as	a	function	of	VDS	for	a	fixed	value	of	gate	bias.

Transistor:	An	 abbreviation	 for	 a	 transfer	 resistor,	 a	microelectronic	 device	 based	 on	 p-n
junctions	that	is	used	as	a	tiny	switch,	as	an	amplifier,	or	for	other	functions.

Transistor	action:	In	a	transistor,	the	current	at	one	terminal	is	controlled	by	the	voltage	at
the	other	two	terminals.

Unipolar	 device:	 A	 device	 in	 which	 the	 current	 is	 carried	 mainly	 by	 one	 type	 of	 carrier,
electrons	 or	 holes.	 An	 FET	 is	 a	 unipolar	 device.	 This	 is	 one	 of	 the	main	 distinctions
between	an	FET	and	a	BJT.

Work	function	(qϕ):	The	energy	required	to	remove	an	electron	from	its	Fermi	energy	level
and	set	it	free.
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7	Linear	Dielectric	Materials

KEY	TOPICS

Dielectric	materials
Induction,	free,	and	bound	charges
Dielectric	constant	and	capacitor
Polarization	mechanisms	in	dielectrics
Dielectric	constant	and	refractive	index
Ideal	versus	real	dielectrics
Complex	dielectric	constant
Dielectric	losses
Frequency	and	temperature	dependence	of	dielectric	properties
Linear	and	nonlinear	dielectrics

7.1 DIELECTRIC	MATERIALS

A	dielectric	material	 typically	 is	 a	 large-bandgap	 semiconductor	 (Eg	 ~	>4	eV)	 that	 exhibits
high	resistivity	(ρ).	The	prefix	dia	means	through	in	the	Greek	language.	The	word	dielectric
refers	 to	 a	material	 that	 normally	 does	 not	 allow	 electricity	 (electrons,	 ions,	 and	 so	 on)	 to
pass	 through	 it.	 There	 are	 special	 situations	 (for	 example,	 exposure	 to	 very	 high	 electric
fields	or	changes	in	the	composition	or	microstructure)	that	may	lead	to	a	dielectric	material
exhibiting	semiconducting	or	metallic	behavior.	However,	when	the	term	dielectric	material	is
used,	 it	generally	is	understood	that	 the	material	essentially	is	a	nonconductor	of	electricity.
An	electrical	insulator	is	a	dielectric	material	that	exhibits	a	high	breakdown	field.

7.1.1 ELECTROSTATIC	INDUCTION
To	better	understand	the	behavior	of	nonconducting	materials,	let	us	first	examine	the	concept
of	electrostatic	induction	and	what	is	meant	by	the	terms	free	charge	and	bound	charge.	First,
consider	a	dielectric	such	as	a	typical	ceramic	or	a	plastic	that	has	a	net	positive	charge	on	its
surface.	Now,	assume	that	we	bring	a	Conductor	B	near	this	charged	Insulator	A	(Figure	7.1a).
The	electric	field	associated	with	the	positively	charged	Insulator	A	pulls	the	electrons	toward
it	from	Conductor	B.	This	is	also	described	as	the	atoms	in	Conductor	B	being	polarized	or
affected	by	the	presence	of	an	electric	field.

The	 process	 of	 the	 development	 of	 a	 negative	 charge	 on	 Conductor	 B	 is	 known	 as
electrostatic	 induction.	 In	 this	 case,	 the	 negative	 charge	 developed	 on	 Conductor	 B	 is	 the
bound	charge	because	it	is	bound	by	the	electric	field	caused	by	the	presence	of	the	charged
Insulator	A	next	to	it.

The	creation	of	 a	bound	negative	 charge	on	Conductor	B,	 in	 turn,	 creates	 a	net	 positive
charge	on	 the	 other	 side	 of	 the	 conductor	 because	 the	 conductor	 itself	 cannot	 have	 any	net
electric	 field	within	 it.	 If	we	connect	 this	Conductor	B	with	a	grounded	wire,	 then	electrons
will	 flow	 from	 the	 ground	 to	 this	 conductor	 and	make	 up	 for	 the	 positive	 charge	 (Figure



7.1b).	The	 flow	of	electrons	 from	 the	ground	 to	 the	conductor	can	also	be	described	as	 the
flow	of	 the	 positive	 charge	 from	Conductor	B	 to	 the	 ground.	Thus,	 the	 positive	 charge	on
Conductor	B	 is	 considered	 the	 free	 charge.	 The	word	 free	 in	 this	 context	means	 that	 these
charges	are	mobile,	that	is,	they	are	free	to	move.

FIGURE	7.1 Illustration	of	 electrostatic	 induction	and	bound	and	 free	charges,	where	A	 is	 the	charged	 insulator,	B	 is	 the
conductor,	and	D	is	another	dielectric.	(a)	Isolated	induction,	(b)	grounded	induction,	and	(c)	induction	with	isolated	Insulator
D.	(From	Kao,	K.C.,	Dielectric	Phenomena	in	Solids,	Elsevier-Academic	Press,	London,	2004.	With	permission.)

If,	 instead	of	bringing	in	Conductor	B	near	 the	charged	Insulator	A,	we	bring	in	another
dielectric	material,	D,	then	no	induced	charge	is	created	on	this	dielectric	material	because	no
free	carriers	are	available	(Figure	7.1c).	If	we	could	look	into	this	dielectric	material,	D,	at	an
atomic	scale,	we	would	see	that	the	electronic	clouds	are	not	perfectly	symmetrical	around	the
nuclei	 of	 atoms.	 Instead,	 the	 electronic	 clouds	 are	 tilted	 toward	 the	 positive	 charges	 in
Insulator	A.	The	presence	of	an	electric	field	creates	dipoles	within	the	atoms	of	Material	D,
which	is	polarized	by	the	electric	field	emanating	from	Dielectric	A.	(Readers	can	find	further
details	 of	 the	 polarization	 mechanisms	 and	 quantitative	 description	 of	 the	 electric
displacement	in	Sections	7.6	and	8.1.)	If	we	now	move	Dielectric	D	away	from	Dielectric	A,
we	find	that,	after	some	time,	the	dipole	moments	induced	in	this	material	fade	away	because
of	fluctuations	in	thermal	energy.



7.2 CAPACITANCE	AND	DIELECTRIC	CONSTANT

7.2.1 PARALLEL-PLATE	CAPACITOR	FILLED	WITH	A	VACUUM

A	capacitor	is	a	device	that	stores	electrical	charge.	Consider	two	parallel	conductive	plates	of
area	(A),	separated	by	a	distance	d,	and	carrying	charges	of	+Q	and	−Q;	assume	that	there	is	a
vacuum	 between	 these	 plates.	 This	 is	 the	 basic	 structure	 of	 a	 parallel-plate	 capacitor.	 A
schematic	on	the	charge	storage	and	the	free/bound	charges	is	also	found	in	Figure	8.6.

The	charge	(Q)	on	the	plates	creates	a	potential	difference	V.	We	define	the	proportionality
constant	as	the	capacitance	(C).	Thus,

The	SI	unit	of	capacitance	 is	a	Farad	 (or	coulombs	per	volt	 [C/V]).	One	Farad	 is	a	very
large	capacitance.	Some	supercapacitors	have	capacitances	 in	 this	 range.	Most	capacitors	 in
microelectronics	 have	 a	 capacitance	 that	 is	 expressed	 in	 microfarads	 (10−6	 F),	 nanofarads
(10−9	F),	picofarads	(10−12	F),	or	femtofarads	(10−15	F).

One	of	 the	 laws	of	electrostatics	 is	Gauss’s	 law,	which	states	 that	 the	area	 integral	of	 the
electric	field	(E)	over	any	closed	surface	is	equal	to	the	net	charge	(Q)	enclosed	in	the	surface
divided	by	the	permittivity	(ε).

Gauss’s	 law	 and	 the	 fundamentals	 of	 many	 electrical	 and	 magnetic	 properties	 and
phenomena	are	derived	from	Maxwell’s	equations.

We	define	the	surface	charge	density	(σ	or	σs)	as	the	charge	per	unit	area.

The	SI	unit	of	charge	density	is	coulombs	per	square	meter	(C/m2).	Note	that	the	letter	“C”
represents	the	capacitance	of	a	capacitor	or	charge	in	coulombs.	The	charge	density	is	usually
expressed	as,	for	example,	microcoulombs	per	square	centimeter	(μC/cm2)	or	picofarads	per
square	nanometer	(pF/nm2).

The	 generation	 of	 a	 voltage	 (V)	 between	 two	 plates	 separated	 by	 a	 distance	 d	 is	 also
represented	using	the	electric	field	(E)	as	follows:

We	can	rewrite	Equation	7.1	for	the	capacitance	(C)	using	Equations	7.3	and	7.4	as	follows:

This	equation	tells	us	that	the	capacitance	of	a	capacitor—that	is,	its	ability	to	hold	charge
—depends	 on	 geometric	 factors,	 namely,	 the	 areas	 (A)	 of	 the	 plates	 and	 the	 distance	 (d)
between	them.

We	define	the	dielectric	permittivity	(ε)	of	the	material	between	the	plates	as



Therefore,	from	Equations	7.5	and	7.6,

We	use	the	special	symbol	ε0	for	permittivity	of	the	vacuum	or	free	space,	which	is	equal
to	8.85	×	10−12	F/m.

We	can	write	 an	expression	 for	 the	capacitance	of	 a	 capacitor	 filled	with	a	vacuum	 (C0)
between	the	conductive	plates	as

The	subscript	“0”	has	been	added	to	indicate	that	this	equation	refers	to	a	capacitor	filled
with	a	vacuum.	Thus,

We	define	the	dielectric	flux	density	(D)	or	dielectric	displacement	(D)	as	the	total	surface
charge	density.

We	will	see	in	Section	7.3	that	the	dielectric	flux	density	(D)	can	also	be	written	as	a	sum	of
the	 free	 charge	 density	 and	 the	 bound	 charge	 density	 (σb).	 The	 SI	 unit	 for	 dielectric
displacement	(D)	is	the	same	as	that	for	charge	density,	that	is,	C/m2.

7.2.2 PARALLEL-PLATE	CAPACITORS	WITH	AN	IDEAL	DIELECTRIC
MATERIAL

Consider	a	capacitor	in	which	the	space	between	the	two	plates	is	filled	with	an	ideal	dielectric
material	 (Figure	 7.3).	 The	 term	 ideal	 dielectric	 means	 that,	 when	 charge	 is	 stored	 in	 a
capacitor,	no	energy	 is	 lost	 in	 the	processes	 that	 lead	 to	 storage	of	 the	electrical	 charge.	 In
reality,	 this	 is	 not	 possible.	 In	 Section	 7.13,	 we	 will	 define	 the	 term	 dielectric	 loss,	 which
represents	the	electrical	energy	that	is	wasted	or	used	when	charge-storage	processes	occur	in
a	dielectric	material.	These	processes	are	known	as	polarization	mechanisms.

In	one	form	of	polarization,	a	tiny	dipole	is	induced	within	an	atom.	As	shown	in	Figure
7.2,	 an	 atom	without	 an	 external	 electric	 field	 has	 a	 symmetric	 electronic	 cloud	 around	 the
nucleus.	 The	 centers	 of	 the	 positive	 and	 negative	 charges	 coincide,	 and	 there	 is	 no	 dipole
moment	(μ).	However,	when	the	same	atom	is	exposed	to	an	electric	field,	the	electronic	cloud
becomes	 asymmetrical,	 that	 is,	 the	 electronic	 cloud	 of	 a	 polarized	 atom	moves	 toward	 the
positive	 end	 of	 the	 electric	 field.	 The	 nucleus	 essentially	 remains	 at	 the	 same	 location.
Therefore,	 the	 centers	of	 the	positive	 and	negative	charges	 are	now	separated	by	a	 smaller
distance	(x).	This	process	of	creating	or	inducing	a	dipole	in	an	atom	is	known	as	electronic
polarization	(Figure	7.2).



For	a	dipole	with	charges	+q	and	−q	separated	by	a	distance	x,	the	dipole	moment	is	μ	=	q
×	x.	The	international	system	(SI)	unit	of	dipole	moment	is	C	·	m.	We	define	one	Debye	(D)	as
being	equal	to	3.3356	×	10−30	C	·	m.	Please	note	that	the	symbol	D	is	also	commonly	used	for
dielectric	displacement.

FIGURE	7.2 Illustration	of	electronic	polarization	of	an	atom	that	is	exposed	to	an	electric	field.

In	a	dielectric	material	exposed	to	an	electric	field,	these	induced	atomic	dipoles	align	in
such	a	way	 that	all	 the	negative	ends	of	 the	dipole	 line	up	near	 the	positively	charged	plate
(Figure	7.3b).	This	process	means	that	some	of	the	surface	charges	on	the	plates,	which	were
originally	 free	when	 there	was	a	vacuum	between	 the	plates,	will	now	become	bound	 to	 the
charges	 inside	 the	dielectric	material.	When	the	capacitor	 is	 filled	with	a	vacuum,	all	of	 the
charges	on	the	plates	are	free.	The	original	free	surface	charge	density	(σs)	with	a	vacuum-
filled	capacitor	is	now	reduced	to	(σs	−	σb),	where	σb	is	the	bound	charge	density	(see	Section
7.3).	This	reduced	charge	density	means	that	the	voltage	(V)	across	the	plates	is	also	reduced.
Therefore,	 the	 new	 electric	 field	 (E)	 for	 a	 capacitor	 filled	 with	 a	 dielectric	 is	 smaller
compared	to	E0.	A	lower	electric	field	is	needed	to	maintain	the	same	charge	because	part	of
the	surface	charge	is	now	held	or	bound	by	the	dielectric	material	(also	see	Figure	8.6).



FIGURE	 7.3 Structure	 of	 a	 parallel-plate	 capacitor	 filled	 with	 (a)	 a	 vacuum	 and	 (b)	 a	 real	 dielectric	 material;	 C0	 =
capacitance	without	the	dielectric	material,	C	=	capacitance	with	the	dielectric	material.

The	 ratio	 E0/E—the	 electric	 fields	 existing	 in	 a	 capacitor	 filled	 with	 a	 vacuum	 and	 a
dielectric	material,	respectively—is	defined	as	the	dielectric	constant	(k)	or	relative	dielectric
permittivity	(εr).

Now	because	the	total	charge	on	the	plates	is	the	same,

Q	=	C	×	V	=	C0	×	V0

The	distance	between	the	parallel	plates	(d)	is	the	same.
Therefore,	Q	=	C	×	E	=	C0	×	E0	or	(E0/E)	=	(C/C0)
We	can	write	Equation	7.11	as

Thus,	the	dielectric	constant	(k)	is	also	defined	as	the	ratio	of	the	capacitance	of	a	capacitor
filled	with	a	dielectric	to	that	of	an	identical	capacitor	filled	with	a	vacuum.	One	advantage	of
defining	 a	 dielectric	 constant	 (k)	 or	 relative	 dielectric	 permittivity	 (εr)	 as	 a	 dimensionless



number	is	that	it	becomes	easy	to	compare	the	abilities	of	different	materials	to	store	charges.
For	 example,	 the	 dielectric	 constant	 of	 the	 vacuum	 becomes	 1.	 The	 dielectric	 constant	 of
silicon	 (Si),	 alumina	 (Al2O3),	 and	 polyethylene	 are	 approximately	 11,	 9.9,	 and	 2.2,
respectively	(Table	7.1).

Thus,	 the	 capacitance	 of	 a	 parallel	 capacitor	 containing	 a	 dielectric	 material	 with	 a
dielectric	constant	(k)	is	given	by	modifying	Equations	7.8	and	7.12	as	follows:

If	 the	 dielectric	material	 consists	 of	 atoms,	 ions,	 or	molecules	 that	 are	more	 able	 to	 be
polarized,	that	is,	if	they	are	easily	influenced	by	the	applied	electric	field,	then	the	dielectric
constant	 (k)	will	be	higher.	 In	Section	7.12,	we	will	 examine	how	 the	dielectric	constant	 (k)
changes	with	electrical	frequency	(f),	 temperature,	composition,	and	the	microstructure	of	a
material.	Materials	with	 a	 high	 dielectric	 constant	 are	 useful	 for	making	 capacitors.	Unlike
transistors,	diodes,	solar	cells,	and	so	on,	capacitors	are	considered	passive	components.	One
of	the	goals	of	capacitor	manufacturers	is	to	minimize	the	overall	size	of	the	capacitor	while
enhancing	the	total	capacitance.	This	usually	is	achieved	by	arranging	multiple,	thin	layers	of
dielectrics	in	parallel	(Figure	7.4).	This	device	is	known	as	a	multilayer	capacitor	(MLC).

The	volumetric	efficiency	of	a	single-layer	capacitor	with	area	A	and	thickness	d	 is	given
by:

or



TABLE	7.1
Approximate	 Room-Temperature	 Dielectric	 Constants	 (or	 Ranges)	 for	 Some	 Dielectric	Materials	 or	 Classes	 of
Materials	(Frequency	~1	kHz–1	MHz)

FIGURE	7.4 Multilayer	capacitors	made	using	BaTiO3-based	formulations.	(From	Kishi,	H.,	et	al.,	Jap	J	Appl	Phys.,	42,	1–
15,	2003.	With	permission.)

Examples	7.1	and	7.2	 illustrate	how	 the	volumetric	efficiency	 is	enhanced	using	multiple
layers	of	a	dielectric	connected	in	parallel	instead	of	using	a	single,	thick	layer.	An	analogy	to
this	is	that	we	stay	warmer	during	winter	by	wearing	multiple	layers	of	clothing	rather	than	by
wearing	one	very	thick	jacket.

Example	7.1: Capacitors	in	Parallel	and	Series



1.	 Show	 that	 the	 capacitance	 of	 two	 capacitors	 with	 capacitances	 C1	 and	 C2
connected	in	parallel	is	C1	+	C2.

2.	 Show	that	the	capacitance	of	the	same	capacitors	connected	in	series	is

or

Solution
1.	 When	capacitors	are	connected	in	parallel	(Figure	7.5),	the	voltage	across	each

capacitor	 is	 the	 same	 (V).	The	charge	 stored	on	capacitor	1	 is	Q1	 and	 that	 on
capacitor	2	is	Q2.	These	are	given	by	C1	=	Q1/V	and	C2	=	Q2/V.	The	total	charge
stored	on	these	capacitors	connected	in	parallel	is	Q	=	Q1	+	Q2.	Thus,	Q	=	C1V	+
C2V.	If	the	total	capacitance	is	C,	then	C	=	Q	/	V.	Therefore,

or

Thus,	when	capacitors	are	connected	in	parallel,	 the	capacitances	of	the	individual	capacitors
add	 up.	 This	 is	 why	 the	 layers	 in	MLCs	 are	 arranged	 and	 printed	 with	 electrodes	 so	 that	 the
layers	 are	 connected	 in	 parallel	 (Figure	7.4).	Note	 that	 this	 is	 the	 opposite	 of	what	 happens	 in
resistors.	Resistances	add	up	when	 they	are	 in	a	series.	Capacitances	add	up	when	connected	 in
parallel.

FIGURE	7.5 Capacitors	connected	in	parallel.

2.	 When	connected	 in	a	series,	 the	 total	charge	on	 the	plates	of	each	capacitor	 is
the	same	(Q).	However,	 the	voltage	 across	 each	 capacitor	 is	 different	 (V1	 and
V2).	Thus,	we	can	write	C1	=	Q/V1	and	C2	=	Q/V2.	The	total	capacitance	is	given
by	C	=	Q/V.



or

or

or

Note	that	when	capacitors	are	connected	in	a	series,	the	total	capacitance	(C)	decreases	(Figure	7.6).

Example	7.2: Multilayer	Capacitor	Dielectrics

Billions	of	MLCs	are	made	every	year	using	barium	 titanate	 (BaTiO3)-based	dielectric	materials	 formulated	 into
temperature-stable	dielectrics	with	high	dielectric	constants.	Dielectric	layers	of	BaTiO3	formulations	are	connected
in	parallel	 in	an	MLC	because	 this	provides	 the	maximum	volumetric	efficiency,	 that	 is,	 the	maximum	capacitance
per	unit	volume.
1.	 Calculate	the	capacitance	of	a	parallel-plate	single-layer	capacitor	made	using	a

BaTiO3	formulation	of	k	=	2000.	Assume	d	=	3	mm	and	A	=	5	mm2.	What	is	the
volumetric	efficiency	of	this	capacitor?

2.	 Calculate	 the	 capacitance	 of	 an	 MLC	 comprised	 of	 60	 dielectric	 layers
connected	in	parallel	using	N	=	61	electrodes.	The	thickness	of	each	layer	is	50
μm.	 The	 cross-sectional	 area	 of	 this	 capacitor	 is	 also	 5	mm2,	 and	 k	=	 2000.
What	is	the	volumetric	efficiency	of	this	capacitor?

FIGURE	7.6 Capacitors	connected	in	a	series.

3.	 What	is	the	ratio	of	the	volumetric	efficiencies	for	multilayer	and	single-layer
capacitors?

Solution



1.	 From	Equation	7.13,

Thus,	 the	 capacitance	 of	 a	 single-layer	 capacitor	with	 a	 thickness	 of	 3	mm	 is	 2.95	 ×	 10−11	 F	 or
0.0295	nF.

The	volumetric	efficiency	of	this	single-layer	capacitor	=	(0.0295	nF)/(5	mm2	×	3	mm)

=	1.96	×	10−3	nF/mm3

2.	 In	the	MLC,	there	are	61	metal	electrodes	(i.e.,	N	=	61)	that	connect	(N	−	1)	=	60
dielectric	layers.

The	capacitance	of	one	layer	of	the	dielectric	in	the	MLC	is	given	by

Note	 that	 the	 overall	 dimensions	 of	 the	MLC	 and	 the	 single-layer	 capacitor	 are	 about	 the	 same
(overall	thickness	is	3	mm,	and	the	cross-sectional	area	is	5	mm2).
The	total	capacitance	=	(N	−	1)	×	Clayer	=	(60)	×	1.77	nF	=	106.2	nF.

The	volumetric	efficiency	of	the	MLC	=	(106.2)/(60	×	50	×	10−3	mm	×	5	mm2)	=	7.080	nF/mm3.

3.	 The	ratio	of	the	volumetric	efficiencies	(in	nF/mm3)	is

If	 we	 have	 two	 capacitors	 that	 occupy	 the	 same	 volume,	 the	 MLC	 provides	 significantly	 more
capacitance.	 This	 is	 very	 important	 because	 the	 goal	 is	 to	 minimize	 the	 size	 of	 the	 capacitors	 in
integrated	circuits	(ICs)	or	printed	circuit	boards.

Example	 7.3	 illustrates	 some	 real-world	 situations	 in	 which	 there	 is	 a	 decrease	 in	 the
capacitance	because	the	device	structure	can	transform	into	capacitors	in	a	series.

Example	7.3: High-K	Gate	Dielectrics:	HFO2	on	Si

IC	 fabrication	 technology	 uses	 silica	 (SiO2/SiOx)	 (k~4)	 as	 a	 gate	 dielectric.	 The	 formula	 SiOx	 indicates	 that	 the
stoichiometry	of	 the	compound	 is	not	exactly	known.	The	 thickness	of	 this	SiO2	gate	dielectric	 in	 state-of-the-art
transistors	is	~2	nm.	(a)	What	is	the	capacitance	per	unit	area	of	a	2-nm	film	made	using	SiO2?	Express	your	answer

in	fF/μm2	(1	femtofarad	[fF]	=	10−15	F).
At	 such	 small	 thicknesses,	 the	 dielectric	 layer	 is	 prone	 to	 charge	 leakage.	 The	 use	 of	 materials	 with	 higher

dielectric	constants	allows	a	relatively	thicker	gate	dielectric	(for	the	same	capacitance),	which	will	be	less	prone
to	 electrical	 breakdown.	Hafnium	 oxide	 (HfO2;	 k~25)	 is	 one	 example	 of	 such	 a	material.	 A	 10-nm	 thin	 film	 of



HfO2	 was	 deposited	 on	 Si	 using	 a	 low-temperature	 chemical	 vapor	 deposition	 (CVD)	 process.	 (b)	What	 is	 the
capacitance	of	this	HfO2	film	per	unit	area?	(c)	When	an	engineer	tested	an	HfO2	capacitor	structure,	the	thickness
of	 the	 film	 formed	 on	 the	 Si	 was	 found	 to	 be	 10	 nm.	 However,	 the	 capacitance	 per	 unit	 area	 was	 smaller	 than
expected.	Explain	why	this	is	possible.

Solution
1.	 The	capacitance	per	unit	area	of	a	2-nm	film	of	SiO2	is	given	by

Because	1	F	=	1015	fF	and	1	m2	=	1012	μm2,	1	F/m2	=	103	fF/μm2.

Thus,	the	capacitance	per	unit	area	of	a	4-nm	SiO2	film	is	17.7	fF/μm
2.

2.	 For	a	10-nm	HfO2	film	on	Si,	the	capacitance	per	unit	area	is

This	 is	 the	 capacitance	 per	 unit	 area	 if	 the	 film	 formed	 is	 from	 HfO2	 only.	 Thus,	 using	 a	 high-k
material	 allows	 us	 to	 apply	 a	 greater	 thickness,	 which	 means	 better	 protection	 against	 dielectric
breakdown	and	charge	leakage,	and	still	achieve	comparable	capacitance	per	unit	area.

3.	 Because	the	measured	capacitance	per	unit	area	for	the	HfO2-on-Si	structure	is
smaller,	 we	 expect	 that	 something	 must	 have	 caused	 the	 effective	 dielectric
constant	 of	 the	device	structure	 to	 become	 smaller.	One	 possibility	 is	 that	 the
HfO2	 reacted	with	 the	 Si	 and	 formed	 a	material	 or	 phase	 that	 had	 an	 overall
lower	dielectric	constant,	that	is,	the	film	was	not	pure	HfO2.	However,	because
a	 low-temperature	CVD	process	was	used,	 the	 formation	of	 a	different	phase,
although	 possible,	 is	 unlikely.	 A	 careful	 analysis	 of	 the	microstructure	 using
transmission	 electron	 microscopy	 (TEM)	 along	 with	 simultaneous	 nanoscale
chemical	analysis	can	resolve	this	dilemma.	When	this	analysis	was	performed,
it	 showed	 that	 Si	 had	 reacted	with	 oxygen	 (O2)	 during	 the	 CVD	 process	 and
formed	 a	 thin	 layer	 (~2	 nm)	 of	 SiO2	 at	 the	 interface	 between	 the	 Si	 and	 the
HfO2.	We	can	assume	the	thickness	of	the	HfO2	 to	be	(10	−	1.5)	=	8.5	nm.	We
now	 have	 a	 structure	 that	 has	 two	 dielectric	 layers	 forming	 two	 capacitors
connected	in	a	series	(Figure	7.7).

Similar	to	the	previous	calculation	in	part	(a)	of	this	example,	the	capacitance	per	unit	area	for	a	1.5-
nm	SiO2	film	is	23.6	fF/μm

2.	The	capacitance	of	the	8.5-nm	HfO2	film	is	26.03	fF/μm
2.	Because	these

capacitors	are	in	a	series	(Figure	7.7),	the	total	capacitance	per	unit	area	for	this	structure	is



FIGURE	7.7 HfO2	film	on	silicon,	with	a	 thin	 layer	of	SiO2/SiOx	 formed	at	 the	 interface,	 thus	creating
two	capacitors	in	series	and	reducing	the	total	capacitance	per	unit	area.

Note	that	we	are	dealing	with	capacitances	per	unit	area,	and	thus,	each	side	of	this	equation	is	divided
by	area	(A).	Therefore,	we	get

Thus,	the	new	total	capacitance	per	unit	area	(Ctotal/A)	=	12.37	fF/μm
2.

We	 can	 see	 that	 this	 value	 is	 lower	 than	 the	 value	 22.12	 fF/μm2,	 obtained	 when	 there	 is	 no
interfacial	 layer	of	SiO2	present.	Note	 that	 in	principle,	 it	may	seem	 that	 thinner	 layers	of	SiO2/SiOx
enhance	the	capacitance	per	unit	area;	however,	such	layers	are	prone	to	increased	leakage	of	currents
and	electrical	breakdown,	and	are	therefore	not	reliable.	We	can	use	strategies	to	prevent	the	lowering
of	capacitance	by	processing	alternative	gate	dielectric	oxide	films	so	that	a	SiO2	layer	does	not	form.
The	 Intel	 Corporation	 has	 developed	 such	 dielectrics	 using	 HfO2	 and	 zirconium	 oxides.	 Another
possibility	not	considered	in	this	example	is	that	the	actual	dielectric	constant	of	HfO2	may	be	lower
than	 25.	 The	 exact	 value	 of	 this	 apparent	 dielectric	 constant	 of	 HfO2	 can	 depend	 on	 the	 thin-film
microstructure.	Research	has	shown	that	HfO2	films	can	have	an	apparent	dielectric	constant	between
18	and	25.

7.3 DIELECTRIC	POLARIZATION

We	define	dielectric	polarization	(P)	as	the	magnitude	of	the	bound	charge	density	(σb).	The
application	 or	 presence	 of	 an	 electric	 field	 (the	 cause)	 leads	 to	 dielectric	 polarization	 (the
effect).	 The	 situation	 is	 very	 similar	 to	 that	 encountered	 while	 discussing	 the	 mechanical
properties	 of	 materials.	 The	 application	 of	 a	 stress	 (the	 cause)	 leads	 to	 development	 of	 a
strain	 (the	 effect).	 The	 stress	 and	 strain	 are	 related	 by	 Young’s	 modulus.	 In	 this	 case,	 the
electric	field	(E)	applied	and	the	polarization	(P)	created	are	related	by	the	dielectric	constant
(k).

Assume	 that	 the	 dielectric	 polarization	 is	 caused	 by	N	 number	 of	 small	 (atomic	 scale)
dipoles,	each	comprising	 two	charges	(+qd	and	−qd)	separated	by	a	distance	x	 (Figure	 7.2).
Here	(qd	×	x)	is	called	the	dipole	moment,	which	represents	the	polarization	of	an	individual
dipole.	The	dielectric	polarization	(P)	is	equal	to	the	total	dipole	moment	per	unit	volume	of



the	material.	This	 is	another	definition	of	dielectric	polarization.	The	mechanisms	by	which
such	dipoles	are	created	in	a	material	are	discussed	in	Section	7.5.

Assume	that	the	concentration	of	atoms	or	molecules	in	a	given	dielectric	material	is	N;	if
each	atom	or	molecule	is	polarized,	then	the	value	of	dielectric	polarization	is

As	explained	in	here	and	in	Figure	7.2,	x	is	the	distance	between	the	positive	charge	center
and	the	negative	charge	center.	If	σ	is	the	total	charge	density	for	a	capacitor,	then	the	other
portion	of	the	charge	density,	that	is,	(σ−σb),	remains	the	free	charge.	This	creates	a	dielectric
flux	density	(D0),	such	as	in	the	case	of	a	capacitor	filled	with	a	vacuum.	From	Gauss’s	law,

Thus,	 the	 total	dielectric	 flux	density	 (D)	 for	 a	 capacitor	 filled	with	 a	dielectric	material
originates	from	two	sources:	the	first	source	is	the	bound	charge	density	(σb)	associated	with
the	polarization	(P)	in	the	dielectric	material	and	the	other	is	the	free	charge	density	(σ−σb).

Therefore,

We	can	also	rewrite	the	dielectric	displacement	as	D	=	ε	×	E.	Therefore,	we	get

If	μ	is	the	average	dipole	moment	of	the	atomic	dipoles	created	in	a	dielectric	and	N	is	the
number	of	such	dipoles	per	unit	volume	(i.e.,	 the	concentration),	 then	we	can	also	write	 the
polarization	as	follows:

where	μ	is	the	dipole	moment.	Polarizability	 (α)	describes	the	ability	of	an	atom,	ion,	or
molecule	 to	 create	 an	 induced	dipole	moment	 in	 response	 to	 the	 applied	 electric	 field.	The
average	dipole	moment	(μ)	of	an	atom	can	be	written	as	the	product	of	the	polarizability	of	an
atom	(α)	and	the	local	electric	field	(E)	that	an	atom	within	the	material	experiences.

The	 SI	 units	 for	 dipole	 moment	 and	 electric	 field	 are	 C	 ·	 m	 and	 V/m,	 respectively.
Therefore,	 the	unit	of	polarizability	(α)	 is	C	·	V−1	 ·	m2	or	F	·	m2	 (from	Equation	7.1).	The
polarizability	is	often	expressed	as	volume	polarizability	(αvolume)	in	units	of	cm3	or	Å3:

If	 the	volume	polarizability	 is	 expressed	 in	Å3	 (as	 is	often	done	 in	 the	case	of	 atoms	or
ions),	we	use	the	following	equation:



The	factors	106	and	1030	are	used	in	these	equations	because	1	m3	=	106	cm3	and	1	m3	=
1030	Å3.

For	now,	let	us	assume	that,	the	electric	field,	an	atom	within	a	material	experiences	is	the
same	as	the	applied	field	(E).	From	Equations	7.24	and	7.25,	we	get

From	Equations	7.28	and	7.23,	we	get

We	can	rewrite	this	equation	as	shown	here:

Equation	7.30	is	important	because	it	links	the	dielectric	constant	(k	or	εr)	of	a	material	to
the	 polarizability	 of	 the	 atoms	 (α)	 from	which	 it	 is	made	 and	 also	 to	 the	 concentration	 of
dipoles	(N).

We	 also	 use	 another	 parameter	 called	 the	 dielectric	 susceptibility	 (χe)	 to	 describe	 the
relationship	between	polarization	(the	effect)	and	the	electric	field	(the	cause):

The	 subscript	 e	 in	 χe	 distinguishes	 the	 dielectric	 susceptibility	 from	 the	 magnetic
susceptibility	(χm),	which	 is	defined	 in	Chapter	9.	The	dielectric	susceptibility	 (χe)	describes
how	susceptible	or	polarizable	a	material	is—that	is,	how	easily	the	atoms	or	molecules	in	the
material	 are	 polarized	 by	 the	 presence	 of	 an	 electric	 field.	 Comparing	 Equations	 7.23	 and
7.31,

Also,	from	Equations	7.31	and	7.32,

Another	way	to	express	the	dielectric	susceptibility	is	as	follows:

The	 dielectric	 susceptibility	 (χe),	which	 is	 another	way	 to	 express	 the	 dielectric	 constant
(k),	depends	on	the	composition	of	the	material.	We	can	show	from	Equations	7.29	and	7.31
that

From	Equation	7.35,	we	can	see	that	the	dielectric	susceptibility	(χe)	of	the	vacuum	is	zero
or	the	dielectric	constant	(k)	is	1.	This	is	expected	because	there	are	no	atoms	or	molecules	in
a	vacuum,	so	N	=	0.	The	more	polarizable	the	atoms,	ions,	or	molecules	in	the	material	are,



the	 higher	 the	 bound	 charge	 density	 is,	 and	 the	 higher	 the	 dielectric	 susceptibility	 (χe)	 or
dielectric	 constant	 (k)	 is.	 In	 Section	 7.5,	 we	 will	 see	 that	 several	 different	 polarization
mechanisms	exist	for	a	material	(Figure	7.8).

FIGURE	 7.8 Schematic	 representation	 of	 polarization	mechanisms:	 (a)	 electronic,	 (b)	 atomic	 or	 ionic,	 (c)	 high-frequency
oscillatory	dipoles,	 (d)	 low-frequency	cation	dipole,	 (e)	 interfacial	space-charge	polarization,	and	(f)	 interfacial	polarization.
(From	Hench,	L.L.	and	West	J.K.,	Principles	of	Electronic	Ceramics,	Wiley,	New	York,	1990.	With	permission.)

The	 dielectric	 susceptibility	 values	 (χe)	 of	 silicon,	 Al2O3,	 and	 polyethylene	 are
approximately	 10,	 8.9,	 and	 1.2,	 respectively,	 because	 the	 dielectric	 constants	 are
approximately	11,	9.9,	and	2.2,	respectively	(Table	7.1).



7.4 LOCAL	ELECTRIC	FIELD	(ELOCAL)

When	we	examine	the	effect	of	an	externally	applied	electric	field	(E)	on	a	dielectric	material,
we	need	to	account	for	the	electric	field	that	exists	inside	a	polarized	material.	For	a	solid	or
liquid	exposed	to	an	electric	field	(E),	the	actual	field	experienced	by	the	atoms,	molecules,	or
ions	inside	the	material	is	different	from	the	external	electric	field	(E)	and	is	referred	to	as	the
internal	electric	field	or	local	electric	field	(Elocal).	In	general,	the	greater	the	polar	nature	of
the	material	(or	the	larger	the	dipole	moment),	the	higher	the	strength	of	the	dipoles	induced,
from	 the	 external	 electric	 field	 (E)	 and	 the	 larger	 the	 local	 electric	 field.	 Furthermore,	 the
magnitude	of	the	electric	field	experienced	by	the	atoms,	ions,	or	molecules	inside	a	material
depends	on	the	arrangement	of	the	dielectric	dipoles.

For	 a	 cubic-structured	 isotropic	material,	 a	 liquid,	 or	 an	 amorphous	material,	 the	 local
electric	field	is	given	by

Equation	7.36	 is	known	as	 the	 local	 field	approximation	 and	 shows	 that	 the	 internal	 field
causing	the	charge	storage	is	determined	by	the	applied	electric	field	and	polarization.	Thus,
we	can	rewrite	Equation	7.28	by	substituting	Elocal	for	E	as

P	=	(N	×	α	×	Elocal)

or

Note	that	E	is	the	applied	electric	field.
Therefore,

Eliminating	E,	dividing	by	ε0,	and	rewriting	ε/ε0	=	εr,	we	get

Equation	7.38	is	also	known	as	the	Clausius–Mossotti	equation.	It	describes	the	relationship
between	 the	 dielectric	 constant	 (k	 or	 εr),	 a	macroscopic	 property,	 and	 the	 concentration	 of
polarizable	species	(N)	and	their	polarizability	(α),	which	are	microscopic	properties.	We	have
used	 the	 local	 field	 approximation	 (Equation	 7.36),	 which	 is	 valid	 for	 either	 amorphous
materials	 or	 cubic-structured	 materials.	 Strictly	 speaking,	 the	 Clausius–Mossotti	 equation
should	be	used	only	 for	 those	 types	of	materials	where	 the	dielectric	dipoles	are	generated



under	the	electric	field.	In	some	materials,	molecules	have	a	permanent	dipole	moment	(such
as	water,	ferroelectrics)	due	to	their	unique	non-cubic	crystal	structure.	In	these	materials,	the
role	 of	 the	 electric	 field	 is	 to	 align	 the	 permanent	 dipoles.	 In	 the	 case	 of	 ferroelectrics,
spontaneous	polarization	 is	developed	because	of	 the	 rearrangement	of	 ions	 (Section	 7.11).
For	 such	 polar	 materials	 with	 permanent	 dipoles,	 the	 internal	 electric	 field	 within	 the
ferroelectrics	 is	 not	 given	 by	 Equation	 7.37.	 As	 a	 result,	 the	 Clausius–Mossotti	 equation
(Equation	7.38)	cannot	be	used	for	polar	materials	with	permanent	dipoles.

In	 Equation	 7.38,	 N	 is	 the	 concentration	 of	 dipoles	 per	 unit	 volume	 (the	 number	 of
molecules/m3).	If	we	assume	that	each	molecule	or	atom	becomes	a	dipole,	then	N	is	related
to	the	NAvogadro	(6.023	×	1023	molecules/mol),	density	(ρ	in	kg/m3),	and	molecular	weight	(M
in	kg/mol)	as	follows:

Substituting	 for	 N	 in	 Equation	 7.38,	 we	 get	 another	 form	 of	 the	 Clausius–Mossotti
equation:

We	can	verify	that	this	equation	is	dimensionally	balanced.	The	units	are	α	in	F	·	m2,	ε0	in
F/m,	and	Avogadro’s	number	in	number	per	mole.	Thus,	the	unit	on	the	right-hand	side	of	this
expression	is	m3/mol.	The	unit	on	the	left-hand	side	is	also	m3/mol.

We	can	rewrite	Equation	7.40	to	get	the	polarization	per	mole	or	molar	polarization	 (Pm),
defined	as	follows:

The	units	for	molar	polarization	(Pm)	are	m3/mol	and	cm3/mol.
As	we	will	 see	 in	 Section	 7.5	 and	 Figure	 7.8,	 there	 are	 five	 polarization	mechanisms—

electronic,	ionic,	dipolar,	interfacial,	and	spontaneous	(ferroelectric).	The	total	polarizability
due	 to	 ionic	 and	 electronic	 polarization	 is	 additive	 because	 these	 polarizations	 occur
throughout	the	volume	of	a	material.	Thus,	we	can	write	the	total	polarizability	as

where,	αe	and	αionic	are	the	electronic	and	ionic	polarizabilities	of	the	atoms,	respectively.
Electronic	and	ionic	polarization	are	defined	in	Sections	7.6	and	7.7,	respectively.
We	can	rewrite	the	Clausius–Mossotti	equation	(Equation	7.38)	to	separate	out	the	ionic	and

electronic	polarization	effects	as	follows:

In	 Equation	 7.43,	 we	 cannot	 incorporate	 the	 effects	 of	 dipolar	 (Section	 7.9),	 interfacial
(Section	7.10),	and	spontaneous	or	ferroelectric	polarization	(Section	7.11)	because	the	effects



that	 these	polarizations	have	on	the	 local	electric	field	(Elocal)	are	complex.	They	cannot	be
described	by	Equation	7.36;	thus,	the	Clausius–Mossotti	equation	generally	cannot	be	used	for
polar	materials	such	as	water	or	ferroelectric	compositions	of	materials	(e.g.,	the	tetragonal
form	of	BaTiO3).	An	 exception	 to	 this	 is	 a	 situation	where	 the	Clausius–Mossotti	 equation
may	be	used	for	polar	materials	if	the	electrical	frequency	(f)	of	the	applied	field	is	too	high
for	these	polarization	mechanisms	to	exist.

7.5 POLARIZATION	MECHANISMS—OVERVIEW

We	will	now	examine	the	different	ways	in	which	atoms,	ions,	and	molecules	in	a	material	can
be	polarized	by	an	electric	field	(Table	7.2	and	Figure	7.8).

These	polarization	mechanisms	are	shown	schematically	in	Figure	7.8	and	discussed	in	the
following	sections.

7.6 ELECTRONIC	OR	OPTICAL	POLARIZATION

7.6.1 ELECTRONIC	POLARIZATION	OF	ATOMS

All	 materials	 contain	 atoms	 (in	 the	 form	 of	 neutral	 atoms,	 ions,	 or	 molecules).	 When
subjected	to	an	electric	field,	each	atom	is	polarized,	in	that	the	center	of	the	electronic	charge
shows	a	slight	shift	toward	the	positively	charged	electrode.

This	very	slight	elastic	displacement	of	the	electronic	cloud	(a	few	parts	per	million	of	the
atomic	 radius),	 shown	as	δ	or	x,	 occurs	 very	 rapidly	with	 reference	 to	 the	 nucleus	 (~10−14
seconds;	 Figure	 7.9).	 This	 means	 that,	 even	 if	 the	 electric	 field	 changes	 its	 polarity	 ~1014
times	 a	 second,	 the	 electronic	polarization	process	 can	 still	 follow	 this	 rapid	 change	 in	 the
direction	 of	 the	 electric	 field.	 The	 electric	 field	 associated	 with	 visible	 light	 (which	 is	 an
electromagnetic	 wave)	 oscillates	 with	 a	 frequency	 of	 ~1014	 Hz.	 This	 field	 interacts	 with
dielectric	materials	and	causes	electronic	polarization.	Thus,	electronic	polarization	is	related
to	 the	 optical	 properties	 of	 materials,	 such	 as	 the	 refractive	 index.	 This	 is	 why	 electronic
polarization	 is	 also	 known	 as	 optical	 polarization.	 Readers	 will	 study	 how	 the	 electronic
polarization	controls	the	optical	properties	of	materials	in	Section	7.12	and	Chapter	8.



TABLE	7.2
Summary	of	Polarization	Mechanisms	in	Dielectrics

FIGURE	7.9 Displacement	 of	 the	 electronic	 cloud	 in	 an	 argon	 atom.	 (From	Kao,	K.C.,	Dielectric	Phenomena	 in	 Solids,
Elsevier-Academic	Press,	London,	2004.	With	permission.)



Because	 the	electrons	of	 the	outermost	shell	are	 the	ones	most	susceptible	 to	 the	electric
field	applied,	the	electronic	polarizability	(αe)	of	an	atom	or	an	ion	depends	primarily	on	its
size	and	the	number	of	electrons	in	its	outermost	shell.	The	larger	the	atom	or	ion,	the	farther
the	electrons	are	from	the	nucleus.	Therefore,	the	electron	clouds	surrounding	larger	atoms
or	ions	are	more	susceptible	to	electric	fields	and	are	more	polarizable.	Thus,	larger	atoms
or	 ions	 have	 a	 higher	 electronic	 polarizability.	 The	 extent	 to	 which	 an	 atom	 or	 an	 ion	 is
polarized	via	this	mechanism	is	measured	by	the	electronic	polarizability	(αe).

Consider	the	nucleus	of	a	monoatomic	element	(such	as	argon	[Ar]	with	radius	R).	When
an	electric	field	is	applied,	the	electronic	cloud	is	displaced	by	a	distance	δ	with	respect	to	the
nucleus	(Figure	7.9).

A	dipole	 is	 created	between	 the	 charge	q1	 of	 the	nucleus	 (Zq;	where	Z	 is	 the	 number	 of
electrons	surrounding	 the	nucleus)	and	 the	charge	q2,	which	 is	 the	part	of	 the	charge	 in	 the
electron	cloud	that	no	longer	surrounds	the	nucleus	because	it	is	displaced.	This	charge	q2	is
contained	in	a	sphere	of	radius	δ	and	is	given	by

Thus,	 the	Coulombic	 force	 of	 attraction	 between	 the	 nuclear	 charge	q1	 and	 the	 negative
charge	q2,	not	shielded	by	the	nucleus	and	separated	by	distance	δ,	is	given	by	Coulomb’s	law:

We	can	rewrite	this	as

The	magnitude	of	this	attractive	Coulombic	force	is	balanced	by	the	force	(Fd)	that	causes
the	displacement.

Thus,	 equating	 the	magnitude	 of	 the	 force	 that	 causes	 the	 displacement	 of	 the	 electronic
cloud	and	the	Coulombic	restoring	force,	we	get

Solving	for	displacement	(δ),	we	get

The	dipole	moment	(μ)	caused	by	the	electronic	polarization	is	given	by



Substituting	for	δ	from	Equation	7.49,

μ	=	4πε0	R3E

Recalling	Equation	7.25,	we	can	write	the	dipole	moment	(μ)	as

where	αe	 is	 the	electronic	polarizability	of	an	atom	or	an	 ion.	Note	 that	 the	 term	electronic
polarizability	does	not	describe	the	polarizability	of	an	electron.	It	describes	the	polarizability
of	an	atom	or	an	ion.

Comparing	Equations	7.51	and	7.54,	we	get

In	Equation	7.52,	Va	is	the	volume	of	the	atom	or	ion	being	polarized.	Because	the	unit	of
permittivity	is	F/m,	and	the	unit	of	volume	is	m3,	the	unit	of	electronic	polarizability	(αe)	is	F
·	m2.

The	electronic	polarizability	values	 for	atoms	of	different	elements	are	shown	 in	Figure
7.10.	These	values	are	the	volume	polarizabilities.	To	convert	them	into	SI	units,	they	should
be	multiplied	by	4πε0	×	10−30	(Equation	7.27).

Example	7.4	will	give	us	an	idea	of	the	magnitudes	of	the	electronic	polarizability	of	atoms
and	the	electron-cloud	displacement	distances.

Example	7.4: Electronic	Polarizability	of	the	Ar	Atom

The	atomic	radius	of	an	Ar	atom	is	1.15	Å.

1.	 What	is	the	electronic	polarizability	(αe)	of	an	Ar	atom	in	units	of	F	·	m2?
2.	 What	is	the	volume	polarizability	of	an	Ar	atom	in	Å3?
3.	 What	is	the	volume	polarizability	of	an	Ar	atom	in	cm3?
4.	 If	an	Ar	atom	experiences	a	local	electric	field	(Elocal)	of	106	V/m,	what	is	the

displacement	(δ)	when	the	atom	experiences	electronic	polarization?
5.	 Calculate	the	ratio	of	the	radius	of	atom	(R)	 to	 the	displacement	(δ)	caused	by

electronic	polarization.
Solution
1.	 We	calculate	the	electronic	polarizability	(αe)	of	Ar	atoms	from	Equation	7.52

as	follows:

αe	=	4πε0R3	=	(4	×	π	×	8.85	×	10−12	F/m)(1.15	×	10−10	m)3	=	1.69	×	10−40	F	·	m2

2.	 We	use	Equation	7.27	to	calculate	the	polarizability	volume	in	Å3



3.	 For	calculating	the	volume	polarizability,	we	use	Equation	7.26



FIGURE	7.10 Volume	electronic	polarizability	of	atoms	of	different	elements.	Note:	Multiply	the	y-axis
value	by	4πε0	×	10

−30	to	get	the	polarizability	in	F	·	m2.	(From	Raju,	G.G.,	Dielectrics	in	Electric	Fields,
CRC	Press,	Boca	Raton,	FL,	2003.	With	permission.)

This	 value	 is	 similar	 to	 the	 value	 of	 1.642	×	 10−24	cm3,	 reported	 in	 literature	 (Vidal	 et	 al.
1984).	We	use	Equation	7.49	to	calculate	the	displacement	(δ):



4.	 The	displacement	 (δ)	 is	1.32	×	10−6	Å.	The	 radius	R	 =	 1.15	Å;	 and	hence,	 the
ratio	of	R/δ	 is	~870284.	Thus,	 the	displacement	 (δ)	 (Figure	7.9)	 is	 very	 small
compared	to	the	radius	of	the	atoms.

We	can	use	Bohr ’s	model	to	calculate	the	electronic	polarizability	(αe)	of	an	atom.	Using
this	approach,	the	electronic	polarizability	under	a	static	electric	field	is	given	by	the	equation

where	Z	 is	 the	number	of	electrons	orbiting	the	nucleus,	q	 is	 the	electronic	charge,	m	 is	 the
electron	mass,	 and	ω0	 is	 the	 natural	 oscillation	 frequency	 of	 the	 center	 of	 the	mass	 of	 the
electron	cloud	around	the	nucleus.	The	static	electronic	polarizability	represents	the	value	of
electronic	polarizability	when	the	electric	field	causing	the	polarization	is	not	time-dependent.

The	 electronic	 polarizability	 (αe)	 depends	 on	 the	 frequency	 of	 the	 electric	 field	 (ω)	 as
follows:

where	 j	 is	 the	 imaginary	 number	 and	 β	 is	 a	 constant	 that	 is	 related	 to	 the	 damping	 force
attempting	to	pull	the	electron	cloud	back	toward	the	nucleus.	This	equation	is	derived	using	a
classical	 mechanics	 approach.	 A	 quantum	 mechanics–based	 approach	 yields	 a	 different
equation,	but	the	trend	in	the	change	in	electronic	polarizability	as	a	function	of	frequency	is
similar.	Example	7.5	illustrates	a	calculation	of	the	value	of	static	electronic	polarizability.

Example	7.5: Static	Electronic	Polarizability	of	Hydrogen	Atoms

If	the	natural	frequency	of	oscillation	(ω0)	of	the	electron	mass	around	the	nucleus	in	a	hydrogen	(H)	atom	is	4.5	×

1016	rad/s,	what	is	the	static	electronic	polarizability	(αe)	of	the	H	atom	(R	=	1.2	Å)	calculated	by	Bohr’s	model
and	 the	 classical	 approach?	 How	 do	 these	 values	 compare	 with	 the	 polarizability	 of	 the	 Ar	 atom	 calculated
previously	in	Example	7.4?

Solution
For	Bohr’s	model,	using	Equation	7.54,

The	value	can	also	be	calculated	using	the	classical	approach	(Equation	7.52),	as	shown	here:

αe	=	4πε0R3	=	(4	×	π	×	8.85	×	10−12	F/m)(1.20	×	10−10	m)3	=	1.92	10−40	F	·	m2



The	value	using	the	classical	approach	is	larger	than	that	predicted	from	Bohr’s	model.

7.6.2 ELECTRONIC	POLARIZABILITY	OF	IONS	AND	MOLECULES

Ions	 and	 molecules	 have	 electronic	 polarizability	 similar	 to	 neutral	 atoms.	 The	 electronic
polarizability	of	an	ion	is	nearly	equal	to	that	of	an	atom,	with	the	same	number	of	electrons.
Thus,	the	electronic	polarizability	of	sodium	ions	(Na+)	(0.2	×	10−40	F	·	m2)	is	comparable	to
the	electronic	polarizability	of	neon	(Ne)	atoms.	From	Equation	7.52,	we	can	expect	the	larger
atoms	or	ions	to	have	a	larger	electronic	polarizability.	Because	cations	typically	are	smaller
than	 anions,	 the	 electronic	 polarizability	 of	 anions	 generally	 is	 larger	 than	 that	 of	 cations.
Similarly,	larger	ions	such	as	lead	(Pb2+)	have	a	larger	electronic	polarizability.	Many	real-
world	technologies	make	use	of	these	effects,	such	as	in	the	development	of	lead	crystal	and
optical	fibers.

Electronic	polarization	is	also	linked	to	optical	properties	such	as	the	index	refractive	(see
Section	7.12).	Molecules	are	composed	of	several	atoms	and	show	electronic	polarizability.	In
general,	the	polarizability	of	molecules	is	larger	because	they	contain	more	electrons.

7.7 IONIC,	ATOMIC,	OR	VIBRATIONAL	POLARIZATION

Many	ceramic	dielectrics	 exhibit	mixed	 ionic	 and	 covalent	bonding.	 In	 ceramics	with	 ionic
bonds,	 each	 ion	 undergoes	 electronic	 polarization.	 In	 addition	 to	 this,	 ionic	 solids	 exhibit
ionic	 polarization,	 also	 known	 as	 atomic	 polarization	 or	 vibrational	 polarization.	 In	 this
mechanism	of	polarization,	the	ions	themselves	are	displaced	in	response	to	the	electric	field
experienced	by	the	solid,	creating	a	net	dipole	moment	per	ion	(pav).	Consider	pairs	of	ions	in
an	ionic	solid	such	as	sodium	chloride	(NaCl;	Figure	7.11a).	Assume	that	these	ions	have	an
equilibrium	separation	distance	of	a.	This	is	the	average	separation	distance	between	an	anion
and	 a	 cation.	 Ions	 in	 any	 material	 are	 not	 stationary.	 They	 vibrate	 around	 their	 mean
equilibrium	positions;	these	vibrations	of	ions	or	atoms	are	known	as	phonons.

When	 an	 electric	 field	 (E)	 is	 applied	 (Figure	 7.11b),	 the	 electronic	 polarization	 of	 both
cations	and	anions	is	established	almost	instantaneously	(in	~10−14	seconds).	This	effect	(the
distortion	of	 the	electronic	clouds	for	both	anions	and	cations)	 is	not	 shown	in	Figure	7.11.
Since	anions	are	bigger	 than	cations	because	of	 the	extra	electrons	present,	anions	typically
show	higher	electronic	polarizability	than	cations.



FIGURE	 7.11 Illustration	 of	 ionic	 polarization:	 (a)	 no	 electric	 field;	 (b)	 electric	 field	 as	 shown;	 and	 (c)	 electric	 field
direction	reversed.

In	 addition	 to	 this	 electronic	 polarization,	 a	 positively	 charged	 cation	moves	 toward	 the
negative	 end	 of	 the	 electric	 field.	 Similarly,	 anions	move	 closer	 to	 the	 positive	 end	 of	 the
electric	field.	Figure	7.11b	shows	the	displacements	of	ions;	cations	1	and	3	move	to	the	right,
that	is,	toward	the	negative	end	of	the	electric	field.	Anions	2	and	4	are	displaced	toward	the
positive	end	of	the	electric	field.	This	means	that	the	separation	distance	(Δx)	between	cation	1
and	anion	2	is	now	reduced,	compared	to	their	separation	(a)	without	 the	electric	 field.	The
separation	Δx	between	cation	3	and	anion	2	 is	now	 larger	 than	 their	equilibrium	separation
distance	(a).	The	extent	to	which	these	ions	are	displaced	also	depends	on	the	magnitude	of	the
restoring	forces	imposed	by	other	neighboring	ions.	For	example,	as	cation	3	moves	toward
anion	4	(Figure	7.11b),	anion	2	tries	to	pull	cation	3	back,	and	the	cation	to	the	right	of	anion
4	(not	shown)	repels	it.

Such	 asymmetric	 displacements	 of	 ions	 in	 response	 to	 the	 presence	 of	 an	 electric	 field
create	 a	dipole	moment;	 this	 effect	 is	 known	as	 ionic	polarization.	The	magnitude	of	 ionic
displacements	 encountered	 in	 ionic	 polarization	 is	 a	 fraction	 of	 an	 angstrom	 (Å).	 Because
ions	 have	 a	 larger	 inertia	 than	 electrons,	 these	movements	 are	 a	 bit	 sluggish,	 occurring	 in
about	10−13	 seconds.	When	 the	 polarity	 of	 the	 electric	 field	 is	 reversed	 (Figure	 7.11c),	 the
directions	of	displacement	are	also	reversed.	If	we	have	an	alternating	current	(AC)	electric



field,	 then	 the	 ions	 move	 back	 and	 forth	 as	 long	 as	 the	 electric	 field	 does	 not	 switch	 too
rapidly,	as	shown	in	Figures	7.11b	and	c.	If	the	frequency	(f)	of	the	switching	field	is	greater
than	~1013	Hz	(that	is,	if	the	field	switches	in	less	than	10−13	seconds),	the	ions	cannot	follow
the	changes	in	the	electric	field	direction.	In	other	words,	the	ionic	polarization	mechanism	is
seen	in	ionic	solids	for	frequencies	up	to	~1013	Hz	(Table	7.2).	If	the	frequency	is	greater	than
~1013	Hz,	this	polarization	mechanism	drops	out	and	does	not	contribute	to	the	total	dielectric
polarization	(P)	induced	in	the	dielectric.

Under	static	electric	fields,	the	magnitude	of	ionic	polarizability	(αi)	is	given	by

where	Z	is	the	valence	of	the	ion	(not	the	number	of	electrons	surrounding	the	nucleus,	which
Z	represents	in	electronic	polarization	equations),	q	is	the	electronic	charge,	Mr	is	the	reduced
mass	of	the	ion,	and	ω0	is	the	natural	frequency	of	oscillation	for	a	given	ion.

For	AC	fields	with	a	frequency	of	ω	=	2πf,	where	 f	 is	 the	electrical	 frequency	 in	Hz,	 the
magnitude	of	the	ionic	polarizability	(αi)	is	frequency-dependent	and	is	given	by

where	ω	is	the	frequency	of	the	electric	field	(in	rad/s),	j	is	the	imaginary	number,	and	β	is	a
coefficient	 related	 to	 the	 damping	 force	 that	 tries	 to	 bring	 the	 displaced	 ion	 back	 to	 its
original	position.

The	 details	 of	 the	 treatments	 for	 deriving	 these	 equations	 are	 beyond	 the	 scope	 of	 this
book.	 However,	 it	 is	 important	 to	 recognize	 that	 the	 dielectric	 polarization	 mechanism	 is
effective	only	up	to	a	certain	frequency	(~1013	Hz).

In	general,	the	magnitude	of	ionic	polarizability	(αi)	is	about	ten	or	more	times	larger	than
the	 electronic	 polarizability	 (αe).	 This	 is	why	most	 solids	with	 considerable	 ionic	 bonding
character	exhibit	much	higher	dielectric	constants	 (Table	7.1).	Also,	note	 that	 in	 addition	 to
ionic	 polarization,	 each	 ion	 undergoes	electronic	 polarization.	Thus,	 the	 dielectric	 constant
(k)	 of	 ionic	 solids	 results	 from	 both	 electronic	 and	 ionic	 polarizations.	 However,	 the
contributions	from	ionic	polarization	tend	to	be	dominant,	especially	at	lower	frequencies.

If	μav	is	the	average	dipole	moment	induced	by	the	ionic	polarization	per	ion,	then	we	can
write	this	dipole	moment	as	follows:

μi	=	αi	×	Elocal

where	Elocal	is	the	electric	field	experienced	by	the	ion.	As	mentioned	in	Section	7.4,	this	is	the
local	 electric	 field	 (Elocal),	 and	 it	 is	 different	 from	 the	 applied	 electric	 field	 (E).	 The
polarization	 (P)	 induced	 in	 an	 ionic	 solid	 with	 Ni	 ions	 per	 unit	 volume	 is	 given	 by	 the
following	equation:



Recall	from	the	Clausius–Mossotti	equation	(Equation	7.43)	 that	 the	dielectric	constant	 (k
or	εr)	is	linked	to	the	different	polarizabilities	of	ions.	For	an	ionic	solid	with	no	permanent
dipoles,	 we	 have	 contributions	 from	 both	 ionic	 and	 electronic	 polarizations.	 Note	 that	 this
equation	applies	only	to	amorphous	or	cubic	structures	and	to	nonpolar	materials.

In	 Section	 7.8,	 we	 will	 discuss	 an	 approach	 that	 is	 useful	 in	 predicting	 the	 dielectric
constants	 of	 nonpolar	 materials	 from	 the	 values	 of	 the	 total	 (i.e.,	 electronic	 and	 ionic)
polarizability	of	ions.

7.8 SHANNON’S	POLARIZABILITY	APPROACH	FOR	PREDICTING	DIELECTRIC
CONSTANTS

7.8.1 OUTLINE	OF	THE	APPROACH

Shannon	measured	the	dielectric	constants	of	several	materials	and	back-calculated	their	ionic
polarizabilities	 (Shannon	 1993).	 The	 frequency	 range	 for	 the	 dielectric-constant
measurements	 was	 1	 kHz–10	 MHz.	 Thus,	 both	 the	 electronic	 and	 ionic	 polarization
mechanisms	contributed	to	the	dielectric	constant	measured.

Shannon	used	experimentally	determined	values	of	dielectric	constants	to	first	estimate	the
polarizability	of	ions	or	simple	compounds.	Then,	he	used	these	values	to	estimate	the	 total
dielectric	polarizability	 	 of	 other	 compounds	 through	 the	 additive	 nature	 of	 ionic	 and
electronic	polarizabilities.	This	calculation	requires	knowledge	of	the	molecular	weight	and
unit	cell	volume	(i.e.,	the	theoretical	densities)	of	the	compound	whose	dielectric	constant	is	to
be	estimated.	For	example,	one	can	measure	the	dielectric	constants	of	fully	dense	samples	of
magnesium	oxide	(MgO)	and	Al2O3	and	estimate	the	polarizabilities	of	Al3+,	Mg2+,	and	O2−

ions.	We	can	use	these	polarizability	values	 to	calculate	 the	 total	dielectric	polarizability	
and,	 hence,	 the	 dielectric	 constant	 of	 another	 compound	 such	 as	 magnesium	 aluminate
(MgAl2O4).

The	total	dielectric	polarizability	of	MgAl2O4	can	be	expressed	as	follows:

or

Following	this,	we	can	utilize	the	value	of	total	polarizability	for	MgAl2O4	to	estimate	its
dielectric	constant	by	using	the	following	form	of	the	Clausius–Mossotti	equation:

where	Vm	 is	 the	molar	 volume	of	 the	 compound	whose	dielectric	 constant,	 or	 ,	 is	 being
estimated.

Shannon	also	used	the	following	modified	forms	of	the	Clausius–Mossotti	equation:



In	Equations	7.60,	7.61	and	7.62,	 	is	the	total	dielectric	polarizability	of	a	material	and	is
commonly	expressed	as	Å3.

7.8.2 LIMITATIONS	OF	SHANNON’S	APPROACH
Shannon’s	approach	for	predicting	the	dielectric	constant	is	useful,	but	it	has	some	limitations.
For	many	compounds,	the	calculated	values	of	dielectric	constants	using	Shannon’s	approach
are	very	different	 from	the	measured	values.	The	polarizability	of	 the	oxygen	ion	(O2−),	as
estimated	 by	 Shannon	 (2.01	Å3;	 Figure	 7.12),	 is	 lower	 than	 that	 used	 by	 other	 researchers
(2.37	Å3).	 This	 leads	 to	 the	 prediction	 of	 lower	 dielectric	 constants	 for	 some	 oxides,	 for
example,	Al2O3.	 In	many	other	materials	exhibiting	ferroelectric	and	piezoelectric	behavior
or	 for	 materials	 containing	 compressed	 or	 rattling	 ions,	 mobile	 ions,	 and	 impurities,	 the
calculated	and	measured	values	of	the	dielectric	constants	do	not	match	well.	This	can	be	due
to	the	ionic	or	electronic	conductivity	of	the	material,	the	presence	of	interfacial	polarization,
the	 presence	 of	 polar	 molecules	 such	 as	 water	 (H2O)	 or	 carbon	 dioxide	 (CO2),	 and	 the
presence	of	other	dipolar	 impurities.	Thus,	Shannon’s	approach	cannot	be	used	 to	calculate
the	dielectric	constants	of	ferroelectric	materials	(Section	7.11).

Despite	 these	 limitations,	 Shannon’s	 approach	 serves	 as	 a	 powerful	 guide	 for	 the
experimental	 development	 of	 new	 formulations	 of	materials	with	 high	 dielectric	 constants.
The	use	of	Shannon’s	approach	is	illustrated	in	Examples	7.6	and	7.7.

Example	7.6: Dielectric	Constant	of	Li2SIO3	from	Ion	Polarizabilities

Use	the	ion	polarizabilities	in	Figure	7.12	to	estimate	the	dielectric	constant	of	lithium	silicate	(Li2SiO3).	The	molar

volume	 (Vm)	 of	 Li2SiO3	 is	 59.01	 Å
3.	 The	 experimental	 value	 of	 the	 dielectric	 constant	 (εr,exp)	 for	 Li2SiO3

between	 1	 kHz	 and	 10	MHz	 is	 6.7.	How	does	 the	 calculated	 value	 of	 the	 dielectric	 constant	 compare	with	 the
value	estimated	using	Shannon’s	approach?



FIGURE	7.12 Polarizabilities	 of	 ions	 expressed	 in	Å3.	Note:	 The	 frequency	 range	 of	 1	 kHz	 to	 10	MHz	means	 that	 the
polarizability	values	include	both	electronic	and	ionic	components.	(From	Shannon,	R.D.,	J.	Appl.	Phys.,	73,	348–366,	1993.
With	permission.)

Solution

From	 Figure	 7.12,	 the	 ionic	 polarizability	 of	O2−	 ions	 is	 2.01	Å3.	 The	 ionic	 polarizabilities	 of	 lithium	 (Li+)	 and
silicon	(Si4+)	ions	are	1.20	Å3	and	0.87	Å3,	respectively.	Thus,	the	dielectric	polarizability	 	of	Li2SiO3	is

The	molar	volume	of	Li2SiO3	 is	Vm	=	59.01	Å
3.	Therefore,	 using	Equation	7.61,	 the	 calculated	 dielectric	 constant

(εr,cal)	of	Li2SiO3	is

This	compares	well	with	the	value	εr,exp	=	6.70.	Note	that,	for	many	compounds,	the	calculated	and	measured
values	do	not	match	very	well,	 for	 the	reasons	mentioned	in	Section	7.8.2.	Furthermore,	 if	 the	 temperature	 is	high
and	 the	 frequency	 is	 low,	 interfacial	 polarization	 effects	 (see	Section	7.10)	may	 also	 develop	 in	Li2SiO3.	Under
such	conditions,	the	experimentally	observed	and	calculated	dielectric	constants	do	not	match	well.

Example	7.7: Dielectric	Constant	of	MgAl2O4	Using	Shannon’s	Approach

The	dielectric	constant	of	MgO	is	9.83,	and	its	molar	volume	(Vm)	is	18.69	Å
3.	The	dielectric	constant	of	Al2O3	is

estimated	to	be	10.126,	and	its	molar	volume	(Vm)	is	42.45	Å
3.	What	is	the	dielectric	constant	of	MgAl2O4?	The

molar	volume	(Vm)	of	MgAl2O4	is	66.00	Å
3.

Solution
We	 first	 calculate	 the	 total	 dielectric	 polarizability	 of	 MgO	 from	 its	 dielectric	 constant	 and	 volume	 using	 the
modified	form	of	the	Clausius–Mossotti	equation	(Equation	7.62)	that	Shannon	used.



Similarly,	we	calculate	the	polarizability	of	Al2O3	from	its	dielectric	constant	and	volume	using	Equation	7.62:

From	 these	 values	 of	 polarizabilities,	 we	 estimate	 the	 polarizability	 of	 MgAl2O4	 using	 the	 additivity	 rule
developed	by	Shannon.

Now,	we	have	estimated	the	total	dielectric	polarizability	of	MgAl2O4,	and	we	know	its	molar	volume	(Vm	=

66	Å3);	from	these,	we	calculate	the	dielectric	constant	using	Equation	7.61.

Shannon	carefully	measured	the	dielectric	constant	of	this	material	and	reported	the	value	to	be	8.176.	Thus,	the
value	we	 estimated	 does	 not	 exactly	match	 the	 experimentally	 determined	 value;	 however,	 it	 is	 relatively	 close
(within	a	few	percent).

7.9 DIPOLAR	OR	ORIENTATIONAL	POLARIZATION

Molecules	 known	 as	 polar	 molecules	 have	 a	 permanent	 dipole	 moment.	 An	 example	 of	 a
well-known	polar	material	 is	H2O	(water).	The	polar	molecules	begin	 to	experience	 torque
when	exposed	to	an	external	electric	field	and	orient	themselves	along	the	electric	field.	This,
in	 turn,	 causes	 an	 increase	 in	 the	 bound	 charge	 density	 (σb)	 and	 leads	 to	 an	 increase	 in
polarization	(P).	The	resulting	polarization	is	known	as	dipolar	polarization	or	orientational
polarization.	 Orientational	 or	 dipolar	 polarization	 is	 the	 mechanism	 responsible	 for	 the
relatively	high	dielectric	constant	of	H2O	(k~78;	Figure	7.13).

The	main	 feature	 that	 distinguishes	 the	orientational	 polarization	mechanism	 from	other
mechanisms	is	the	presence	of	permanent	dipoles.	This	mechanism	of	dipolar	polarization	is
seen	 only	 in	 materials	 that	 have	 molecules	 with	 a	 permanent	 dipole	 moment.	Materials	 in
which	molecules	develop	a	net	polarization	or	have	a	permanent	or	built-in	dipole	moment
are	 known	 as	 polar	 materials	 or	 polar	 dielectrics.	 Polar	 materials	 in	 which	 polarization
appears	spontaneously,	even	without	an	electric	field,	are	known	as	ferroelectrics	(Chapter	8).
They	do	not	contain	molecules	with	a	permanent	dipole	moment.

If	 each	 permanent	 dipole	 had	 a	 dipole	 moment	 of	 μ,	 and	 if	 the	 concentration	 of	 such
dipoles	was	N,	then	the	maximum	polarization	that	can	be	caused	by	this	mechanism	alone	is
N	 ×	 μ.	 Not	 all	 dipoles	 can	 remain	 aligned	 with	 the	 applied	 electric	 field	 because	 thermal
energy	tries	to	randomize	their	orientations.	Thus,	this	polarization	mechanism	begins	to	fade
away	 with	 increasing	 temperature.	 At	 substantially	 high	 temperatures,	 the	 orientations	 of
dipoles	 with	 respect	 to	 the	 applied	 electric	 field	 become	 completely	 randomized.	 The	 net



polarization	 begins	 to	 decrease,	 and	 this	 polarization	 mechanism	 stops.	 The	 dipolar
polarizability	(αd)	associated	with	this	mechanism	is	given	by

where	μ	is	the	permanent	dipole	moment	of	the	molecules,	kB	is	the	Boltzmann’s	constant,	and
T	is	the	temperature.

Dipole	 moments	 associated	 with	 polar	 molecules	 typically	 are	 very	 large	 compared	 to
those	 induced	 by	 the	 polarization	 of	 atoms	 or	 the	 displacements	 of	 ions.	 Dipolar	 or
orientational	 polarizability	 (αd)	 values	 and	 the	 resultant	 dielectric	 constants	 are	 therefore
large	for	polar	materials.

FIGURE	 7.13 Illustration	 of	 dipolar	 or	 orientational	 polarization.	 (From	Kasap,	 S.O.,	Principles	 of	 Electronic	Materials
and	Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Dipolar	polarization	typically	is	seen	in	polar	liquids,	gases,	or	vapors	(e.g.,	H2O,	alcohol,
and	hydrochloric	acid	[HCl]).	Unlike	in	their	vapor	form,	molecules	with	permanent	dipoles
are	not	free	to	rotate	in	polar	solids	(e.g.,	ice,	instead	of	water	vapor),	even	if	they	are	present.
This	means	that	the	effect	of	orientational	polarization	in	polar	solids	is	smaller	compared	to
that	in	liquids	and	gases	or	vapors.

FIGURE	7.14 Dielectric	constant	of	(a)	nitrobenzene	and	(b)	hydrogen	sulfide.	(From	Kao,	K.C.,	Dielectric	Phenomena	in
Solids,	London,	Elsevier-Academic	Press,	2004.	With	permission.)



For	 example,	 nitrobenzene	 (C6H5CO3)	 is	 a	 polar	 liquid	 with	 k	 ~	 35	 (Figure	 7.14).	 The
dielectric	 constant	 of	 liquid	C6H5CO3	 is	 expected	 to	 decrease	with	 increasing	 temperatures
(Equation	7.63).	When	 liquid	C6H5CO3	 freezes	 into	 a	 solid,	 the	 dipoles	 are	 present	 but	 are
frozen	and	unable	to	rotate.	This	is	why	the	dielectric	constant	of	C6H5CO3	decreases	to	about
3	(Figure	7.14a).	 This	 lower	 value	 for	 the	 dielectric	 constant	 reflects	 the	 smaller	 extent	 of
electronic	 and	 ionic	 polarization	 compared	 to	 the	 extent	 of	 orientational	 polarization	 and
ignoring	the	effects	of	the	differences	in	the	molar	volumes	of	the	solid	and	liquid	phases.

In	 some	materials	 (such	 as	 hydrogen	 sulfide	 [H2S]),	 the	 dielectric	 constant	 continues	 to
increase	with	decreasing	temperatures,	even	below	the	freezing	or	melting	temperature	(Tm).
This	continues	up	to	the	critical	temperature	T0,	below	which	the	dipoles	cannot	rotate	and	the
orientational	polarization	mechanism	ceases	(Figure	7.14b).

7.10 INTERFACIAL,	SPACE	CHARGE,	OR	MAXWELL–WAGNER	POLARIZATION

Some	dielectrics	contain	relatively	mobile	ions	(e.g.,	H+,	Li+,	and	K+).	At	high	temperatures,
these	 ions	 can	 drift	 under	 the	 influence	 of	 an	 electric	 field.	 The	movement	 of	 such	 charge
carriers	is	eventually	impeded	by	the	existence	of	interfaces	(such	as	grain	boundaries)	in	a
material	or	a	device.	This	can	create	a	buildup	of	double-layer-like	capacitors	at	 interfaces,
such	as	grain	boundaries,	in	a	polycrystalline	material	or	material–electrode	interfaces.	The
increase	in	polarization	due	to	such	movements	of	mobile	ions	in	a	material	and	the	creation
of	 polarization	 at	 the	 interfaces	 is	 known	 as	 space-charge	 polarization,	 interfacial
polarization,	 or	 Maxwell–Wagner	 (M–W)	 or	 Maxwell–Wagner–Sillars	 (M–W–S)
polarization.	Trapping	electrically	charged	 ions,	electrons,	and	holes	at	 the	 interfaces	 is	 the
essential	process	behind	interfacial	polarization	(Figure	7.15).

This	 polarization	 mechanism	 differs	 from	 the	 other	 mechanisms	 we	 have	 discussed
(Figure	 7.8).	 First,	 the	 polarization	 mechanism	 is	 usually	 more	 prominent	 at	 higher
temperatures.	This	 is	because	 the	 rate	of	 the	diffusion	process,	which	often	occurs	 through
atoms	or	ions	jumping	or	hopping	from	one	location	to	another,	increases	exponentially	with
increasing	temperature	(Chapter	2).	Second,	the	diffusion	of	atoms	or	ions	is	relatively	slow
compared	 to	 that	 of	 electrons	 and	 holes.	 Thus,	 this	 polarization	 mechanism	 is	 usually
operated	under	static	(DC)	or	AC	fields,	in	which	the	electrical	frequency	(f)	is	small	(a	few
mHz	 to	 several	 Hz).	 If	 the	 electrical	 frequency	 (f)	 is	 too	 high,	 the	 otherwise	 mobile	 ions
cannot	 rapidly	 follow	 this	 frequency.	The	 interfacial	polarization	mechanism	 then	ceases	 to
exist.	Many	 silicate	 glasses	 and	 crystalline	 ceramic	materials	 containing	mobile	 ions	 (e.g.,
lithium	 niobate	 [LiNbO3],	 lithium	 tantalate	 [LiTaO3],	 and	 lithium	 cobalt	 oxide	 [LiCoO2])
exhibit	 this	 polarization	 mechanism.	 This	 mechanism	 is	 also	 quite	 common	 at	 the	 liquid
electrolyte–electrode	 interfaces	 because	 diffusion	 in	 liquids	 occurs	 rather	 readily.	 It	 is
commonly	 used	 in	 many	 electrochemical	 reactions	 encountered	 during	 the	 operation	 of
supercapacitors,	batteries,	fuel	cells,	and	similar	devices.



FIGURE	7.15 Illustration	of	 interfacial	 polarization.	 (From	Kasap,	S.O.,	Principles	 of	 Electronic	Materials	 and	Devices,
McGraw	Hill,	New	York,	2006.	With	permission.)

FIGURE	 7.16 Apparent	 dielectric	 constant	 of	 CaCu3Ti4O12	 ceramics	 processed	 at	 1100°C	 for	 10	 hours.	 The	 dielectric
constant	is	measured	at	different	temperatures	up	to	350	K.	(From	Prakash,	B.	and	Varma	K.B.R.,	J.	Phys.	Chem.	Solids.,	68,
490–502,	2007.	With	permission.)

The	existence	of	interfacial	polarization	is	often	considered	a	strong	possibility	whenever
unusually	 high	 dielectric	 constants	 are	 seen,	 especially	 at	 high	 temperatures	 and	 low
frequencies.	For	example,	 the	data	for	the	dielectric	constant	for	a	calcium–copper–titanium
oxide	(CCTO)	ceramic	are	shown	in	Figure	7.16.

7.11 SPONTANEOUS	OR	FERROELECTRIC	POLARIZATION

A	 ferroelectric	 material	 is	 defined	 as	 a	 material	 that	 exhibits	 spontaneous	 and	 reversible
polarization	(Chapter	8).	This	polarization	typically	is	very	large	in	magnitude	compared	to
other	polarization	mechanisms,	such	as	electronic	and	ionic	polarizations.



FIGURE	7.17 Small-scale	displacements	in	a	cubic	structure	lead	to	the	tetragonal	form	of	ferroelectric	BaTiO3.	(Adapted
from	 Moulson,	 A.J.	 and	 Herbert,	 J.M.,	 Electroceramics:	 Materials,	 Properties,	 Applications,	 Wiley,	 New	 York,	 2003;
Buchanan,	R.C.,	Ceramic	Materials	for	Electronics,	Marcel	Dekker,	New	York,	2004.	With	permission.)

A	prototypical	example	of	a	ferroelectric	material	is	the	tetragonal	polymorph	of	BaTiO3.
The	 term	polymorph	means	 the	 particular	 crystal	 structure	 of	 a	material.	 Consider	 the	 two
polymorphs	 of	 BaTiO3—one	 is	 cubic,	 and	 the	 other	 is	 tetragonal.	 The	 tetragonal	 form	 of
BaTiO3	 is	 also	 known	 as	 the	 pseudocubic	 form.	 The	 cation/anion	 ratio	 for	 the	 tetragonal
polymorph	of	BaTiO3	at	room	temperature	(300	K)	is	~1.01.	For	the	cubic	polymorph,	which
is	 stable	 at	 higher	 temperatures,	 the	 cation/anion	 ratio	 is	 1.00.	The	 lattice	 constant	 is	 ~4	Å.
Thus,	 the	 physical	 difference	 in	 the	 dimensions	 of	 the	 unit	 cells	 actually	 is	 very	 small.
However,	 the	differences	in	the	electrical	properties	between	the	cubic	and	tetragonal	forms
of	BaTiO3	are	significant.

For	the	typical	single-crystal	or	polycrystalline	BaTiO3,	the	centrosymmetric	cubic	phase
is	 stable	 at	 temperatures	 above	 ~130°C.	 The	 temperature	 at	 which	 a	 ferroelectric	 material
transforms	 into	 a	 centrosymmetric	paraelectric	 form	 is	known	as	 the	Curie	 temperature.	 In
cubic	BaTiO3,	 the	 titanium	 (Ti)	 ion	 rattles	 very	 rapidly	 around	 several	 equivalent	 but	 off-
center	positions	present	around	the	cube	center.	For	each	of	these	off-center	positions	of	the
titanium	 ion,	 the	unit	cell	 structure	has	a	dipole	moment.	Thus,	at	any	given	 time,	 the	 time-
averaged	position	of	the	titanium	ion	appears	to	be	exactly	at	the	cube	center.	As	a	result,	the
cubic	phase	of	BaTiO3	has	no	net	dipole	moment	from	the	viewpoint	of	electrical	properties.
From	a	structural	viewpoint	(e.g.,	while	using	X-ray	diffraction),	the	crystal	structure	appears
cubic	 and	 is	 centrosymmetric.	 In	 cubic	BaTiO3,	 all	 the	 dipole	moments	 that	 are	 associated
with	the	barium	(Ba2+),	titanium	(Ti4+),	and	oxygen	(O2−)	 ions	cancel	one	another	out.	This
high-temperature	phase,	derived	from	an	originally	ferroelectric	parent	phase	that	now	has	no
dipole	moment	per	unit	cell,	is	known	as	the	paraelectric	phase.

When	 the	 temperature	 approaches	 the	 Curie	 temperature	 (Tc	 ~	 130°C	 for	 BaTiO3),	 the
titanium	 ions	 begin	 to	 undergo	 other	 very	 small	 displacements.	 At	 temperatures	 below	Tc,
barium	 ions	 are	 displaced	 by	 a	 distance	 of	 ~6	 pm	 (1	 pm	 =	 10−12	 m).	 Titanium	 ions	 are
displaced	in	the	same	direction	by	~11	pm.	Oxygen	ions	(O2−)	are	displaced	by	~3	pm.	After



these	 displacements	 occur,	 the	 unit	 cell	 becomes	 tetragonal.	 The	 tetragonal	 structure	 is	not
centrosymmetric.	 It	 is	 a	polar	 structure;	 that	 is,	 the	 tetragonal	unit	 cell	of	BaTiO3	 has	 a	net
polarization	(Figure	7.17).

7.12 DEPENDENCE	OF	THE	DIELECTRIC	CONSTANT	ON	FREQUENCY

The	polarization	mechanisms	 require	displacements	of	 ions,	electronic	clouds,	dipoles,	and
so	on	(Table	7.2).	These	displacements	are	small;	nevertheless,	they	require	a	small	but	finite
amount	of	time.	Consider	a	covalently	bonded	material	such	as	silicon,	where	the	electronic
polarization	is	established	quickly	(~10−14	seconds).	Now,	consider	changing	the	polarity	of
the	applied	electric	field.	The	electronic	clouds	shift,	and	the	induced	dipoles	realign	with	the
new	field	direction	within	another	~10−14	seconds.	The	induced	dipoles	can	align	rapidly	back
and	forth	in	an	alternating	electric	field	even	if	the	electrical	field	switches	at	a	frequency	of,
for	example,	1	MHz.	A	frequency	(f)	of	1	MHz	means	that	 the	field	switches	back	and	forth
106	times	per	second,	or	in	one	microsecond	(μs;	1	μs	=	10−6	seconds).	Under	a	static	(i.e.,	f	=
0)	 field	or	an	electric	 field	oscillating	with	a	 frequency	of	106	Hz,	we	expect	 the	electronic
polarization	process	 to	contribute	 to	 the	dielectric	constant	 (k)	 of	 silicon.	This	 continues	 to
very	 high	 frequencies,	 ranging	 up	 to	 1014	 Hz	 because	 electronic	 polarization	 is	 the	 only
mechanism	 of	 polarization	 that	 survives	 up	 to	 such	 high	 frequencies.	 Thus,	 the	 dielectric
constants	 of	 silicon	 and	 other	 covalently	 bonded	 solids	 (such	 as	 germanium	 [Ge]	 and
diamond)	are	expected	to	remain	constant	with	frequencies	up	to	the	range	of	~1014	Hz.

Now,	consider	a	material	in	which	the	bonding	has	some	ionic	character,	such	as	SiO2.	 In
this	material,	we	expect	both	the	ionic	and	electronic	polarization	mechanisms	to	contribute	to
its	dielectric	 constant	 (k).	This	will	 be	 true	 as	 long	 as	 the	 ionic	 and	 electronic	 polarization
mechanisms	 can	 follow	 the	 alternating	 electric	 fields.	The	 ionic	 polarization	mechanism	 is
slower	 compared	 to	 that	 of	 electronic	 polarization	 because	 it	 involves	 the	 displacement	 of
ions.	 Thus,	 up	 to	 a	 frequency	 of	 ~1012–1013	 Hz,	 both	 electronic	 and	 ionic	 polarization
mechanisms	 contribute	 to	 the	 dielectric	 constant	 of	 SiO2.	 At	 higher	 frequencies,	 the	 ions
cannot	follow	the	back-and-forth	switching	of	the	polarity	of	the	electric	field.	As	a	result,	the
ionic	 polarization	 mechanism	 stops,	 lowering	 the	 dielectric	 constant.	 The	 electronic
polarization	mechanism	survives	up	to	~1014	Hz	and	continues	to	contribute	to	the	dielectric
constant.	Thus,	we	expect	the	dielectric	constant	of	SiO2	to	become	smaller	(or	for	it	to	relax)
as	we	proceed	from	low	to	high	frequencies.	We	can	expect	this	trend	for	any	material	with
more	than	one	polarization	mechanism	(Figure	7.18).

The	 lowering	of	 the	dielectric	 constant	with	 increasing	 frequency	 is	known	as	dielectric
relaxation	 or	 frequency	dispersion.	This	 low-frequency	dielectric	 constant	 is	 also	 known	 as
the	static	 dielectric	 constant	 (ks),	 although	 the	 value	 is	 not	 necessarily	measured	under	DC
fields.	The	high-frequency	dielectric	constant	 is	designated	as	k∞.	This	 is	also	known	as	 the
optical	frequency	dielectric	constant,	and	 it	 is	 the	value	of	 the	dielectric	constant	when	only
the	electronic	(optical)	polarization	mechanism	remains.



FIGURE	 7.18 Variation	 of	 dielectric	 constant	 with	 frequency	 for	 a	 hypothetical	 dielectric	 with	 different	 polarization
mechanisms.	(From	Buchanan,	R.C.,	Ceramic	Materials	for	Electronics,	New	York,	2004.	With	permission.)



FIGURE	7.19 Relaxation	in	the	dielectric	constant	of	LiFe1/2Ni1/2VO4	ceramics	at	different	temperatures.	(From	Ram,	M.,
and	S.	Chakravarty.	J	Phys	Chem	Solids	69(4):905–912,	2008.	With	permission.)

In	practice,	dielectric	materials	with	multiple	polarization	mechanisms	show	a	decrease	in
the	 dielectric	 constant	 (k).	 However,	 the	 decrease	 is	 rather	 steady	 and	 not	 as	 abrupt	 as	 that
shown	 in	 Figure	 7.18	 because	 with	 multiple	 types	 of	 ions	 or	 atoms,	 the	 polarization
mechanisms	do	not	stop	at	a	particular	frequency	but	rather	over	a	range	of	frequencies,	even
for	the	same	type	of	polarization.

As	an	example,	Figure	7.19	shows	the	lowering	of	the	dielectric	constant	for	lithium–iron–
nickel–vanadium	oxide	ceramics.	The	data	are	shown	for	temperatures	ranging	from	23°C	to
300°C.

At	any	given	temperature,	the	dielectric	constant	decreases	with	increasing	frequency.	The
lower-frequency	dielectric	constants	increase	with	increasing	temperature.	This	is	very	much
an	indication	of	interfacial	polarization,	or	Maxwell–Wagner	polarization.	Its	presence	is	not
surprising	because	this	material	contains	relatively	mobile	lithium	ions.

7.12.1 CONNECTION	TO	THE	OPTICAL	PROPERTIES:	LORENTZ–LORENZ
EQUATION
The	only	polarization	mechanism	that	does	not	cease	to	exist	at	high	frequencies	is	electronic
polarization.	 The	 high	 frequencies	 at	 which	 only	 the	 electronic	 polarization	 mechanism
survives	correspond	to	a	wavelength	(λ)	of	light	(Figure	7.20).



Therefore,	electronic	polarization	is	also	known	as	optical	polarization	(see	Sections	7.6
and	8.2).	We	can	show	that	the	high-frequency	dielectric	constant	(k∞)	of	a	material	is	equal	to
the	square	of	its	refractive	index	(n):

Recall	the	Clausius–Mossotti	equation	(Equation	7.43)	that	correlates	the	dielectric	constant
with	polarization.	Applying	this	equation	for	high-frequency	conditions,	that	is,	by	replacing
the	term	εr	=	ε∞	and	removing	the	ionic	polarization	term,	we	get

FIGURE	7.20 Relationship	between	frequency	and	wavelengths	of	light.

FIGURE	7.21 Photograph	of	a	lead	crystal	object.

Combining	Equations	7.64	and	7.65,	we	get	the	so-called	Lorentz–Lorenz	equation:



This	can	be	rewritten	by	replacing	the	concentration	of	atoms	(Ne)	as	follows:

A	note	of	caution	is	in	order	regarding	the	use	of	the	Lorentz–Lorenz	equation.	Recall	that
the	 Clausius–Mossotti	 equation	 was	 derived	 using	 the	 local	 internal	 electric	 field	 (Elocal)
calculation	 (Equation	 7.36).	 Because	 the	 Lorentz–Lorenz	 equation	 is	 derived	 using	 the
Clausius–Mossotti	 equation,	 it	 applies	 to	 nonpolar	 materials	 with	 a	 cubic	 symmetry	 or	 to
amorphous	materials.	It	cannot	be	applied	to	ferroelectric	or	other	polar	dielectric	materials.

Materials	 that	 contain	 ions	 or	 atoms	 with	 a	 large	 electronic	 polarizability	 (αe)	 have	 a
higher	 refractive	 index	 (n).	 A	 common	 example	 of	 such	 a	material	 is	 lead	 crystal	 (Figure
7.21).	This	actually	is	an	amorphous	silicate	glass	that	contains	substantial	(up	to	30–40	wt%
PbO)	 concentrations	 of	 lead	 ions	 (Pb2+).	 Because	 lead	 ions	 have	 a	 large	 electronic
polarizability,	the	refractive	index	of	lead	crystal	is	much	higher	(n	up	to	1.7)	 than	that	of	a
common	soda-lime	glass	 (n	~	1.5).	Note	 that	 the	polarizability	values	shown	in	Figure	 7.10
include	both	electronic	and	ionic	polarizabilities.

FIGURE	7.22 Core-clad	structure	of	optical	fibers.

Another	important	example	of	the	use	of	higher	electronic	polarizability	(αe)	to	achieve	a
higher	refractive	index	(n)	is	its	application	in	optical	fibers	(Figure	7.22).	In	optical	fibers,	a
small	yet	significant	mismatch	(~1%)	is	created	between	the	refractive	indices	of	the	core	and
the	cladding.	By	doping	the	core	of	the	fibers	with	dopants	such	as	germanium,	the	refractive
index	of	the	core	region	is	maintained	higher	than	that	of	the	cladding.	Optical	fibers	usually
are	 made	 from	 ultra-high-purity	 SiO2.	 The	 core	 is	 doped	 with	 germanium	 oxide	 (GeO2),
which	 enhances	 the	 refractive	 index	 of	 the	 core	 region.	 This	 increases	 the	 total	 internal
reflection	at	the	core–cladding	interface,	thereby	restricting	the	light	waves	(i.e.,	information)
to	within	the	optical-fiber	core.	Doping	the	fibers	with	fluorine	(F)	causes	the	refractive	index
of	SiO2	to	decrease.

The	 following	 example	 illustrates	 the	 extent	 of	 contribution	 of	 the	 electronic	 and	 ionic
polarization	mechanisms	to	the	dielectric	constant	of	ionic	materials.

Example	7.8: Dielectric	Constant	of	Silicate	Glass

The	refractive	index	(n)	of	a	silicate	glass	is	1.5.	What	is	the	high-frequency	dielectric	constant	of	this	glass?	The
dielectric	constant	of	this	glass	at	1	kHz	is	k	=	7.6.	Based	on	the	relaxation	of	the	dielectric	constant,	approximately
what	fraction	of	the	low-frequency	dielectric	constant	(ks)	can	be	attributed	to	ionic	polarization?

Solution



The	refractive	index	(n)	is	1.5.	This	means	that	the	high-frequency	dielectric	constant	(k∞)	is	n
2	=	2.25.	The	 low-

frequency	dielectric	constant	is	ks	=	7.6.	Thus,	the	contribution	of	ionic	polarization	to	the	dielectric	constant	is	7.6	−
2.25	=	5.35.	The	 fraction	of	contribution	due	 to	 ionic	polarization	 is	=	 ([7.6	−	5.35]/7.6)	=	 (5.35/7.6)	~	0.7.	Thus,
nearly	70%	of	the	low-frequency	dielectric	constant	(ks)	for	this	glass	is	due	to	ionic	polarization,	with	the	rest	due
to	electronic	polarization.

7.13 COMPLEX	DIELECTRIC	CONSTANT	AND	DIELECTRIC	LOSSES

7.13.1 COMPLEX	DIELECTRIC	CONSTANT

Another	 feature	 associated	 with	 polarization	 mechanisms	 is	 the	 notion	 of	 dielectric	 loss.
When	ions,	electron	clouds,	dipoles,	and	so	on	are	displaced	in	response	to	the	electric	field
(Figure	7.8),	these	displacements	do	not	occur	without	resistance.	This	resistance	is	similar	to
the	 effect	 of	 friction	 on	 mechanical	 movement.	 The	 electrical	 energy	 lost	 during	 the
displacements	 of	 ions,	 the	 electronic	 cloud,	 or	 any	 other	 entity	 that	 causes	 dielectric
polarization,	 is	 known	 as	 the	 dielectric	 loss.	 One	 way	 to	 represent	 dielectric	 losses	 is	 to
consider	the	dielectric	constant	as	a	complex	number.	Thus,	we	define	the	complex	dielectric
constant	 	as

In	Equation	7.68,	j	is	the	imaginary	number	 .
Known	as	the	real	part	of	the	dielectric	constant,	 	represents	the	charge-storage	process,

which	is	the	same	quantity	that	we	have	referred	to	so	far	as	εr	(or	k).	The	imaginary	part	of
the	complex	dielectric	constant	 	is	a	measure	of	the	dielectric	losses	that	occur	during	the
charge-storage	process.

7.13.2 REAL	DIELECTRICS	AND	IDEAL	DIELECTRICS
An	 ideal	 dielectric	 is	 a	 hypothetical	material	with	 zero	 dielectric	 losses	 (i.e.,	 	 =	 0).	 This
means	 that	 all	 the	 applied	 electrical	 energy	 is	 used	 to	 cause	 the	 polarization	 that	 leads	 to
charge	storage	only.	A	real	dielectric	is	a	material	that	does	have	some	dielectric	losses.	All
dielectric	 materials	 have	 some	 level	 of	 dielectric	 loss	 because	 the	 displacements	 of	 ions,
electron	clouds,	and	so	on,	cannot	occur	without	resistance	from	neighboring	atoms	or	ions.
The	dielectric	losses	increase	if	the	applied	field	switches	in	such	a	way	that	the	polarization
mechanisms	can	 follow	 these	 changes	 in	 the	 applied	electric	 field.	 It	 usually	 is	desirable	 to
minimize	 or	 lower	 the	 dielectric	 losses	 for	 microelectronic	 devices.	 However,	 dielectric
losses	can	be	useful	for	applications	in	which	heat	must	be	generated.	A	common	example	is
that	of	a	microwave	oven.	The	water	molecules	in	food,	which	are	permanent	dipoles,	tumble
around	 during	 the	 polarization	 caused	 by	 the	 microwave’s	 electric	 field.	 The	 resultant
dielectric	losses	cause	the	generation	of	heat	(Vollmer	2004).

While	developing	materials	for	capacitors	to	store	charge	(Section	7.2.2),	we	prefer	to	use
a	 low-loss	 dielectric;	 in	 other	 words,	 we	 want	 a	 small	 .	 The	 need	 for	 increasing	 the
dielectric	constant	(k,	or	what	we	now	refer	to	as	 )	while	maintaining	the	dielectric	losses	at
small	 levels	poses	a	problem	because	polarization	processes	are	required	to	achieve	higher
dielectric	 constants.	When	 these	 polarization	 processes	 occur,	 they	 cause	 dielectric	 losses.



Polarization	 and	 dielectric	 losses	 originate	 from	 the	 same	 basic	 processes	 (some	 type	 of
displacement	 of	 ions	 and	 electron	 clouds,	 in	 addition	 to	 the	 reorientation	 or	 rotation	 of
dipoles,	etc.;	see	Figure	7.8).

7.13.3 FREQUENCY	DEPENDENCE	OF	DIELECTRIC	LOSSES
Because	the	dielectric	constant	depends	on	frequency	(f	or	ω),	it	is	reasonable	to	assume	that
dielectric	losses	are	also	frequency-dependent.

Consider	a	hypothetical	dielectric	material	with	only	the	dipolar	polarization	mechanism.
If	the	electrical	frequency	(f	or	ω)	is	too	high,	then	the	dipole	cannot	rotate	or	flip	back	and
forth	 in	 response	 to	 the	oscillating	electric	 field.	We	may	also	change	 the	magnitude	of	 the
electric	field	from	some	initial	value	E0	to	another	value	E	without	changing	its	direction.	If
this	happens,	the	induced	dipole	moment	(ionic	or	electronic	polarization)	adjusts	from	some
starting	value	of	μ0	(at	E0)	to	another	final	value	μ	(at	E).	Such	changes	in	the	dipole	moment
require	a	small	but	 finite	amount	of	 time.	The	relaxation	 time	 (τ)	 is	 the	 time	 required	 for	a
polarization	mechanism	to	revert	and	realign	a	dipole	or	change	its	value	when	the	electrical
field	switches	or	changes	in	magnitude.

In	a	hypothetical	dielectric	material	with	a	single	polarization	mechanism	and	a	relaxation
time	τ,	the	dielectric	losses	are	very	small	if	the	frequency	of	the	electrical	field	switches	too
rapidly.	When	ω	>>	1/τ,	the	polarization	mechanism	is	unable	to	follow	the	change	in	E.	On
the	contrary,	if	ω	<<	1/τ,	then	the	polarization	process	can	follow	the	changes	in	the	electric
field.	 However,	 the	 induced	 dipole	 moment	 does	 not	 switch	 or	 readjust	 that	 often,	 so	 the
dielectric	 losses	 are	 again	 small.	 When	 ω	 =	 1/τ,	 similar	 to	 a	 resonance	 condition,	 the
dielectric	 losses	 are	 maximized	 because	 the	 polarization	 switches	 or	 adjusts	 itself	 in	 a
synchronized	fashion	as	the	electric	field	switches	again.	Figure	7.23	shows	this	variation	of
dielectric	 losses	 with	 frequency	 for	 a	 hypothetical	 dielectric	 with	 a	 single	 polarization
mechanism	with	relaxation	time	τ.

In	any	dielectric	material,	there	are	different	relaxation	times	for	different	mechanisms	of
polarization.	For	example,	the	displacement	of	the	electronic	cloud	around	a	nucleus	occurs
very	 rapidly,	 and	 the	 relaxation	 time	 τ	 is	 ~10−14	 seconds.	 On	 the	 contrary,	 for	 interfacial
polarization,	the	relaxation	time	(τ)	can	be	several	seconds	because	this	mechanism	involves	a
relatively	 longer-range	 motion	 of	 ions.	 Thus,	 for	 materials	 with	 multiple	 polarization
mechanisms,	 the	 real	 part	 of	 the	 dielectric	 constant	 	 shows	 changes	 similar	 to	 a	 set	 of
cascades.	 The	 dielectric	 loss	 component	 	 shows	 a	 series	 of	 maxima	 that	 follow	 the
different	polarization	mechanisms	(Figure	7.24).



FIGURE	7.23 Dependence	of	 	and	 	on	frequency	for	a	material	with	a	single	polarization	mechanism	and	relaxation
time	τ.	(From	Buchanan,	R.C.,	Ceramic	Materials	for	Electronics,	Marcel	Dekker,	New	York,	2004.	With	permission.)

FIGURE	7.24 Dependence	of	 	 and	 	 on	 frequency	 for	 a	 hypothetical	material	with	different	 polarization	mechanisms
and	 relaxation	 times.	 (From	 Buchanan,	 R.C.,	Ceramic	 Materials	 for	 Electronics,	 Marcel	 Dekker,	 New	 York,	 2004.	 With
permission.)



For	a	dielectric	material	with	a	single	relaxation	time	(τ),	the	frequency	dependence	of	
and	 	can	be	written	quantitatively	as	follows:

Equations	7.69	and	7.70	describe	changes	in	the	real	and	imaginary	parts	of	the	dielectric
constant	and	are	also	known	as	Debye	equations.

We	 can	 see	 from	Equation	7.70	 that	 the	maximum	 in	 k",	 known	 as	 the	Debye	 loss	 peak,
occurs	when	ω	=	1/τ	(see	the	problems	at	the	end	of	this	chapter	and	Example	7.12).

In	 many	 materials,	 there	 can	 be	 different	 relaxation	 times	 for	 the	 same	 polarization
mechanism.	 This	 is	 because	 different	 atoms	 and	 ions	 may	 be	 involved.	 There	 is	 then	 a
distribution	 of	 relaxation	 times	 due	 to	 the	 different	 polarization	 mechanisms,	 and	 the
distribution	of	relaxation	times	applicable	for	each	mechanism	for	a	given	dielectric.

The	following	example	illustrates	an	application	of	the	Debye	equations.

Example	7.9: Relaxation	of	the	Dielectric	Constant	for	H2O

The	static	dielectric	constant	(εs)	of	H2O	is	78.4	at	298.15	K	(Fernandez	et	al.	1995).	It	decreases	to	about	εr	(ω)	=
20	at	a	frequency	of	f	=	40	GHz.	If	the	high-frequency	(optical)	dielectric	constant	(ε∞)	is	5,	what	is	the	relaxation
time	τ	for	H2O	molecule	dipoles?	Why	is	it	that	ε∞	is	not	equal	to	the	square	of	the	refractive	index	(n)	of	water?

Solution
We	first	convert	the	frequency	(f)	into	angular	frequency	(ω)	by	using

Therefore,	ω	=	2π(40	x	109	Hz)	=	2.51327	×	1011	rad/s.
We	assume	that	 relaxation	 in	 the	real	part	of	 the	dielectric	constant	 (k′)	of	water	 follows	 the	Debye	equations,

Equations	7.69	and	7.70.
For	this	problem,	we	substitute	the	following	values	in	Equation	7.69:	εs	=	ks	=	78.4,	and	ε∞	=	k∞	=	5.	We	also

know	that	k′	=	20,	when	f	=	40	GHz,	that	is,	ω	=	2πf	=	2.51327	×	1011	rad/s.
We	rewrite	the	Debye	equation	as:

or

Substituting	these	values	in	Equation	7.72,	we	get

Therefore,

ωτ	=	1.973



or

One	picosecond	is	equal	to	10−12	seconds.	Thus,	the	relaxation	time	(τ)	for	an	H2O	molecule,	which	is	a	permanent
dipole,	 is	 about	 7.85	 picoseconds,	which	 is	 the	 average	 time	 that	 an	H2O	molecule	 needs	 to	 ″flip″	 and	 realign	 as	 the
direction	of	the	electrical	field	changes.

Note	 that	 because	H2O	molecules	 are	 polar,	 neither	 the	Clausius–Mossotti	 nor	 the	 Lorentz–Lorenz	 equations

apply	because	ε∞	is	not	equal	to	n
2.

7.13.4 GIANT	DIELECTRIC	CONSTANT	MATERIALS

The	 changes	 in	 the	 dielectric	 properties	 of	 dielectrics	 encountered	 in	 applications	 of
microelectronics	are	more	complex.	For	example,	CaCu3Ti4O12	 (CCTO)	was	 reported	as	a
giant	dielectric	constant	material.	The	changes	in	the	real	and	imaginary	parts	of	the	dielectric
constant	for	CCTO	are	shown	in	Figure	7.25.

Note	several	details	from	the	data	in	Figure	7.25:

1.	 First,	the	dielectric	constant	is	very	large.	We	should	therefore	immediately	suspect	that
this	material	may	be	a	ferroelectric	or	that	a	space-charge	polarization	(see	Section	7.10)
may	be	present.	Crystal	structure	analysis	and	other	measurements	have	shown	that	this
material	 is	 not	 a	 ferroelectric.	 The	 measured	 dielectric	 constant	 must	 be	 an	 apparent
dielectric	constant.

These	 experimental	 data	 show	 that	 the	 apparent	 or	measured	 dielectric	 constant	 is	 a	microstructure-sensitive
property.	 If	 we	 were	 to	 predict	 the	 dielectric	 constant	 using	 the	 Clausius–Mossotti	 equation,	 then	 the	 dielectric
constant,	although	expected	to	be	a	function	of	frequency,	will	not	be	expected	 to	show	microstructure-sensitive
characteristics.	 This	 is	 because	 the	 Clausius–Mossotti	 equation	 does	 not	 account	 for	 interfacial	 or	 ferroelectric
(spontaneous)	polarization.

2.	 Overall,	 as	 predicted	 by	 the	 Debye	 equations,	 the	 dielectric	 constant	 decreases	 with
increasing	frequency	(Figure	7.25).



FIGURE	 7.25 Changes	 in	 the	 dielectric	 constant	 of	 CaCu3Ti4O12	 ceramics	 as	 a	 function	 of	 the	 sintering	 time	 at
1100°C.	Measurements	of	the	dielectric	constant	(k’)	were	carried	out	at	330	K.	(From	Prakash,	B.	and	Varma	K.B.R.,
J.	Phys.	Chem.	Solids.,	68,	490–502,	2007.	With	permission.)

3.	 In	this	case,	the	increase	in	the	dielectric	constant	with	the	sintering	times	may	be	because
when	the	sintering	times	are	low	(e.g.,	2.5	hours);	the	samples	may	not	be	dense.	These
materials	 basically	 are	 a	 composite	 of	 a	 dielectric	 and	 air.	 Because	 air	 has	 a	 low
dielectric	 constant	 (k′	 ~	 1),	 the	 overall	 measured	 values	 of	 the	 dielectric	 constant	 are
lower.

4.	 As	the	measured	density	increases	with	increasing	sintering	times,	the	overall	dielectric
constant	also	increases.	The	data	in	Figure	7.25	(marked	as	the	first	step)	also	show	that
the	 increase	 in	 the	 dielectric	 constant	 with	 sintering	 times	 is	 higher	 for	 the	 higher-
frequency	region	(~5	×	105	to	3	×	106	Hz).	In	these	materials,	the	interfacial	or	Maxwell–
Wagner	polarization	at	the	grain	boundaries	plays	an	important	role.

5.	 The	 relatively	moderate	 increase	 in	 the	 dielectric	 constant	 in	 Step	 2	 (frequency	 range
~104	 to	 5	 ×	 105	 Hz;	 Figure	 7.25)	 is	 related	 to	 the	 formation	 of	 another	 phase,	 which
involves	 a	 process	 known	 as	 liquid-phase	 sintering.	 In	 this	 process,	 a	 liquid	 phase	 is
formed	that	can	assist	densification.	However,	it	can	also	lead	to	the	formation	of	grain
boundaries	or	surface	phases	that	have	a	chemical	composition	different	from	that	of	the
original	ceramic	material.

6.	 The	relaxation	of	the	low-frequency	dielectric	constant	(in	the	range	of	102–104	Hz—the
region	to	the	left	of	that	marked	as	the	second	step)	may	be	due	to	interfacial	polarization
at	the	ceramic–electrode	interface	via	a	Schottky	barrier	effect.	If	this	is	the	case,	it	may
be	 possible	 to	 change	 the	 electrode	materials	 to	 see	 if	 the	 apparent	 dielectric	 constant
changes.



In	summary,	the	interpretation	of	changes	in	the	apparent	or	measured	dielectric	constant
or	losses	with	frequency	requires	a	considerably	detailed	analysis.	We	can	attempt	to	correlate
these	changes	with	the	different	polarization	mechanisms	and	microstructures.	To	determine
the	controlling	polarization	mechanisms,	the	dielectric	properties	are	measured	as	functions
of	 the	 temperature	 and	 frequency	while	 changing	 the	 processing	 conditions	 systematically.
The	change	 in	 the	dielectric	constant	of	CCTO	ceramics	as	a	function	of	 the	 temperature	 is
shown	in	Figure	7.16.	The	technique	of	measuring	k″	and	k″	as	a	function	of	the	frequency	(f)
is	 known	 as	 impedance	spectroscopy.	 The	measurements	 of	 k″	 and	k″	 can	 be	 accomplished
using	an	instrument	called	an	impedance	analyzer.	The	variations	of	k″	(x-axis)	and	k″	(y-axis)
plotted	as	a	function	of	the	frequency	appear	as	sets	of	arcs	or	semicircles	and	are	known	as
Cole–Cole	plots.

7.14 EQUIVALENT	CIRCUIT	OF	A	REAL	DIELECTRIC

For	a	parallel	capacitor,	the	capacitance	is	given	by

This	 is	 similar	 to	 Equation	 7.13;	 the	 difference	 is	 that	 now	 we	 explicitly	 show	 the
dependence	of	the	dielectric	constant	on	electrical	frequency	by	incorporating	the	variation	of
the	dielectric	constant	with	frequency	(Figures	7.18	and	7.23).

We	can	model	a	 real	dielectric	material	 as	a	pure,	 lossless	capacitor	with	capacitance	C,
connected	in	parallel	to	a	resistor	with	a	resistance	(Rp).	The	subscript	“p”	tells	us	that,	in	this
equivalent	circuit,	 the	resistor	is	connected	to	the	capacitor	in	parallel.	This	is	an	equivalent
circuit	 of	 a	 real	 dielectric	 material	 (Figure	 7.26).	 A	 circuit	 comprising	 a	 capacitor	 and	 a
resistor	(in	series	or	parallel)	is	also	known	as	a	resistor–capacitor	(RC)	circuit.	For	an	ideal
dielectric,	there	is	no	loss,	that	is,	Rp	=	0.

The	conductance	(Gp	=	1/Rp)	of	a	dielectric	is	given	by



FIGURE	7.26 Equivalent	 circuit	 of	 a	 real	 dielectric	material.	 (From	Kasap,	 S.O.,	Principles	 of	 Electronic	Materials	 and
Devices,	McGraw	Hill,	New	York,	2006.	With	permission.)

Thus,	for	an	ideal	capacitor,	if	Rp	=	0,	then	Gp	=	∞.	This	means	that	as	the	capacitor	charges
and	discharges,	 the	current	appears	 to	 flow	 through	 the	capacitor.	We	have,	of	course,	 seen
before	that	a	dielectric	material	is	a	nonconductor,	and	very	little,	if	any,	current	can	actually
flow	 through	 it.	 Equation	 7.74	 can	 be	 used	 to	 calculate	 the	 equivalent	 resistance	 or
conductance	of	a	dielectric	material	with	specific	capacitor	geometry.	The	relatively	simple
appearance	of	Equations	7.73	and	7.74	is	a	bit	misleading.	If	we	want	to	calculate	these	values
as	a	function	of	the	frequency	(ω),	then	we	must	keep	in	mind	that	both	 	and	 	change	with
frequency.

7.15 IMPEDANCE	(Z)	AND	ADMITTANCE	(Y)

For	 a	 real	 dielectric,	we	 define	 impedance	 (Z)	 as	 a	measure	 of	 the	 resistance	 offered	 by	 a
circuit	 under	AC	 fields.	The	 impedance	 of	 a	 real	 dielectric	 (Figure	7.26)	 can	 be	written	 as
follows:

where	XC	is	the	capacitive	reactance.	It	is	the	equivalent	of	a	capacitor ’s	resistance	to	the	flow
of	current	through	it.	The	magnitude	of	the	capacitive	reactance	(XC)	is	given	by

Thus,

The	subscript	“p”	 is	used	 to	 indicate	a	parallel	arrangement	of	 the	resistor	and	capacitor
(Figure	7.26).

The	admittance	(Y)	is	defined	as	the	inverse	of	the	impedance	(Z).	Note	that	the	admittance
(Y)	and	impedance	(Z)	are	both	complex	numbers.	The	SI	unit	for	admittance	is	Siemens,	also



often	reported	as	mho,	the	inverse	of	Ohm.	The	admittance	of	a	capacitor	made	using	a	real
dielectric	material	can	be	written	as	a	combination	of	a	conductor,	with	conductance	Gp,	and	a
capacitor,	 with	 capacitance	Cp	 (Figure	 7.26).	 The	 total	 admittance	 is	 written	 as	 a	 complex
number:

or

The	admittance	(Y)	can	be	rewritten	as	follows	using	Equations	7.73	and	7.74:

Examples	7.10	and	7.11	illustrate	the	calculations	of	capacitive	reactance	and	its	frequency
dependence.

Example	7.10: Capacitive	Reactance	(Xc)	of	a	Capacitor

What	is	the	magnitude	of	the	capacitive	reactance	(XC)	of	a	200-pF	capacitor	at	a	frequency	of	10	MHz?
Solution

Note	that	one	picofarad	(pF)	is	10−12	F.	The	magnitude	of	the	capacitive	reactance	(XC)	is	given	by

Thus,	this	capacitor	has	a	reactance	of	79.5	Ω	at	a	frequency	of	10	MHz.

Example	7.11: Change	of	Capacitive	Reactance	(Xc)	with	Frequency

A	 10-V	 variable-frequency	 AC	 supply	 is	 connected	 to	 a	 200-μF	 capacitor.	 What	 is	 the	 value	 of	 capacitive
reactance	 for	 frequencies	 of	 (a)	 0	Hz,	 (b)	 60	Hz,	 and	 (c)	 1	 kHz?	What	 is	 the	 value	 of	 the	 current	 (I)	 flowing
through	the	circuit	for	each	frequency?
Solution
1.	 When	 the	 frequency	 (f)	 is	 zero,	 XC	 =	 ∞,	 and	 the	 value	 of	 current	 flowing

through	the	circuit	is	zero.	In	other	words,	when	a	DC	voltage	is	applied	to	the
capacitor,	the	dielectric	material	just	blocks	this	voltage.

2.	 When	f	=	60	Hz,	the	value	of	the	capacitive	reactance	(XC)	is	given	by

The	 current	 flowing	 through	 this	 circuit	 is	 given	by	 the	modified	version	of	Ohm’s	 law,	 in	which	we
replace	the	resistance	R	with	the	capacitive	reactance	XC.	Thus,	the	current	(I)	is	given	by



This	 current	 is	 not	 in	 phase	 with	 the	 voltage.	 It	 leads	 the	 voltage	 by	 90°	 in	 the	 circuit	 of	 an	 ideal
dielectric	capacitor.

3.	 When	f	=	1	kHz,	the	value	of	capacitive	reactance	is	given	by

The	current	(I)	is	given	by	the	equation

Furthermore,	the	capacitive	reactance	(XC)	decreases	with	increasing	frequency.

7.16 POWER	LOSS	IN	A	REAL	DIELECTRIC	MATERIAL

We	know	from	Joule’s	law	for	a	resistor	that	the	power	dissipated	in	a	resistor	is	given	as

The	equivalent	of	this	for	a	capacitor	is

We	substitute	for	Y	from	Equation	7.79	to	get

The	 second	 term	 of	 this	 expression	 gives	 the	 power	 dissipated	 in	 a	 capacitor	 with
equivalent	resistance	Rp	(Figure	7.26).

Thus,	the	power	lost	in	a	real	dielectric	is	given	by

The	dissipated	power	appears	as	heat	in	the	dielectric	material.	It	is	sometimes	important	to
note	how	much	power	is	dissipated	per	unit	volume.	If	we	consider	a	capacitor	(Figure	7.3)
with	volume	=	A	×	d,	 the	power	loss	per	unit	volume	is	given	by	substituting	for	1/Rp	 from
Equation	7.74	as	shown	here:

or

7.16.1 CONCEPT	OF	TAN	δ



Consider	a	resistor	connected	to	voltage	(V).	Assure	 that	 the	voltage	changes	with	 time	in	a
sinusoidal	fashion	as	follows:

You	may	recall	that	the	definition	of	the	function	exp(jx)	is

Thus,

In	a	pure	resistor,	the	current	(I)	and	the	voltage	are	said	to	be	in	phase.	This	means	that,	as
the	 voltage	 changes	 over	 time,	 the	 current	 instantly	 follows	 the	 change	 in	 voltage.	 This	 is
shown	in	a	phasor	diagram	in	Figure	7.27.	A	phasor	is	a	rotating	vector	that	shows	the	phase
angle	 for	 a	particular	 type	of	 current	or	voltage	 in	 a	 circuit	 component.	A	phasor	diagram
shows	 the	 relative	 positions	 of	 the	 phasors	 for	 currents	 or	 voltages	 (or	 for	 both)
corresponding	to	a	circuit.	The	lengths	of	 the	phasor	arrows	generally	are	in	scale	with	the
magnitude	 of	 the	 voltage	 or	 current	 they	 represent.	 A	 phasor	 diagram	 is	 also	 known	 as	 a
vector	diagram.

At	ωt	=	0,	V	=	V0;	 at	ωt	=	π/2	or	90°,	Vj	 =	V0.	As	 shown	 in	Figure	7.27,	 as	 the	 voltage
phasor	rotates	for	a	pure	resistor	from	ωt	=	0	to	ωt	=	π/2,	the	phasor	representing	the	current
also	 rotates	 from	ωt	 =	 0	 to	ωt	 =	π/2.	 In	Figure	7.27,	 therefore,	 the	 voltage	 phasor	 and	 the
current	phasor	point	to	the	same	direction.

When	an	AC	voltage	V	(Equation	7.86)	is	applied	to	a	pure	capacitor,	a	charge	Q	appears
on	this	capacitor	and	is	given	by

The	buildup	of	 charge	on	 the	 capacitor	 can	be	described	by	defining	a	charging	 current
(Ic).	This	current	is	given	by

Rewriting	the	expression	for	the	charging	current	using	Equation	7.89,	we	get



FIGURE	7.27 Phasor	diagrams	for	a	pure	resistor.

Because	V	=	V0	exp(jωt),	dV/dt	=	V0jω	exp(jωt).	Thus,

Compare	Equations	7.86	and	7.92	(for	voltage	V	and	Ic,	respectively)	and	check	the	phase
difference	 between	 applied	 voltage	 (V)	 and	 charging	 current	 (Ic).	 You	 will	 find	 that	 the
charging	current	 Ic	 always	 leads	 the	applied	voltage	V	 by	 exactly	90°.	This	 is	 shown	 in	 the
phasor	diagram	for	an	ideal	capacitor,	Figure	7.28a.	The	current	and	voltage	waveforms	for
an	ideal	capacitor	are	shown	in	Figure	7.28b.

Referring	to	Figure	7.28,	if	the	phase	angle	ωt	=	0,	the	charging	current	(Ic)	will	be	along
the	axis	of	the	imaginary	and	the	voltage	(V)	will	be	along	the	axis	of	the	real	(Figure	7.27).
As	the	phasor	for	Ic	rotates	through	any	angle,	the	phasor	for	the	voltage	also	rotates	by	the
same	amount,	thus	maintaining	a	steady	phase	difference	of	90°	at	all	times	(Figure	7.28b).

One	way	to	represent	a	real	dielectric	is	through	a	parallel	combination	of	a	resistor	and	a
lossless	capacitor	(Figure	7.26).	We	then	describe	the	total	current	(Itotal)	as	the	vector	sum	of
a	charging	current	(Ic)	and	a	loss	current	(Iloss).	The	charging	current	associated	with	the	ideal
capacitor	 leads	 the	 applied	 voltage	 by	 90°.	 The	 loss	 current	 originates	 from	 two	 sources.
First,	 the	dielectric	material	has	a	resistance	under	DC	conditions	 that	 is	usually	very	 large.
However,	a	very	small	amount	of	current	still	flows	through	a	dielectric	material.	Second,	for
an	 AC	 voltage,	 as	 the	 polarization	 processes	 continue	 to	 occur,	 the	 back-and-forth
displacements	 of	 electronic	 clouds,	 ions,	 molecular	 dipoles,	 and	 so	 on	 also	 cause	 a
dissipation	 of	 energy	 and	 are	 thus	 part	 of	 the	 impedance.	 The	 loss	 current	 (Iloss)	 in	 a	 real
dielectric	due	to	both	of	these	contributions	is	always	in	phase	with	the	voltage	because	these
processes	always	follow	the	applied	voltage	(V).

The	loss	current	(Iloss)	in	a	dielectric	can	be	written	as	follows:

where	G	is	the	conductance	and	V	is	the	voltage.	The	conductance	can	be	expressed	as	a	sum
of	the	DC	and	AC	components.

The	loss	current	can	be	written	as



The	total	current	(I)	is	given	by	the	vector	sum	of	these	two	currents,	namely,	the	charging
current	(Ic)	and	the	loss	current	(Iloss).	This	total	current	(Itotal)	always	 leads	 the	voltage	but
not	by	90°.	As	shown	in	Figure	7.29,	the	total	current	(Itotal),	therefore,	leads	the	voltage	at	an
angle	(90	−	δ)°.

FIGURE	7.28 (a)	Phasor	diagram	and	(b)	waveform	relationships	for	an	ideal	capacitor.

FIGURE	7.29 Corresponding	waveforms	for	a	real	dielectric.

The	angle	δ	 is	known	as	 the	 loss	angle.	Recall	 that	 the	charging	current	 (Ic)	 is	 jωCV	 (from
Equation	 7.92).The	 total	 current	 (Itotal)	 in	 a	 capacitor	 made	 using	 a	 real	 dielectric	 can	 be
written	as

From	Figure	7.29,	we	can	also	note	that

Thus,	tan	δ	(pronounced	tan	delta)	is	also	a	measure	of	the	dielectric	losses.	There	are	no
dielectric	losses	in	an	ideal	dielectric.	This	means	that	IL	=	0,	tan	δ	=	0,	and	the	total	current	is
equal	to	the	charging	current.



The	 concept	 of	 tan	 δ	 is	 very	 important	 for	 describing	properties	 of	 dielectric	materials.
This	 parameter	 can	 be	 measured	 using	 an	 impedance	 analyzer	 similar	 to	 measuring	 the
dielectric	 constant.	We	 can	 compare	 how	 lossy	 different	 dielectric	materials	 are	 relative	 to
each	 other.	 The	 real	 part	 of	 the	 complex	 dielectric	 constant	 is	 a	 measure	 of	 a	 material’s
charge-storing	 ability.	 The	magnitude	 of	 tan	 δ	 indicates	 the	 inefficiency	 of	 the	material	 in
terms	of	the	charge-storing	ability.

In	 an	 ideal	dielectric,	which	does	not	 exist,	 polarization	processes	 are	 assumed	 to	occur
without	any	electrical	energy	waste,	with	no	energy	wasted	during	charge	storage,	that	is,	tan
δ	 =	 0.	 In	 many	 real	 dielectrics,	 the	 tan	 δ	 values	 range	 from	 ~10−5	 to	 10−2.	 Some	 special
applications,	 such	 as	 ceramic	 materials	 used	 as	 dielectric	 resonators	 for	 microwave
communications,	require	very	low	tan	δ	values.	In	this	case,	the	values	of	a	parameter	defined
as	the	quality	factor	(Q)	are	reported.	The	quality	factor	of	a	dielectric	(Qd)	is	defined	as

We	 can	 also	 show	 that	 tan	 δ	 is	 the	 ratio	 of	 the	 imaginary	 and	 real	 parts	 of	 the	 complex
dielectric	constant	(k*).

The	dielectric	constant	is	defined	as	 ,	and	because	Q	=	CV,	 .
The	current	Itotal	=	dQ/dt	=	C(dV/dt),	or

If	V	=	V0	exp(jωt),	then	dV/dt	=	jωV0	exp(jωt)	=	jωV;	therefore,	Itotal	is

To	derive	Equation	7.99,	we	substituted	for	the	complex	dielectric	constant	in	terms	of	its
real	and	imaginary	parts	(see	Equation	7.68).

Note	that	to	derive	this	equation,	we	used	the	value	j	2	=	−1.
Now	compare	Equations	7.95	 and	7.100.	The	 first	 term	of	Equation	7.100	 represents	 the

charge-storage	 in	 the	 dielectric,	 that	 is,	 the	 charging	 current.	 The	 second	 term	 is	 the
magnitude	of	the	loss	current	(Iloss).	Thus,	the	ratio	of	the	magnitude	of	these	two	parts	is	tan
δ:

Thus,

Another	interpretation	for	tan	δ	or	loss	tangent	is	that	it	is	the	ratio	of	the	imaginary	and
real	 parts	 of	 the	 complex	 dielectric	 constant	 or	 the	 complex	 relative	 dielectric	 permittivity.



One	can	think	of	tan	δ	as	the	ratio	of	the	price	we	pay	for	storing	the	charge	in	a	capacitor	(in
terms	of	the	energy	that	is	wasted	and	that	appears	as	heat).	Heating	due	to	dielectric	losses	is
useful	 in	 some	applications.	However,	 in	many	applications,	 the	generation	of	heat	changes
the	 temperature	 of	 the	 dielectric	 material,	 and	 the	 dielectric	 properties	 may	 change	 with
changes	in	temperature.	In	addition,	heating	a	dielectric	material	can	change	its	dimensions;
the	 geometrical	 changes	 also	 lead	 to	 changes	 in	 capacitance.	 In	 general,	 we	 prefer	 to	 use
temperature-stable	and	low-loss	dielectric	materials.

Because	 both	 the	 real	 and	 imaginary	 parts	 of	 the	 dielectric	 constant	 are	 frequency-
dependent	(Figure	7.24),	tan	δ	also	depends	on	the	frequency.

Recall	 that,	 for	 a	 hypothetical	 material	 with	 a	 single	 polarization	 mechanism	 with
relaxation	time	(τ),	the	frequency	dependences	of	the	real	and	imaginary	parts	of	the	dielectric
constants	 are	 given	 by	 the	 Debye	 equations	 (Equations	 7.69	 and	 7.70).	 Therefore,	 the
frequency	dependence	of	tan	δ	for	such	a	hypothetical	material	is	given	by

where	 ks	 and	 k∞	 are	 the	 values	 of	 the	 low-frequency	 (static)	 and	 high-frequency	 dielectric
constants.

Although	 the	value	of	 	 reaches	 a	maximum	at	ωt	 =	 1/τ	 (Figure	7.23),	 tan	 δ	 reaches	 a
maximum	at	a	slightly	higher	frequency,	which	is	given	by

Recall	that	the	power	loss	in	a	real	dielectric	per	unit	volume	is	given	by	Equation	7.85.
We	can	write	this	in	terms	of	tan	δ	and	 	(dielectric	constant)	as	follows:

Example	7.12	shows	how	to	calculate	 the	frequency	at	which	the	value	of	 tan	δ	reaches	a
maximum.

Example	7.12: Maximum	for	tan	δ

Show	that	for	a	dielectric	with	only	one	polarization	mechanism	and	a	single	relaxation	time	(τ),	the	maximum	tan	δ
occurs	at	ωmax	(for	tan	δ)	(Equation	7.103).
Solution
We	start	with	Equation	7.102,	which	describes	the	dependence	of	tan	δ	on	frequency	ω.

To	locate	the	maximum,	we	take	the	derivative	of	tan	δ	with	respect	to	ω	and	equate	it	to	zero.	Because	the	term	(ks

−k∞)	does	not	depend	on	frequency,	we	can	take	the	derivate	of	the	term	 	with	respect	to	ω	and	equate
it	to	zero.	Recall	the	rule	for	the	derivative	of	a	function	h(x),	which	is	a	ratio	of	two	functions	h(x)	=	f(x)/g(x);	then



Equating	this	to	zero	gives	us

(ks	+	k∞	ω2τ2)	(τ)	−	(ωτ)	(k∞	τ2	2ω)	=	0
This	simplifies	to

(ks	+	k∞	ω2τ2	−2k∞	τ2ω2)	=	0
or

Tan	δ	will	reach	a	maximum,	that	is,	ωmax	(for	tan	δ)	(Equation	7.103).
This	maximum	tan	δ	occurs	at	a	frequency	higher	than	1/τ,	which	is	the	frequency	at	which	k	reaches	a	maximum.

7.17 EQUIVALENT	 SERIES	 RESISTANCE	 AND	 EQUIVALENT	 SERIES
CAPACITANCE

A	real	dielectric	can	be	described	as	a	resistance	and	a	capacitor	connected	in	parallel	(Figure
7.26).	This	description	of	a	real	dielectric	is	useful	in	understanding	both	the	relationships	of
loss	current	with	 the	charging	current	and	 the	concept	of	 tan	δ.	However,	 in	many	practical
applications	 of	 capacitors,	 an	 important	 parameter	 that	 is	 often	 specified	 is	 the	 equivalent
series	resistance	(ESR).	This	essentially	entails	describing	the	capacitor	as	a	combination	of
an	equivalent	series	capacitor	(ESC)	and	an	ESR	that	are	connected	as	shown	in	Figure	7.30.

Note	that	in	both	cases,	the	dielectric	is	modeled	as	either	parallel	or	series	connections	of
a	capacitor	and	resistor,	and	there	is	no	separate	resistor	connected	to	the	dielectric	for	either
model.	We	simply	model	the	real	dielectric	as	an	arrangement	of	a	capacitor	and	a	resistor.

We	will	show	that	the	ESR	and	ESC	are	related	to	their	parallel-circuit	equivalents	(i.e.,	Rp
and	Cp)	using	the	following	equations:

or



In	the	parallel	and	series	arrangements	of	the	models	of	a	real	dielectric	shown	in	Figure
7.30,	the	total	impedance	(Z)	offered	by	the	dielectric	must	be	the	same.	The	properties	of	the
dielectric	material	do	not	depend	on	how	we	choose	to	describe	it.	Starting	with	the	parallel
arrangement,	 the	 total	 admittance	 of	 a	 real	 dielectric	modeled	 as	 a	 parallel	 arrangement	 is
written	as	Equation	7.79.

The	total	impedance	of	the	parallel	arrangement	is

FIGURE	7.30 Circuit	showing	the	model	of	a	real	dielectric	as	(a)	parallel	and	(b)	equivalent	series	resistance	connected	to
an	equivalent	series	capacitor.

In	the	series	arrangement	(Figure	7.30),	we	write	the	impedance	as

Z	=	ESR	+	jXESC

or

Because	the	total	impedance	must	be	the	same	in	both	the	series	and	parallel	arrangements,
the	 real	 part	 of	 this	 impedance	 (Z)	 in	 a	 parallel	 arrangement	 must	 be	 equal	 to	 the	 ESR.
Similarly,	the	imaginary	part	of	Z	is	equal	to	the	equivalent	series	capacitive	reactance	(XESC).
We	start	with	Equation	7.109,	or

To	separate	 the	 real	and	 imaginary	parts	of	 this	number,	we	multiply	and	divide	by	 (1	−
jωCpRp),	which	is	the	complex	conjugate	of	the	term	in	the	denominator.



or

We	can	compare	Equation	7.112	to	Equation	7.110,	equate	the	real	part	of	this	derivation	to
ESR,	and	substitute	ω	=	2πf	to	get	Equation	7.106.

We	can	equate	 the	 imaginary	part	of	Z	from	Equation	7.112	 to	 the	equivalent	capacitance
for	the	series	circuit	(XESC;	Equation	7.110)	to	get:



FIGURE	7.31 Ragone	plot	of	electrochemical	systems	for	hybrid	electric	vehicles.	(From	Mastragostino,	M.	and	Soavi	F.,
J.	Power	Sources,	174,	89–93,	2007.	With	permission.)

This	equation	is	also	rewritten	as	Equation	7.108:

In	applications	 involving	 supercapacitors,	 the	emphasis	often	 is	on	 reducing	 the	ESR,	as
opposed	 to	 increasing	 the	 volumetric	 efficiencies.	 Supercapacitors,	 which	 are	 based	 on
electrochemical	 reactions	 that	 lead	 to	 a	 double-layer	 interfacial	 capacitance,	 have	 received
considerable	 attention	 recently	 because	 of	 their	 potential	 for	 applications	 in	 electric	 hybrid
vehicles.	In	these	applications,	supercapacitors	can	provide	a	high	level	of	energy	output	in	a
short	 time	 (i.e.,	 high	 specific	 power),	 compared	 to	 that	 provided	 by	 lithium	 ion	 or	 nickel
hydride	batteries	and	fuel	cells,	which	can	provide	a	high	energy	density	(Mastragostino	and
Soavi	 2007)	 but	 a	 lower	 energy	 output.	 Many	 supercapacitors	 have	 very	 high	 specific
capacitance	 (that	 is,	 capacitance	per	unit	mass),	 ranging	 from	700	 to	1000	F/g	 (Yang	et	 al.
2007).

A	Ragone	 plot	 or	Ragone	 chart	 is	 a	 diagram	 that	 compares	 the	 specific	 power	 density
possible	 from	 a	 specific	 energy	 output	 for	 different	 power-	 or	 energy-generating	 devices.
This	plot	is	shown	for	some	batteries	and	compared	to	supercapacitors	in	Figure	7.31.

PROBLEMS

7.1 A	 liquid-level	 sensor	 is	 to	 be	 designed	 for	 a	 car.	 Explain	 how	 such	 a	 sensor	 can	 be
designed	so	that	the	change	in	capacitance	can	be	used	to	measure	the	liquid	level.

7.2 A	tantalum	oxide	(Ta2O5)	thin	film	(with	a	dielectric	constant	of	~25)	was	deposited	on
conductive	 polysilicon	 to	 form	 a	 capacitor.	 Another	 dielectric	 material	 under
consideration	for	 this	application	was	SiO2	 (with	a	dielectric	constant	of	~3.9).	 If	 the



thickness	of	the	SiO2	 film	required	to	achieve	a	certain	value	of	capacitance	is	dsilica,
what	thickness	of	Ta2O5	(dTa2O5)	will	provide	the	same	capacitance	per	unit	area	as	that
for	the	capacitor	made	using	SiO2?

7.3 A	ferroelectric	thin	film	of	a	particular	composition	of	lead	zirconium	titanate	(PZT),
with	an	apparent	dielectric	constant	of	400,	was	manufactured	using	a	sol-gel	process.
This	dielectric	constant	is	lower	than	that	seen	for	bulk	or	single	crystals	of	PZT	of	the
same	composition.	The	film	was	1	pm	thick.	What	is	the	capacitance	per	unit	area	for
this	film?	Express	your	answer	in	μF/cm2.	What	is	the	total	capacitance	if	the	electrode
area	is	10	μm2?

7.4 Ferroelectric	 thin	 films	 (1000	 nm	 thick)	 of	 apparently	 the	 same	 composition	 were
made	 using	 a	 multitarget	 sputtering	 process.	 The	 dielectric	 constant	 of	 this	 PZT
composition	 in	a	 thin-film	 form	should	be	400.	One	 set	of	 samples	was	 subjected	 to
high	temperatures	to	anneal	the	films.	This	caused	some	lead	to	evaporate	and	caused
the	 formation	 of	 another	 layer	 (~100	 nm	 thick),	 a	 phase	 known	 as	 the	 pyrochlore
(assume	 a	 dielectric	 constant	 of	 ~50).	 The	 total	 film	 thickness	 of	 the	 PZT	 and
pyrochlore	layers	was	still	1000	nm.	What	is	the	capacitance	of	this	composite	film	per
unit	 area?	Express	your	 answer	 in	μF/cm2.	What	possibly	 can	be	done	 to	prevent	or
minimize	the	formation	of	the	pyrochlore	phase	having	a	low	dielectric	constant?

7.5 The	 dielectric	 constant	 of	 Si	 is	 11.9.	 Because	 Si	 is	 covalently	 bonded,	 the	 only
polarization	mechanism	present	 is	 electronic	polarization.	Use	 the	Clausius–Mossotti
equation	to	show	that	the	electronic	polarizability	of	Si	atoms	is	4.17	×	10−40	F	·	m2.

7.6 The	density	of	krypton	(Kr)	gas	at	25°C	and	one	atmosphere	is	reported	to	be	3.4322	×
10−3	g/cm3.	The	polarizability	volume	is	reported	to	be	2.479	×	10−24	cm3	in	literature
(Vidal	et	al.	1984).	Calculate	the	dielectric	constant	of	Kr	under	these	conditions,	if	its
molecular	weight	is	83.8	g.

7.7 For	a	mixture	of	Ar	(70%	by	weight)	and	Kr	(30%	by	weight),	show	that	the	average
molecular	weight	(M)	is	53.1.	Show	that	the	average	volume	polarizability	(using	data
from	Problem	7.5	and	Example	7.4)	is	1.80	×	10−24cm3.	What	is	the	dielectric	constant
of	this	mixture	of	gases	at	25°C	and	one	atmospheric	pressure?

7.8 From	the	data	in	Example	7.4,	calculate	the	dielectric	constant	of	Ar	gas.
7.9 Assuming	 that	 the	 dipole	moment	 of	H2O	molecules	 is	 10−29	 C	 ·	m	 and	 the	 electric

field	experienced	by	H2O	molecules	is	105	V/m,	calculate	the	dipolar	polarizability	of
H2O	molecules	in	F	·	m2.	Note:

7.10 Calculate	the	heat	generated	from	dielectric	losses	in	a	polymer	cable	subjected	to	an
electric	field	of	80	kV/cm.	Assume	that	the	frequency	is	60	Hz,	the	dielectric	constant
of	the	polymer	is	2.1,	and	tan	δ	is	10−4.

7.11 What	are	the	limitations	of	using	the	Clausius–Mossotti	equation?	Explain.



7.12 The	low-frequency	dielectric	constant	of	a	silicate	glass	is	4.0.	The	refractive	index	of
this	 glass	 is	 1.47.	What	 fraction	 of	 the	 dielectric	 constant	 can	 be	 attributed	 to	 ionic
polarization?

7.13 The	 variation	 in	 the	 imaginary	 part	 of	 the	 dielectric	 constant	 (k″)	 with	 frequency	 is
given	by	Equation	7.70.	Prove	that	the	maximum	k″	occurs	when	ω	=	1/τ.

7.14 Chalcogenide	 glasses	 are	 amorphous	 materials	 based	 on	 elements	 such	 as	 selenium
(Se),	Ge,	and	arsenic	(As).	These	glasses	have	promise	for	many	dielectric	and	optical
applications.	The	dielectric	constant	of	Se55Ge30As15	was	measured	 as	 a	 function	of
frequency	ranging	from	20	kHz	to	4	MHz	(Figure	7.32).
What	 is	 the	 trend	 in	 dielectric	 constant	 as	 the	 frequency	 increases	 at	 temperatures

between	 350	 and	 390	 K?	 At	 temperatures	 greater	 than	 400	 K,	 the	 lower-frequency
dielectric	constant	increases	considerably.	Suggest	a	possible	reason	for	this.

7.15 The	 dependence	 of	 the	 imaginary	 part	 of	 the	 dielectric	 constant	 	 for
chalcogenide	glasses	of	composition	Se55Ge30As15	is	shown	in	Figure	7.33.
From	the	data	shown	in	Figures	7.32	and	7.33,	plot	the	real	and	imaginary	parts	of

the	complex	dielectric	constant	as	a	function	of	ln(ω)	for	T	=	380	K.	Are	the	changes	in
the	real	and	imaginary	parts	of	the	dielectric	constant	sharp,	as	in	Figure	7.24?	Explain.
Show	that,	at	300	K,	the	maximum	ε″(ω)	occurs	at	~381	kHz.	What	is	the	value	of	ln(ω)
corresponding	to	this?	Show	that	the	most	probable	relaxation	time	for	polarization	in
this	material	is	~4.11	×	10−6	s.

FIGURE	 7.32 Dielectric	 constant	 of	 Se55Ge30As15	 glasses.	 (From	 El-Nahass,	 M.M.,	 et	 al.,	Physica	 B.,	 388,	 26–33,
2007.	With	permission.)



FIGURE	7.33 Dielectric	 losses	 	 of	 Se55Ge30As15	 glasses.	 (From	El-Nahass,	M.M.,	 et	 al.,	Physica	 B.,	 388,
26–33,	2007.	With	permission.)

7.16 For	 the	 data	 on	 chalcogenide	 glasses	 shown	 in	 Figures	 7.32	 and	 7.33,	 calculate	 the
values	 of	 tan	 δ	 as	 a	 function	 of	 the	 frequency	 (τ)	 (ω).	 Plot	 these	 values	 on	 a	 graph.
Assume	T	=	380	K.

7.17 Starting	with	the	Debye	equations	(Equations	7.69	and	7.70)	that	describe	the	changes	in
the	real	and	imaginary	parts	of	the	dielectric	constant	as	a	function	of	frequency,	show
that	(ε″/ω)	=	(τ)	×	(ε′	−	ε∞),	and	that	a	plot	of	log(ε″/ω)	versus	log(ε′	−	ε∞)	results	in	a
straight	line.	The	y-axis	intercept	of	this	graph	gives	the	value	of	log(τ),	from	which
the	value	of	the	relaxation	time	can	be	calculated.

7.18 A	 plot	 of	 log(ε″/ω)	 versus	 log(ε′	 −	 ε∞)	 for	 a	 dielectric	 material	 of	 composition
Se70Te30	 is	 shown	 in	Figure	7.34.	The	 data	were	 collected	 for	 temperatures	 ranging
from	298	to	373	K.
What	 are	 the	 log(τ)	 values	 for	 Se70Te30	 for	 these	 different	 temperatures?	 What

happens	to	the	values	of	the	relaxation	times	as	the	temperature	increases?



FIGURE	7.34 A	plot	of	log(ε′′/ω)	versus	log(ε′	−	ε∞)	for	Se70Te30.	(From	Sayed,	S.M.,	Appl	Surf	Sci.,	253,	7089–7093,
2007.	With	permission.)

7.19 The	molar	volume	of	a	dielectric	known	as	calcium	molybdate	(CaMoO4)	is	78.064	Å3.
Using	Shannon’s	approach	(see	Section	7.8),	write	down	the	expression	for	calculating
the	molar	polarizability	of	CaMoO4.	The	measured	dielectric	constant	of	this	material
is	10.79	(Choi	et	al.	2007).	What	is	the	polarizability	of	the	Mo6+	ion?

7.20 Many	microwave	ovens	work	at	a	 frequency	of	2.45	GHz.	Examine	how	the	real	and
imaginary	 parts	 of	 the	 dielectric	 constant	 of	 water	 change	 with	 the	 frequency	 for
different	 temperatures	 (Figure	 7.35).	 Show	 that	 the	 wavelength	 (λ)	 of	 the	 radiation
associated	with	these	waves	is	~12.2	cm.	The	wavelength	at	which	the	dielectric	losses
(i.e.,	 tan	δ)	are	maximized	(at	 room	temperature)	 is	4	cm;	what	 is	 the	corresponding
frequency	in	GHz?	The	speed	of	light	can	be	assumed	to	be	3	×	108	m/s.	Why	is	it	that
microwave	ovens	do	not	use	the	frequency	at	which	the	value	of	tan	δ	is	maximized?
Hint:	Microwaves	need	to	penetrate	into	the	food.	(See	Figure	7.36.)

7.21 Many	 foods	 contain	 H2O	 and	 salt,	 and	 the	 salt	 content	 of	 the	 food	 decreases	 the
dielectric	constant	of	H2O.	What	is	the	effect	of	the	salt	content	on	the	dielectric	losses
of	H2O?



7.22 The	molar	volume	(Vm)	for	beryllium	silicate	(Be2SiO4)	is	61.75	Å3	 (Shannon	1993).
What	 is	 the	 expected	 dielectric	 constant	 of	 Be2SiO4	 calculated	 using	 Shannon’s
approach?	The	experimental	value	of	the	dielectric	constant	for	Be2SiO4	is	6.22.

7.23 What	 are	 some	 of	 the	 situations	 in	 which	 Shannon’s	 approach	 for	 calculating	 the
dielectric	constant	probably	will	not	work?

7.24 The	low-frequency	dielectric	constant	of	Ge	is	16.	What	is	its	high-frequency	dielectric
constant?	Why?	What	is	the	refractive	index	of	Ge?

7.25 If	the	refractive	index	of	NaCl	is	1.5,	what	is	the	high-frequency	dielectric	constant	of
NaCl?	 If	 the	 low-frequency	 dielectric	 constant	 of	 NaCl	 is	 5.6,	 approximately	 what
fraction	 of	 the	 low-frequency	 dielectric	 constant	 can	 be	 attributed	 to	 ionic
polarization?

FIGURE	 7.35 Dependence	 of	 the	 real	 and	 imaginary	 parts	 of	 the	 dielectric	 constant	 of	 H2O	 on	 frequency	 for	 different
temperatures.	(From	Vollmer,	M.,	Phys.	Educ.,	39(1),	74–81,	2007.	With	permission.)



FIGURE	7.36 Refractive	index	(related	to	the	real	part	of	the	high-frequency	dielectric	constant)	and	absorption	coefficient
(related	 to	 the	 imaginary	 part	 of	 the	 complex	 dielectric	 constant)	 of	H2O.	 (From	Vollmer,	M.,	Phys.	 Educ.,	 39(1),	 74−81,
2004.	With	permission.)

7.26 Compositions	and	properties	of	silicate	glasses,	as	investigated	by	Wang	et	al.	(2007),
are	shown	in	Tables	7.3	and	7.4.
a. At	 10	 MHz,	 what	 polarization	 mechanisms	 are	 expected	 to	 play	 a	 role	 in

contributing	to	the	dielectric	constant	for	these	glasses?
b. Why	does	 the	glass	made	using	Li+	 (i.e.,	 Sample	 11)	 exhibit	 the	 lowest	 dielectric

constant?
c. Between	Samples	12	and	13	(i.e.,	samples	containing	sodium	and	potassium	oxides),

which	 sample	 has	 a	 higher	 total	 electronic	 polarizability	 and	 refractive	 index?
Why?



TABLE	7.3
Compositions	of	Glasses	(mol%)

TABLE	7.4
Dielectric	Properties	and	Resistivities	of	Glasses

Sample
Number

Dielectric	Constant	(at	10
MHz)

Dielectric	Loss	(tan	δ)	at	10
MHz

Resistivity	(Ω	·
cm)

11 5.58 4.97	×	10−2 0.73	×	1013
12 6.03 4.5	×	10−2 0.66	×	1013
13 6.05 4.41	×	10−2 1.17	×	1013
Source:	Wang,	Z.,	et	al.,	J.	Non	Cryst.	Solids,	354(12),	1128–1132,	2008.

d. Because	the	dielectric	constant	of	Samples	12	and	13	(at	10	MHz)	is	effectively	the
same,	which	 sample	 has	 a	 higher	 ionic	 polarizability?	Does	 this	 explain	why	 the
dielectric	constant	of	Samples	12	and	13	is	approximately	the	same?

e. The	 so-called	 modifier	 ions,	 that	 is,	 ions	 that	 cause	 disruption	 of	 the	 silicate
tetrahedra	in	the	local	arrangements	within	glasses,	play	a	key	role	in	controlling
the	dielectric	losses	of	these	materials.	Based	on	the	values	of	tan	δ,	which	modifier
ion	seems	most	mobile?

f. The	conductivity	of	these	glasses	depends	on	the	type	and	concentration	of	modifier
ions.	For	Samples	11,	12,	and	13,	the	concentration	of	modifier	ions	(Li+,	Na+,	and
K+)	 is	 the	 same.	 The	 conductivity	 then	 depends	 on	 the	 mobility	 of	 these	 ions
(which,	 in	 turn,	 depends	 on	 the	 size	 of	 the	 ion)	 and	 on	 the	 strength	 of	 the	 bond
between	the	modifier	and	the	oxygen	ions.	Explain	why	sodium	oxide–based	glass
has	the	lowest	resistivity	of	these	compositions.

GLOSSARY

Admittance	(Y):	The	inverse	of	impedance	(Z).

Atomic	polarization:	See	Ionic	polarization.

Bound	charge:	Charges	on	a	capacitor	plate	that	are	not	free	to	move	because	they	are	bound
by	the	dipoles,	either	induced	or	present,	in	the	dielectric	material.



Capacitive	 reactance	 (XC):	 A	 capacitor ’s	 effective	 resistance	 (in	 ohms)	 to	 the	 flow	 of
electricity	 through	 it,	 which	 is	 given	 by	XC	 =	 1/ωC	 =	 1/2πC.	 This	 component	 of	 the
impedance	does	not	cause	any	dissipation	of	electrical	energy.

Capacitor:	A	device	or	structure	filled	with	a	dielectric	layer	that	is	separated	by	electrodes
and	is	used	for	charge	storage.

Charging	 current	 (Ic):	 The	 current	 that	 leads	 to	 the	 storage	 of	 charge	 in	 a	 dielectric	 (or
capacitor)	when	a	voltage	is	applied.

Clausius–Mossotti	equation:	The	equation	that	relates	the	dielectric	constant	(a	macroscopic
property)	to	the	polarizability	of	atoms	and	ions	(a	microscopic	property).	This	equation
cannot	 be	 used	 to	 account	 for	 interfacial	 (Maxwell–Wagner)	 or	 ferroelectric
polarization.

Coercive	field	(Ec):	The	electric	field	necessary	to	cause	the	domains	in	a	ferroelectric	with
some	remnant	polarization	to	be	randomized	again	in	order	to	achieve	a	state	of	zero	net
polarization.

Cole–Cole	plots:	The	sets	of	arcs	or	semicircles	that	appear	when	variations	of	k′	(x-axis)	and
k″	(y-axis)	are	plotted	as	a	function	of	the	frequency.

Complex	 dielectric	 constant	 :	 A	 quantity	 that	 describes	 the	 ability	 of	 a	 real	 dielectric
material	to	store	an	electrical	charge	 ;	also	a	measure	of	the	energy	lost	 	while	 the
polarization	processes	that	lead	to	charge	storage	occur.	It	is	given	by	 .

Curie	 temperature:	 The	 temperature	 at	 which	 a	 ferroelectric	 material	 transforms	 into	 a
centrosymmetric	paraelectric	material.

Debye:	A	unit	of	dipole	moment,	with	one	Debye	(D)	equal	to	3.3356	×	10−30	C	·	m.

Debye	equations:	 Equations	 describing	 both	 the	 relaxation	 in	 a	 dielectric	 constant	 and	 the
dependence	of	the	imaginary	part	of	the	dielectric	constant	on	frequency.

Debye	loss	peak:	The	frequency	ω	=	1/τ,	at	which	the	value	of	k″	reaches	a	maximum.

Dielectric	 constant	 (k	 or	 εr):	 A	 dimensionless	 parameter	 that	 expresses	 the	 ability	 of	 a
dielectric	to	store	charge,	which	is	expressed	as	a	ratio	of	the	capacitance	of	a	capacitor
filled	with	a	dielectric	material	to	that	filled	with	a	vacuum	(C/C0).

Dielectric	displacement	(D):	The	total	charge	density,	which	is	written	as	a	total	of	 the	free
and	bound	charge	densities	due	to	the	polarization	of	a	dielectric.

Dielectric	flux	density	(D):	See	Dielectric	displacement.



Dielectric	material:	A	large-bandgap	semiconductor	(Eg	~	>4	eV)	with	high	resistivity	(ε).

Dielectric	 permittivity	 (ε):	 A	 parameter	 that	 expresses	 the	 ability	 of	 a	 material	 to	 store	 a
charge,	expressed	as	ε	=	σs/E,	where	σs	is	the	surface	charge	density	and	E	is	the	electric
field.	The	unit	for	permittivity	is	F/m,	with	the	permittivity	of	free	space	being	ε0	=	8.85
×	10−12	F/m.	We	often	use	the	dielectric	constant	ε/ε0.

Dielectric	 polarization	 (P):	 The	 magnitude	 of	 the	 bound	 charge	 density	 in	 a	 dielectric
material.

Dielectric	relaxation:	A	reduction	in	the	dielectric	constant	with	an	increasing	frequency	of
the	applied	electric	field	because	some	of	the	polarization	mechanisms	cannot	keep	up.

Dipolar	 polarizability	 (αd):	 Polarizability	 due	 to	 the	 presence	 of	 molecules	 with	 a	 dipole
moment	(μ);	given	by

Dipolar	polarization:	Also	known	as	orientational	polarization,	caused	by	the	realignment	of
permanent	dipoles	present	in	certain	materials.

Dipole	moment	(μ):	For	a	dipole	with	charges	+q	and	−q	separated	by	a	distance	d,	the	dipole
moment	is	q	×	d,	the	SI	unit	of	which	is	C	·	m.

Electrical	insulators:	Dielectric	materials	with	high	breakdown	voltage,	also	known	simply
as	insulators.

Electronic	polarizability	(αe):	A	measure	of	the	electronic	polarization	of	an	atom	or	an	ion,
with	larger	atoms	and	ions	having	higher	electronic	polarizabilities.

Electronic	polarization:	Creating	or	inducing	a	dipole	in	an	atom	or	an	ion	by	displacing	the
electronic	cloud	with	respect	to	the	nucleus.

Electrostatic	induction:	The	development	of	a	charge	on	a	material	when	another	material
with	a	net	charge	is	brought	near	it.

Equivalent	series	capacitance	(ESC):	The	capacitance	of	a	capacitor	when	a	real	dielectric
material	 is	 modeled	 as	 a	 combination	 of	 a	 resistance	 and	 a	 capacitor	 connected	 in	 a
series.	It	is	related	to	the	equivalent	elements	of	a	parallel	circuit	(Cp	and	Rp),	describing
the	same	real	dielectric	by



Equivalent	 series	 resistance	 (ESR):	 The	 resistance	 of	 a	 resistor	 when	 a	 real	 dielectric
material	is	modeled	as	a	combination	of	a	resistance	and	a	capacitor	connected	in	series.
It	 is	 related	 to	 the	 equivalent	 elements	 of	 a	 parallel	 circuit	 (Cp	 and	Rp),	 describing	 the
same	real	dielectric	by

Ferroelectrics:	Materials	that	show	spontaneous	and	reversible	polarization.

Free	 charge:	 A	 charge	 on	 a	 capacitor	 plate	 that	 is	 free	 to	 move	 and	 is	 not	 bound	 to	 the
induced	or	permanent	dipole	in	a	dielectric	material.

Frequency	dispersion:	See	Dielectric	relaxation.

Gauss’s	 law:	This	 law	 states	 that	 the	 area	 integral	 of	 the	 electric	 field	 (E)	 over	 any	 closed
surface	 is	 equal	 to	 the	 net	 charge	 (Q)	 enclosed	 within	 the	 surface	 divided	 by	 the
permittivity	of	space	(ε0)	and	is	given	by	the	following	equation:

High-frequency	dielectric	constant	(k∞):	The	dielectric	constant	measured	at	frequencies	at
which	 only	 the	 electronic	 polarization	 mechanism	 operates.	 It	 is	 also	 known	 as	 the
optical	frequency	dielectric	constant	and	is	equal	to	the	square	of	its	refractive	index	(n).

Ideal	dielectric:	A	dielectric	material	with	no	dielectric	losses;	such	a	material	does	not	exist.

Imaginary	 part	 of	 the	 dielectric	 constant	 (k″	or	 ):	 The	 part	 of	 the	 complex	 dielectric
constant	 that	 is	 associated	with	dielectric	 losses	 and	 the	 loss	 current	 for	 a	hypothetical
dielectric	with	only	one	relaxation	time	(τ).	It	is	given	by	the	following	equation:

Impedance	(Z):	The	equivalent	of	resistance	applicable	to	a	circuit	that	can	have	a	capacitor
and	an	inductor.	The	units	of	impedance	are	ohms.	Its	inverse	is	admittance	(Y).

Impedance	analyzer:	Equipment	that	can	measure	the	inductance,	capacitance,	and	resistance
of	a	material	or	device,	 typically	at	different	frequencies,	 that	 in	turn	helps	to	calculate
the	impedance	(Z).

Impedance	spectroscopy:	The	technique	of	measuring	k′	and	k″	as	a	function	of	frequency.

Interfacial	polarization:	Polarization	at	the	heterogeneities	in	a	material	or	device,	typically
at	 the	 dielectric–electrode	 interfaces	 and	 at	 the	 grain	 boundaries	 of	 a	 polycrystalline
material.



Internal	electric	field:	See	Local	electric	field.

Ionic	polarizability	(αi):	A	parameter	for	describing	the	propensity	of	ions	to	undergo	ionic
polarization.

Ionic	polarization:	A	polarization	mechanism	in	which	the	ions	themselves	are	displaced	in
response	to	the	electric	field	experienced	by	the	solid,	creating	a	net	dipole	moment	per
ion	(pav).	This	is	also	known	as	atomic	or	vibrational	polarization.

Local	 electric	 field	 (Elocal):	 The	 actual	 field	 experienced	 by	 the	 atoms,	molecules,	 or	 ions
within	 a	 material,	 which	 is	 different	 from	 the	 applied	 field	 and	 is	 referred	 to	 as	 the
internal	or	local	electric	field	(Elocal).

This	equation	cannot	be	used	for	materials	that	either	lack	a	cubic	structure	or	are	polar.

Local	field	approximation:	See	Local	electric	field.

Lorentz–Lorenz	equation:	An	equation	that	relates	the	high-frequency	dielectric	constant	to
the	refractive	index	through	the	electronic	polarizability.

Loss	angle	(δ):	In	an	ideal	dielectric,	the	charging	current	leads	the	voltage	by	90°,	whereas
in	a	real	dielectric,	it	leads	by	(90−δ)°.	The	tangent	of	this	angle	represents	the	dielectric
losses.

Loss	 current	 (Iloss):	 The	 dielectric	 losses	 that	 are	 encountered	 during	 the	 polarization
processes	in	a	real	dielectric	subjected	to	an	electric	field.

Loss	tangent	(tan	δ):	The	ratio	of	the	loss	current	to	the	charging	current	in	a	real	dielectric.
It	 is	 also	 the	 ratio	of	 the	 imaginary	 to	 the	 real	parts	of	 the	dielectric	 constant	 and	 is	 a
measure	 of	 the	 quantity	 of	 the	 input	 electrical	 energy	 lost	 during	 the	 polarization
processes.

Low-frequency	dielectric	constant	(ks):	See	Static	dielectric	constant.

Low-loss	 dielectric:	 A	material	 that	 has	 a	 low	 tan	 δ	 (~	 <10−3);	 typically,	 the	 value	 of	 the
quality	factor	of	the	dielectric	(Qd)	is	reported	as	Qd	=	1/tan	δ.

Maxwell’s	equations:	A	 set	 of	 four	 equations	 that	 describe	 the	 basis	 of	many	 relationships
pertaining	to	the	electrical	and	magnetic	properties	of	materials.	These	are	the	basis	for
many	laws,	such	as	Gauss’s	law.



Maxwell–Wagner	 polarization:	 Also	 known	 as	Maxwell–Wagner–Sillars	 polarization.	 See
Interfacial	polarization.

Molar	polarization	(Pm):	Another	 form	of	 the	Clausius–Mossotti	 equation,	 expressed	 such
that	we	obtain	the	polarization	per	mole	(Pm)	with	the	unit	of	m3/mol	or	cm3/mol.	This	is
given	by	the	following	equation:

Multilayer	 capacitor	 (MLC):	 A	 capacitor	 comprising	 alternating	 layers	 of	 dielectrics	 and
electrodes.	The	layers	are	connected	in	parallel	to	maximize	the	volumetric	efficiency	of
the	capacitor.

Nonlinear	dielectrics:	Materials	in	which	the	developed	polarization	is	not	linearly	related	to
the	electric	field;	thus,	the	dielectric	constant	of	these	materials	will	be	field-dependent.
This	includes	ferroelectrics	and	other	materials,	such	as	water,	in	which	molecules	have
a	permanent	dipole	moment.

Optical-frequency	dielectric	constant:	See	High-frequency	dielectric	constant.

Optical	polarization:	See	Electronic	polarization.

Orientational	polarization:	See	Dipolar	polarization.

Paraelectric	 phase:	 The	 high-temperature	 phase	 derived	 from	 an	 originally	 ferroelectric
parent	phase	that	now	has	no	dipole	moment	per	unit	cell.

Phasor:	 A	 rotating	 vector	 that	 shows	 the	 phase	 angle	 for	 a	 particular	 type	 of	 current	 or
voltage	in	a	circuit	component.

Phasor	diagram:	A	diagram	showing	the	relative	positions	of	phasors.

Piezoelectric:	A	material	that	develops	electrical	voltage	or	charge	when	subjected	to	stress.
The	material	also	develops	a	relatively	large	strain	when	subjected	to	an	electric	field.

Polar	 dielectrics:	 Materials	 that	 have	 a	 permanent	 dipole	 moment	 (e.g.,	 water),	 or
ferroelectric	materials	in	which	a	dipole	moment	is	spontaneously	set	up.

Polarizability	 (α):	 The	 tendency	 of	 an	 atom	 or	 an	 ion	 to	 undergo	 polarization	 under	 the
application	of	an	electric	field.	The	dipole	moment	created	(μ)	when	an	electric	field	(E)
is	applied	is	given	by	μ	=	(α	×	E).

Polarization:	 The	 effect	 of	 an	 electric	 field	 on	 atoms,	 ions,	 and	 molecules	 in	 a	 material,
resulting	 in	 the	creation	of	 induced	dipoles	or	changes	 in	 the	orientation	of	permanent
dipoles.



Quality	factor	(Q):	A	measure	of	the	dielectric	losses;	the	higher	the	losses,	the	lower	the	Q.
It	is	useful	for	comparing	dielectric	materials	with	very	low	dielectric	losses;	for	these,
Q	is	defined	as	the	inverse	of	tan	δ.

Real	dielectric:	A	dielectric	material	 that	 exhibits	 dielectric	 losses	 and	 an	 ability	 to	 store	 a
charge.	An	ideal	dielectric,	which	does	not	exist,	has	no	dielectric	losses.

Real	 part	 of	 the	 dielectric	 constant	 (k′):	 The	 frequency-dependent	 part	 of	 the	 complex
dielectric	constant	related	to	the	polarization	processes,	which	enables	charge	storage.

Relaxation	time	(τ):	The	time	required	for	a	polarization	mechanism	to	revert	and	realign	or
to	change	its	value	when	the	electrical	field	switches	or	changes	in	magnitude.

Ragone	plot	(Ragone	chart):	A	diagram	that	compares	a	specific	possible	power	density	to	a
specific	energy	output	for	different	power-	or	energy-generating	devices.

Specific	capacitance:	Capacitance	per	unit	mass.

Static	 dielectric	 constant	 (ks):	 The	 value	 of	 the	 dielectric	 constant	 under	 DC	 fields,
sometimes	also	equated	to	the	low-frequency	dielectric	constant.

Static	 electronic	 polarizability	 (αe,static):	 The	 value	 of	 electronic	 polarizability	 when	 the
electric	field	causing	the	polarization	is	not	time-dependent.

Supercapacitors:	 Capacitors	 that	 make	 use	 of	 double-layer,	 interfacial	 polarization
mechanisms	to	create	a	very	high	(~1	F)	level	of	capacitance.	The	specific	capacitance	of
these	devices	can	be	very	high,	at	~700–1000	F/g.

Tan	delta:	See	Tangent	delta.

Tangent	delta	(tan	δ):	The	 ratio	of	 the	 loss	current	 to	 the	charging	current	 in	a	dielectric
material;	also	the	ratio	of	the	magnitudes	of	the	imaginary	and	real	parts	of	the	complex
dielectric	constant.

Total	dielectric	polarizability	 	:	The	dielectric	polarizability	of	a	compound	calculated
using	 Shannon’s	 approach.	 This	 can	 be	 estimated	 from	 the	 individual	 polarizabilities
(both	electronic	and	ionic)	of	the	ions,	the	unit	cell	volume,	and	the	molecular	weight;	or
from	the	total	dielectric	polarizabilities	of	other	compounds.

Vector	diagram:	See	Phasor	diagram.

Vibrational	polarization:	See	Ionic	polarization.

Volume	polarizability	 (αvolume):	Polarizability	 that	 is	often	expressed	 in	 the	unit	of	 cm3	 or
Å3:



Volumetric	efficiency:	The	total	capacitance	per	unit	volume.	This	 is	maximized	by	using	a
large	 number	 of	 thinner	 dielectric	 layers	 connected	 in	 parallel	 and	 by	 using	materials
with	higher	dielectric	constants.
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8	Optical	Properties	of	Materials

KEY	TOPICS

Basic	properties	of	light	as	an	electromagnetic	wave
Refractive	index	and	its	physical	origin
Drude	model	and	Lorentz	model
Refraction,	reflectance,	and	transmittance
Extinction:	scattering,	absorbance,	and	attenuation	of	light
Color	and	radiative	recombination
Application	of	light–matter	interaction:	anti-reflection	coating,	optical	fiber,	LASER,	LED

We	care	about	optical	properties	of	materials	because	they	determine	how	materials	look	to
human	 eyes.	 Light	 is	 an	 electromagnetic	 wave.	 Figure	 8.1	 shows	 the	 wavelengths	 of
electromagnetic	 waves	 including	 visible	 light	 in	 air.	 The	 wavelength	 of	 visible	 light	 that
humans	can	see	ranges	from	400	nm	(violet	light)	to	700	nm	(red	light).	The	propagation	of
light	through	materials	is	controlled	by	the	materials’	optical	properties.	For	example,	color
in	nature	is	a	result	of	interactions	between	white	light	and	materials.	When	white	light	enters
matter,	the	electric	and	magnetic	fields	of	light	induce	the	electric	and	magnetic	polarizations
in	materials.	Since	electromagnetic	waves	with	different	wavelengths	interact	differently	with
the	 induced	 dielectric	 and	magnetic	 polarizations,	 only	 a	 part	 of	 the	 incident	white	 light	 is
reflected,	 scattered,	 refracted,	 absorbed,	 or	 transmitted.	 All	 types	 of	 these	 light–matter
interactions	contribute	to	the	colors	that	we	find	in	nature.

As	we	learned	and	will	learn	in	Chapters	7	and	11,	materials	possess	several	dielectric	and
magnetic	 polarization	 mechanisms.	 For	 instance,	 dielectric	 polarization	 comes	 from	 the
appearance	 or	 alignment	 (or	 from	 both)	 of	 electronic	 dipoles,	 ionic	 dipoles,	 orientational
dipoles,	 and	 space-charge	 dipoles	 under	 an	 electric	 field.	 It	 is	 noted	 that	 each	 dipole	 has
different	operation	frequency	ranges.	Since	the	frequency	of	visible	light	(~1015	Hz)	is	very
high	 (i.e.,	 the	wavelength	 of	 400	 ~	 700	 nm),	 only	 the	 electronic	 dipole	 can	 respond	 to	 the
electric	 field	 of	 visible	 light	 and	 control	 the	 appearance	 of	 color.	 Most	 importantly,	 the
formation	of	dielectric	and	magnetic	dipoles	by	an	electromagnetic	wave	is	not	constant	even
in	the	visible	light	regime.	This	indicates	that	materials	respond	differently	to	different	parts
of	the	solar	spectrum.

For	 example,	 when	 only	 a	 red	 component	 of	 light	 is	 absorbed	 through	 material–light
interactions	 (e.g.,	 other	 parts	 of	 the	 visible	 light	 are	 transmitted	 or	 scattered),	 a	 material
exhibits	blue	or	green	colors	that	are	complementary	to	the	red.	In	a	transparent	material	such
as	window	glass,	visible	light	experiences	negligible	absorption,	reflection,	and	scattering.	If
most	 of	 the	 incoming	 light	 is	 reflected	 on	 the	 surface	 of	 a	 material	 such	 as	 a	 metal,	 the
material	looks	very	shiny.	The	color	of	the	sky	is	determined	by	the	interaction	of	light	with
gas	molecules	 (N2,	O2)	 in	 the	atmosphere.	Even	when	 the	size	of	gas	molecules	 (<1	nm)	 is
much	smaller	than	the	visible	light	wavelength	(400–700	nm),	gas	molecules	can	scatter	light.
Lord	Rayleigh	quantitatively	explained	light	scattering	by	very	fine	particles.	In	the	Rayleigh



scattering	 regime,	 the	 phase	 of	 the	 electromagnetic	 wave	 is	 assumed	 to	 be	 constant	 in
scattering	 particles,	 and	 the	 intensity	 of	 the	 light	 scattered	 by	 very	 small	 particles	 is
proportional	 to	 λ−4	 (with	 λ	 representing	 the	 wavelength	 of	 light).	 Therefore,	 a	 blue
component	of	the	solar	spectrum,	with	its	shorter	wavelength,	is	scattered	more	than	the	red
component	 (Figure	 8.2).	 Scattered	 blue	 light	 travels	 in	 every	 direction	 and	 reaches	 human
eyes	on	the	Earth.	This	is	explains	why	the	sky	looks	blue	during	the	daytime.	However,	just
before	sunset,	the	color	of	the	sky—especially	in	the	region	nearest	the	sun—turns	red.	This
is	attributed	to	the	fact	that	the	traveling	distance	of	solar	light	in	the	atmosphere	is	increased
before	sunset	as	compared	to	at	noon.	Since	the	traveling	path	of	sunlight	in	the	atmosphere
increases,	 blue	 light	 is	 scattered	 multiple	 times	 and	 the	 most	 incident	 photons	 are	 filtered
completely.	Thus,	only	red	and	yellow	light	reach	human	eyes	on	Earth	and	the	sky	near	the
sun	turns	red	just	before	the	sunset	(Figure	8.2).

FIGURE	8.1 Wavelengths	of	electromagnetic	waves	including	visible	light.	(From	Amateur	Astronomers	Group,	US.	With
permission.)

A	 material’s	 property-controlling,	 visible	 light–matter	 interaction	 is	 expressed	 in	 the
refractive	 index,	which	 is	 a	 frequency-dependent	 complex	 function.	The	 refractive	 index	 is
correlated	to	dielectric	and	magnetic	polarizations	at	a	frequency	of	~1015	Hz/s,	which	will	be
discussed	 in	 Section	 8.1.	 In	 addition	 to	 the	 intrinsic	 properties	 of	 materials,	 extrinsic
properties	 such	 as	 size	 and	 surface	 roughness	 also	 influence	 light–matter	 interactions.	 The
extrinsic	effects	will	be	studied	in	Section	8.5.

An	interesting	example	showing	intrinsic	and	extrinsic	effects	involves	the	different	colors
of	ocean	and	cloud—both	of	which	are	composed	of	water.	The	ocean’s	color	comes	from
the	intrinsic	properties	of	water.	Since	a	hydrogen	bond	of	water	(Section	1.4)	absorbs	the	red
part	of	the	solar	spectrum,	water	in	the	ocean	exhibits	a	blue	or	green	color.	Therefore,	even
when	 white	 light	 enters,	 only	 the	 blue	 light	 is	 reflected	 back;	 thus,	 the	 ocean	 looks	 blue
(Figure	8.3).	However,	water	 drops	 in	 clouds	 scatter	 the	 entire	 range	of	 the	 solar	 spectrum
rather	than	absorbing	only	red	light	because	the	individual	drop	size	(1	~	10	μm)	in	clouds	is
slightly	 larger	 than	 the	 wavelength	 of	 visible	 light.	 Hence,	 the	 extrinsic	 property	 of	 water



drops	(i.e.,	size	effect)	makes	clouds	look	white	to	the	human	eye	(Figure	8.3).	This	 type	of
scattering	 by	 relatively	 large	 particles	 is	 called	 Mie	 scattering.	 In	 contrast	 to	 Rayleigh
scattering,	Mie	scattering	explains	the	situation	when	the	wavelength	of	light	and	the	size	of
scattering	particles	are	comparable.	In	the	case	of	Mie	scattering,	 the	phases	of	 the	alternate
electric	 and	magnetic	 fields	of	 the	wave	vary	within	 the	 scattering	particles.	The	difference
between	Rayleigh	and	Mie	scattering	mechanisms	will	be	explained	in	Section	8.5.

Another	example	of	Mie	scattering	is	the	stained	glass	often	used	for	windows	in	medieval
churches.	Metal	 salts	 added	 into	 the	 raw	materials	of	glass	 (mainly	 sands)	 are	 converted	 to
metal	nanoparticles	(size:	10~100	nm)	during	the	melting	and	cooling	of	glass.	In	comparison
to	water	drops,	the	metal	nanoparticles	have	many	more	free	electrons	that	can	be	excited	by
an	electromagnetic	wave.	Due	to	the	free	electrons’	contribution,	the	absorption	and	scattering
of	the	metal	nanoparticles	are	frequency-dependent,	which	is	different	from	Mie	scattering	by
water	drops.	The	selective	absorption	and	scattering	of	visible	light	by	the	metal	nanoparticles
in	 glass	 result	 in	 the	 unique	 colors	 of	 stained	 glass,	 which	 are	 not	 observed	 in	 the	 shiny
surface	of	bulk	metals	or	in	the	insulating	water	drops	of	a	cloud.



FIGURE	 8.2 Schematics	 explaining	 the	 color	 of	 the	 sky	 at	 noon	 and	 sunset.	 (From	 NASA	 Space	 Place,	 US.	 With
permission.)



FIGURE	8.3 Schematics	explaining	light	absorption	in	the	ocean	and	light	scattering	in	clouds.	(From	NASA	Space	Place,
US;	US	and	Hong	Kong	Observatory,	Hong	Kong.	With	permission.)

In	 this	 chapter,	 we	 will	 first	 study	 the	 basic	 properties	 of	 light,	 the	 electron-induced
polarization	 of	 various	 materials,	 and	 the	 results	 of	 polarization–light	 interactions	 (e.g.,
absorption	and	scattering).	Then,	optically	or	electrically	pumped	light	emissions	and	several
applications	of	optical	materials	will	be	introduced	in	the	latter	part	of	the	chapter.

8.1 DESCRIPTION	 OF	 LIGHT	 AS	 AN	 ELECTROMAGNETIC	 WAVE	 AND	 ITS
CONNECTION	TO	THE	PHYSICAL	PROPERTIES	OF	OPTICAL	MATERIALS

Light	 is	an	electromagnetic	wave	in	which	an	electric	field	and	a	magnetic	field	oscillate	 in
normal	 directions	 (Figure	 8.4).	 The	 difference	 between	 electromagnetic	 waves	 and
mechanical	waves	is	that	an	electromagnetic	wave	does	not	require	a	medium.	This	suggests
that	the	electromagnetic	wave	can	travel	in	a	vacuum	(e.g.,	the	free	space	outside	the	Earth’s
atmosphere).	In	contrast,	the	mechanical	wave	cannot	propagate	in	a	vacuum	because	there	is
no	medium	 for	mechanical	 vibration.	 This	 unique	 property	 of	 the	 electromagnetic	wave	 is
due	to	the	coupling	of	the	electric	field	and	the	magnetic	field.	That	is,	an	oscillating	electric
field	 induces	an	oscillating	magnetic	 field	and	vice	versa.	The	coupling	between	 two	 fields
enables	a	self-propagation	of	 the	electromagnetic	field	without	 the	medium.	Therefore,	 it	 is
necessary	to	review	the	electric	field	and	the	magnetic	field	to	understand	the	electromagnetic
wave.

Macroscopic	 features	 of	 the	 electric	 field	 and	 the	 magnetic	 field	 are	 described	 by
Maxwell’s	equations,	which	integrate	important	laws	and	empirical	observations	on	electricity
and	magnetism	from	the	nineteenth	century.



FIGURE	8.4 A	schematic	of	an	electromagnetic	wave.

In	Equations	8.1,	8.2,	8.3	and	8.4,	E	and	H	are	the	electric	field	vector	(unit:	volt/meter)	and
magnetic	field	vector	(unit:	ampere/meter),	respectively,	and	show	external	driving	forces	that
induce	 a	 change	 in	 materials;	D	 and	B	 are	 electric	 displacement	 (unit:	 coulomb/m2)	 and
magnetic	 induction	(weber/m2),	 respectively,	which	represent	 the	responses	of	a	material	 to
either	 the	 electric	 field	 or	magnetic	 field	 of	 the	 electromagnetic	wave;	J	 and	 ρ	 are	 current
density	 (unit:	 ampere/m2)	 and	 charge	 density	 (unit:	 coulomb/m3),	 respectively,	 which	 are
often	considered	as	sources	of	electric	and	magnetic	fields	in	materials.

The	 dot	 product	 of	 del	 and	 electric	 displacement	 (e.g.,	 ∇	 ·	 D)	 in	 the	 first	 Maxwell’s
equation	(Equation	8.1)	 is	called	divergence	of	electric	displacement	 (D),	which	measures	a
change	in	the	magnitude	of	the	electric	displacement.	As	discussed	in	Chapter	7,	D	equals	the
sum	of	ε0E	and	P,	where	P	shows	the	effect	of	the	charge	that	is	bound	in	materials	exposed
to	the	electric	field.	Note	that	an	electron	can	be	separated	from	a	hole	and	accumulated	to	a
material’s	surface,	which	makes	that	material’s	surface	negatively	charged.	This	explains	why
∇	·	D	is	not	zero.	Equation	8.1	implies	that	the	electric	field	can	diverge	or	converge	and	that
the	 nonuniform	 distribution	 of	 the	 net	 electric	 charge	 (i.e.,	 the	 sum	 of	 the	 negative	 and
positive	 charges)	 is	 the	 origin	 of	 electric	 displacement	 in	 the	 material.	 In	 other	 words,	 a
change	 in	 electric	 displacement	 leaves	 the	 electric	 charge	 on	 the	 material’s	 surface	 and
produces	the	net	electric	field	flux	out	of	the	close	surface.	This	is	known	as	Gauss’s	law	of
electrostatics	or	simply	Gauss’s	law.

In	contrast	to	Equation	8.1,	where	∇	·	D	is	equivalent	to	ρ,	∇	·	B	in	Equation	8.2	is	zero	in
any	case.	This	is	because	the	source	of	the	magnetic	induction	is	a	magnetic	dipole	rather	than
a	 magnetic	 monopole.	 The	 north	 pole	 always	 pairs	 with	 the	 south	 pole	 to	 generate	 the
magnetic	 field,	 and	 neither	 the	 north	 pole	 nor	 the	 south	 pole	 exists	 by	 itself.	 Therefore,	 a
change	in	the	magnetic	induction	does	not	accompany	a	change	in	the	density	of	the	sum	of
the	north	poles	and	 the	 south	poles.	The	qualitative	meaning	of	Equation	8.2,	which	 is	 also



known	as	Gauss’s	law	for	magnetostatics,	is	that	magnetic	induction	does	not	diverge	and	that
magnetic	field	lines	entering	the	volume	of	interest	do	not	disappear	or	converge	before	they
exit	 that	 volume	 (i.e.,	 the	 net	 magnetic	 flux	 is	 zero).	 In	 Figures	 8.5	 and	 8.6,	 different
microscopic	 origins	 of	magnetic	 polarization	 and	 dielectric	 polarization	 are	 compared.	As
shown	 in	 Figure	 8.6,	 an	 external	 electric	 field	 generates	 or	 aligns	 (or	 both)	 the	 dielectric
dipoles	that	hold	electrons	and	holes	on	the	surface	of	the	conductive	plates.	The	charge	held
by	the	dipoles	is	called	the	bound	charge	and	the	remaining	charge	is	called	the	free	charge.

FIGURE	8.5 A	schematic	of	a	magnetic	dipole	with	a	north	pole	and	south	pole	pair.

FIGURE	8.6 A	schematic	of	charge	accumulation	on	the	surface	of	dielectric	materials	(the	bound	charge	on	the	right	plot	is
related	to	electric	displacement).



Example	8.1: Surface	Electric	Charge	and	Electric	Potential

1.	 If	 the	 surface	 charge	 of	 a	 material	 is	 not	 zero,	 electric	 potential	 is	 built	 up	 near	 the
surface	of	the	charged	material.	Show	the	relation	between	the	electric	potential	and	the
charge	density	of	the	surface	using	Gauss’s	law.

2.	 Both	sides	of	an	alumina	plate	are	coated	with	a	metal	electrode.	The	surface	area	of	the
electrode	 is	 5	 mm2	 and	 the	 relative	 dielectric	 constant	 and	 dielectric	 strength	 of	 the
alumina	are	9.1	and	17	volt/mm,	respectively.	What	is	the	maximum	amount	of	electric
charge	that	can	be	stored	on	the	alumina	plate’s	surface?

Solution
1.	 In	Gauss’s	law	(or	the	first	Maxwell’s	equation),

∇	·	D	=	ρ	and	D	=	εE

Since	the	electric	field	equals	the	gradient	of	electric	potential,

E	=	−∇V

By	combining	these	two	equations,

−∇	·	(ε∇V)	=	ρ

This	 shows	 that	 the	 gradient	 of	 electric	 potential	 is	 proportional	 to	 the	 charge	 density.	 If	 the
material’s	 surface	 is	 electrically	 conducting,	 the	 surface	 is	 equipotential	 and	 the	 potential	 gradient	 is
developed	along	the	normal	direction	of	the	charged	surface.	Also,	when	the	left	and	right	sides	of	the
aforementioned	equation	are	 integrated,	we	can	 find	a	correlation	between	electric	 field	and	electric
charge,	which	is	called	Poisson’s	equation

where	En	 is	 the	 electric	 field	 normal	 to	 the	 surface	 and	Qtotal	 is	 the	 total	 charge	 inside	 the
surface.

2.	 Note	 that	 only	 the	 electric	 charge	 on	 the	 surface	 of	 the	 dielectric	 layer	 is	 not
compensated.	This	means	that	the	material	is	electrically	neutralized	except	at	its
surface.	Therefore,	the	surface	charge	density	per	unit	area	(σ)	is	correlated	to
the	charge	density	(ρ).	By	combining	these	two	equations,

ρ	=	∫σ(dA)

From	 ,	we	can	get	an	equation,	 .	Consequently,	the	maximum	surface

charge	 density	 per	 unit	 area	 (σ)	 that	 can	 be	 stored	 on	 the	 dielectric	 material’s	 surface	 equals	 the
product	of	the	maximum	dielectric	strength	(17	volt/mm)	and	the	permittivity	of	alumina	(=9.62	×	ε0).

In	this	example,	the	charge	stored	on	the	alumina	with	the	electrode	area	of	5	mm2	is	εEA:



The	cross	product	of	del	and	the	electric	field	(∇	×	E)	is	called	the	curl	of	the	electric	field,
which	 is	 the	 torque	 (rotational	 flow).	 In	 Equation	 8.3,	 Faraday’s	 law	 on	 magnetic	 field
induction	 and	 Lenz’s	 law	 on	 the	 direction	 of	 the	 induced	 magnetic	 field	 are	 combined.
Equation	 8.3	 states	 that	 a	 change	 in	 the	 magnetic	 induction	 over	 time	 generates	 an
electromotive	force	in	a	closed	conductor	line	circuit.	The	third	Maxwell’s	equation	explains
how	an	electric	generator	converts	mechanical	energy	to	electricity	in	a	power	plant.	While
Equation	8.3	is	related	to	generation	of	the	electric	field,	the	fourth	Maxwell’s	equation	shows
how	 the	magnetic	 field	 is	 produced	 by	 circulating	 electric	 current.	Equation	8.4	 shows	 that
integration	 of	 a	magnetic	 field	 induced	 along	 a	 closed	 loop	 equals	 the	 sum	 of	 the	 electric

current	 (J)	and	displacement	current	 	passing	 through	 the	surface	within	 the	 loop.	To

develop	Equation	8.4,	Maxwell	added	 the	 term	 	 to	Ampere’s	 law.	This	 indicates	 that	 not

only	electric	current	but	also	a	change	in	 the	electric	field	 leaving	the	closed	surface	of	 the
material	can	generate	the	magnetic	field.

Maxwell’s	equations	in	Equations	8.1,	8.2,	8.3	and	8.4	demonstrate	how	an	electric	charge
and	acceleration	of	an	electric	charge	(i.e.,	electric	current)	generate	and	modify	the	electric
field	 and	 the	 magnetic	 field.	 From	 these	 equations,	 Maxwell	 first	 postulated	 the
electromagnetic	 wave.	 Simple	 manipulation	 of	 Maxwell’s	 equations	 results	 in	 a	 general
relation	that	quantitatively	describes	how	the	electric	field	and	magnetic	field	are	coupled	to
produce	a	propagating	wave.	This	wave	is	called	an	electromagnetic	wave—where	the	electric
field	and	magnetic	field	oscillate	in	normal	directions.

As	shown	in	discussions	of	linear	dielectric	materials	and	magnetic	materials	(Chapters	7
and	11),	the	following	constitutional	relations	exist	between	D,	E,	B,	and	H.

where	 ε0	 and	 ε	 are	 the	 permittivity	 of	 free	 space	 and	 materials,	 and	 μ0	 and	 μ	 are	 the
permeability	of	free	space	and	materials.	When	constitutive	relations	in	Equations	8.5	and	8.6
are	 combined	 with	 Maxwell’s	 equations,	 D	 and	 B	 in	 Equation	 8.3	 and	 Equation	 8.4	 are
eliminated	and	the	following	equations	are	obtained:



We	then	take	a	curl	operator	on	both	sides	of	Equation	8.7.	It	is	noted	that	J	becomes	zero

and	∇	×	H	is	the	same	as	 	in	free	space	(Equation	8.8).	This	gives

where	∇	×	(∇	×	E)	 in	 the	 left-hand	side	of	 the	equation	can	be	rewritten	as	∇(∇	 ·	E)−	∇2E.
Since	the	surface	charge	density	is	zero	in	free	space,	the	dot	product	of	del	and	the	electric

field	becomes	zero	 .	Then,	Equation	8.9	becomes

In	 Equation	 8.10,	we	 find	 that	 ,	 which	 yields	 a	 general	 form	 for	 the	 electric

field	of	an	electromagnetic	wave.	If	the	wave	is	assumed	to	propagate	along	the	x-direction,	a

solution	of	 	is:

where	w	is	the	angular	frequency	and	is	equal	to	2πυ	(υ:	ordinary	frequency	with	a	unit	of	Hz).
In	the	equation	for	a	propagating	electric	field,	k	is	called	the	wave	vector	and	its	magnitude
is

where	λ	is	the	wavelength	of	the	electromagnetic	wave.	Similarly,	a	curl	operator	is	applied	to
Equation	8.8.	This	gives	us

It	must	be	 emphasized	 that	we	 started	 from	Maxwell’s	 equations	describing	 the	 relations
among	electric	charge,	magnetic	 induction,	current	generation,	and	 the	magnetic	 field.	This
leads	to	an	equation	that	describes	a	general	form	of	a	traveling	electromagnetic	wave.



8.2 REFRACTIVE	 INDEX:	 A	 FACTOR	 DETERMINING	 THE	 SPEED	 OF	 AN
ELECTROMAGNETIC	WAVE

Given	that	the	speed	(s)	of	a	wave	is	a	product	of	wavelength	(λ)	and	frequency	(υ),	Equation
8.12	is	rewritten	as:

This	shows	the	velocity	of	an	electromagnetic	wave	in	free	space	as	well	as	in	a	medium.
In	free	space,	both	εr	and	μr	are	1	and	the	velocity	of	the	electromagnetic	wave	is	 .
This	gives	the	speed	of	light	in	a	vacuum	(e.g.,	c	=	2.9979	×	108	m/s).

Expressions	on	the	waveform	of	an	electric	field	vector	and	a	magnetic	field	vector	also
show	 how	 the	 magnitude	 of	 the	 electric	 field	 and	 the	 magnetic	 field	 in	 free	 space	 are
correlated.	When	Equations	8.11	and	8.14	are	combined,	we	find:

A	correlation	of	 	showing	a	relation	between	the	electric	field	and	the	magnetic	field	is

called	 the	 intrinsic	 impedance	(Z)	of	a	material.	 In	 free	space,	Z	 is	120	πΩ	(~377	Ω).	More
importantly,	Equation	8.15	indicates	that	light’s	speed	changes	when	light	enters	the	medium
from	 free	 space.	The	 relative	permittivity	 and	permeability	 determine	 light	 speed	 (s)	 in	 the
medium	as	follows:

Equation	 8.17	 (change	 in	 light	 speed)	 introduces	 an	 important	 parameter	 exhibiting	 the
optical	property	of	materials.	The	ratio	of	the	electromagnetic	wave	speed	in	media	to	that	in
vacuum	 is	 called	 the	 refractive	 index	 (n)	 of	 the	 medium.	 Most	 media	 that	 allow	 for
propagation	of	an	electromagnetic	wave	are	not	magnetic	materials	and	μr	is	close	to	1.	In	this
case,	the	refractive	index	of	a	medium	is	expressed	as:

Equation	8.18	shows	that	the	speed	of	an	electromagnetic	wave	is	inversely	proportional	to
	and	the	refractive	index	is	related	to	εr.	To	understand	the	n	better,	it	is	important	to	recall

what	 has	 been	 learned	 in	 physics	 about	 linear	 dielectric	 materials.	 The	 permittivity	 of
dielectric	materials	 is	 a	 function	 of	 frequency,	 and	 only	 electron	 oscillation	 contributes	 to
dielectric	 polarization	 in	 the	 frequency	 of	 visible	 light.	 This	 implies	 that	 the	 origin	 of	 the
speed	change	in	the	dielectric	medium	is	due	to	the	electron	oscillation	that	is	synchronized	to
the	alternate	electric	field	of	the	electromagnetic	wave.

Example	8.2: Change	in	Surface	Electric	Charge	and	Electric	Potential



Two	 electromagnetic	waves	 in	 a	 visible	 light	 regime	 enter	 from	 air	 (refractive	 index,	n~1)	 and	water	 (refractive
index,	n~1.33).	Their	wavelengths	are	470	nm	and	600	nm,	respectively.	Do	the	speed	and	frequency	of	these	two
electromagnetic	waves	 remain	 the	 same	when	 the	medium	 of	 propagation	 changes?	 If	 not,	 calculate	 the	 change
quantitatively.
Solution
The	energy	of	the	electromagnetic	wave	is	determined	by

E	=	hυ

Since	 the	 energy	 of	 the	 electromagnetic	 wave	 is	 conserved,	 the	 frequency	 of	 the	 wave	 is	 maintained	 in	 different
propagating	mediums.	This	means	that	the	wavelength	and	speed	of	the	wave	are	different	in	air	and	water.	As	shown	in

Equation	8.17,	 the	speed	 (s)	of	 the	electromagnetic	wave	 is	 ,	which	 indicates	 that	 the	 speed

does	not	depend	on	the	electromagnetic	wave’s	wavelength.
Because	 air	 and	water	 do	 not	 exhibit	 strong	magnetic	 field	 responses	 and	 the	 relative	magnetic	 permeability	 (μr)	 is

approximately	1	for	both	air	and	water,	the	speed	of	electromagnetic	waves	is

At	this	point,	some	readers	may	wonder	whether	or	not	the	frequency	and	the	wavelength
of	 light	 change	 when	 light	 travels	 from	 one	 medium	 to	 another	 one.	 The	 answer	 to	 this
question	is	that	the	frequency	of	light	is	constant	and	only	the	wavelength	of	light	changes.	A
change	in	 the	 light	speed	at	 the	interface	of	different	media	is	due	only	to	 the	change	in	 the
wavelength	of	light.	The	frequency	of	the	electromagnetic	wave	is	constant	regardless	of	its
propagating	medium.

One	more	 important	and	unique	feature	 related	 to	 the	frequency	of	 light	 is	particle–light
duality.	 This	 means	 that	 light	 behaves	 like	 a	 particle	 as	 well	 as	 a	 wave.	 To	 represent	 the
particle-like	 property	 of	 an	 electromagnetic	 wave,	 physicists	 introduced	 the	 concept	 of	 a
photon,	 which	 is	 an	 elementary	 unit	 of	 the	 electromagnetic	 wave.	 The	 photon	 can	 be
understood	as	a	discrete	wave	packet	that	behaves	like	a	particle.	As	schematically	illustrated
in	 the	 left	 of	 Figure	 8.7,	 when	 multiple	 waves	 with	 slightly	 different	 wavelengths	 are
superimposed,	the	wave	is	localized	instead	of	uniformly	spreading	out	in	space.	Hence,	the
superimposition	of	waves	creates	a	discrete	wave	pocket	 that	 looks	 like	a	particle.	As	more
waves	are	added,	the	wave	packet	is	more	localized	(i.e.,	Δx	in	Figure	8.7	decreases).	Smaller
Δx	means	 that	 the	wave	 packet	 gets	 closer	 to	 the	 particle,	 although	uncertainty	 of	 the	wave
vector	of	the	wave	packet	is	increased	at	the	same	time.	This	is	because	the	product	of	Δx	and
Δk	is	a	constant	or	larger	than	a	constant,	which	is	predicted	in	quantum	mechanics.	As	seen	in
the	 right	 of	 Figure	 8.7,	 the	 particle-like	 photon	 is	 visualized	 as	 a	 wave	 pocket	 and	 the
frequency	of	the	wave	pocket	is	considered	the	frequency	of	the	photon.

Since	 the	 photon	 is	 an	 elementary	 unit	 of	 light	 and	 the	 energy	 of	 light	 is	 quantized,	 the
minimum	energy	unit	 of	 light	 is	 the	 energy	of	 a	 single	 photon.	The	 energy	of	 a	 photon	 is
proportional	to	its	frequency:



where	h	 is	 the	Planck’s	constant	(6.62606957	×	10−34	m2	kg/s)	and	v	 is	 the	frequency	of	 the
light.	When	 the	 photon	 travels	 in	 different	media	 or	when	 they	 come	 across	 the	 boundary
between	 two	media,	 the	energy	of	 a	photon	 (i.e.,	 frequency	of	 the	electromagnetic	wave)	 is
maintained.	Therefore,	a	change	in	the	refractive	index	of	the	medium	only	leads	to	a	change
in	the	wavelength	of	 light;	 the	 light	speed	is	altered	without	modifying	the	frequency	of	 the
light.

FIGURE	8.7 A	schematic	explanation	of	a	photon	that	can	be	viewed	as	a	wave	pocket	rather	than	a	simple	particle.

8.3 ORIGIN	 OF	 THE	 REFRACTIVE	 INDEX:	 INDUCED	 POLARIZATION	 OF	 A
MEDIUM

In	Sections	8.1	and	8.2,	we	learned	how	the	refractive	index	of	a	medium	is	defined	(i.e.,	the
ratio	of	light	speed	in	materials	to	free	space,	s	=	c/n)	and	how	dielectric	permittivity	relates
to	the	refractive	index	(n2	=	ε/ε0).	In	this	section,	we	will	study	the	microscopic	origin	of	the
refractive	index.	For	this	purpose,	we	need	to	revisit	Chapter	7	on	linear	dielectric	materials
and	 find	 out	 what	 factors	 determine	 dielectric	 permittivity.	 In	 materials	 with	 a	 negligible
magnetic	 property,	 the	 response	of	 dielectric	 dipoles	 to	 the	 electric	 field	 component	 of	 the
electromagnetic	wave	is	the	microscopic	origin	of	the	refractive	index.

When	the	dielectric	material	is	exposed	to	an	electric	field,	dielectric	dipoles	are	aligned
inside	 the	 material	 and	 an	 electric	 charge	 is	 stored	 on	 the	 material’s	 surface.	 As	 readers
learned	in	Chapter	7,	there	are	four	different	polarization	mechanisms	responsible	for	dipole
alignment:	 interfacial	 polarization	 (or	 space-charge	 polarization),	 dipole	 polarization	 (or
orientation	polarization),	atomic	polarization	(ionic	polarization),	and	electronic	polarization
(Figure	8.8).	Each	polarization	mechanism	has	its	own	unique	response	time,	which	is	called
the	 relaxation	 time	 (or	 resonance	 time).	 The	 response	 time	 of	 different	 polarization
mechanisms	 shows	 how	 quickly	 the	 dipoles	 are	 aligned	 when	 a	 material	 is	 exposed	 to	 an
alternating	electric	 field.	As	 illustrated	 in	 the	 right	plot	of	Figure	8.8,	 the	upper	 limit	 of	 an
operation	 frequency	window	varies.	A	wavelength	 of	 visible	 light	 (λ	 =	 400	 nm	 ~	 700	 nm)
corresponds	 to	a	 frequency	 range	of	4	×	1014	Hz	−	7	×	1014	Hz.	At	 such	 a	 high	 frequency
regime,	 only	 1/(response	 time)	 of	 electronic	 polarization	 is	 shorter	 than	 the	 frequency	 of
visible	light;	so	only	the	electronic	polarization	works	well	in	the	visible	light	regime.	This
means	that	the	other	three	polarization	mechanisms	do	not	contribute	to	the	refractive	index	in



the	visible	light	regime.	The	origin	of	electronic	polarization	is	 the	shift	of	electron	clouds
surrounding	a	nucleus	under	the	external	electric	field.	Due	to	the	shift	induced	by	the	electric
field,	 the	 center	 of	 the	 electron	 clouds	 (e.g.,	 the	 center	 of	 the	 negative	 charge)	 is	 displaced
from	 the	 position	 of	 the	 nucleus	 (the	 center	 of	 the	 positive	 charge)	 and	 polarization	 is
generated.	Given	that	the	nuclear	mass	is	much	larger	than	the	electron	mass,	we	can	assume
that	 the	 charge	 displacement	 in	 electronic	 polarization	 is	 caused	 by	 the	 motion	 of	 the
electrons.	 In	Section	8.3,	we	will	 study	how	an	 alternating	 electric	 field	moves	 electrons	 in
solids.

FIGURE	 8.8 Schematics	 of	 (a)	 four	 polarization	mechanisms	 and	 (b)	 their	 response	 time	 and	 operating	 frequency.	 (From
Electrochemistry	Encyclopedia	of	the	Electrochemical	Society.	With	permission.)

Example	8.3: Dielectric	Constant	Versus	Frequency	of	Electromagnetic	Waves

(a)	 Although	 the	 dielectric	 constant	 of	 a	 diamond	 with	 strong	 covalent	 bonding	 characteristics	 does	 not	 exhibit
strong	 frequency	 dependence	 at	 room	 temperature,	 that	 of	 sodium	 chloride	 (NaCl)	 with	 strong	 ionic	 bonding
characteristics	 changes	 significantly	 as	 a	 function	 of	 frequency.	 Explain	 this	 different	 frequency	 dependence.	 (b)
Relative	permittivity	of	water	at	108	Hz	and	1011	Hz	is	~90	and	~6,	respectively.	Estimate	the	relative	contribution
of	 dipolar	 polarization,	 ionic	 polarization,	 and	 electronic	 polarization	 to	 the	 permittivity	 of	 water.	 The	 refractive
index	of	water	is	1.33	at	room	temperature.
Solution
1.	 Since	the	valence	electrons	form	bonds	among	atoms,	covalent	materials	do	not

exhibit	 ionic	 polarization	 and	 dipolar	 polarization.	 Dielectric	 properties	 of
strong	 covalent	materials	 are	 determined	 by	 electronic	 polarization.	Until	 the
frequency	 of	 the	 incident	 wave	 reaches	 the	 natural	 resonance	 frequency	 of



electronic	polarization	(>1016	Hz),	 the	dielectric	 response	of	 the	electric	 field
does	 not	 change	 significantly.	 In	 contrast,	 the	 natural	 resonance	 frequency	 of
ionic	bonding	is	near	1013	Hz,	and	the	 ionic	polarization	mechanism	does	not
work	 above	 the	 resonance	 frequency.	 This	 leads	 to	 a	 large	 frequency
dependence	of	the	permittivity	near	the	resonance	frequency.

2.	 Dipolar	polarization,	 ionic	polarization,	and	electronic	polarization	contribute
to	 the	 relative	permittivity	 (~90)	of	water	at	a	 low	frequency	 (108	Hz).	As	 the
frequency	increases	to	1011	Hz,	the	relative	permittivity	is	attributed	to	the	sum
of	 ionic	polarization	and	electronic	polarization	 (~6).	The	contribution	of	 the
electronic	 polarization	 to	 the	 relative	 permittivity	 at	 a	 high	 frequency	 can	 be
calculated	 from	 the	 square	 of	 the	 refractive	 index	 (εr	 =	n2	 =	 1.8).	 Therefore,
84:4.2(=	6	–	1.8):1.8	is	the	relative	magnitude	ratio	of	dipolar	polarization,	ionic
polarization,	and	electronic	polarization	in	water.

8.3.1 RESPONSE	OF	FREE	ELECTRONS	TO	AN	ELECTROMAGNETIC	WAVE:	A	CASE	OF

METALS

Electrons	 in	 solids	 can	 travel	 freely	 in	 the	 conduction	 band	 (i.e.,	 free	 electrons)	 or	 can	 be
tightly	bound	to	a	nucleus	(i.e.,	bound	electrons)	 in	a	solid.	Responses	of	free	electrons	and
bound	 electrons	 to	 an	 electric	 field	 are	 different.	We	will	 first	 study	 a	 case	 of	metals	 (and
degenerate	 semiconductors)	 where	 free	 electron	 motion	 is	 dominant.	 Free	 electrons	 in	 a
conduction	band	do	not	form	a	strong	pair	with	the	nucleus.	When	an	electric	field	is	applied
to	 metals,	 electrons	 in	 the	 conduction	 band	 move	 freely	 within	 a	 solid	 without	 electric
interaction	with	 the	positive	charge	of	 the	nucleus.	 In	metals	or	semiconductors	with	a	high
free	 electron	 density,	 repulsion	 among	 free	 electrons	 shields	 (or	 cancels)	 the	 electrostatic
field	 of	 positively	 charged	 ions	 or	 the	 nucleus	 (called	 a	 screening	 effect,	 see	 Figure	 8.9).
Hence,	in	a	traditional	free	electron	model	(Drude	model),	it	is	postulated	that	free	electrons
are	detached	from	positively	charged	ions	or	the	nucleus.	From	previous	chapters,	you	will
recall	how	we	treat	the	transport	of	free	electrons	in	metals	to	calculate	electric	conductivity.
Only	when	 electrons	 collide	with	 positively	 charged	 ions	 do	 positively	 charged	 ions	 delay
electron	 transport	 through	 scattering.	 We	 do	 not	 take	 into	 account	 a	 term	 representing
electron-ion	attraction	to	estimate	the	response	of	free	electrons	to	an	electric	field.	Due	to	the
lack	 of	 electron–ion	 interaction	 (except	 in	 a	 collision),	 free	 electrons	 displaced	 by	 an
alternating	current	(AC)	electric	field	do	not	return	to	their	initial	locations	even	after	the	AC
electric	 field	 is	 removed.	This	means	 that	 the	 restoration	of	displaced	electrons	by	positive
ions	 is	 not	 necessary	 to	 quantitatively	 estimate	 the	 effect	 of	 an	 electric	 field	 on	 electron
displacement.



FIGURE	8.9 Schematics	of	the	shielding	of	free	electrons	from	positive	ions.

Therefore,	 electron	 vibration,	 which	 is	 forced	 by	 the	 AC	 electric	 field	 of	 the
electromagnetic	wave,	is	described	using	the	constitutive	relation	of	classical	mechanics:

where	F	is	force,	me	is	electron	mass,	a	is	acceleration	vector,	γ	is	a	damping	factor,	and	ve	is
electron	velocity.	Damping	is	added	to	Equation	8.20	to	consider	collisions	of	electrons	with
ions	 and	 the	 subsequent	 delay	 of	 electron	motion.	 In	 an	 ideal	 system	where	 energy	 loss	 is
neglected,	the	damping	term	is	set	to	zero.	Since	the	atom	is	much	smaller	than	the	wavelength
of	the	electromagnetic	wave,	it	is	assumed	that	electric	field	intensity	is	constant	through	the
atom.	If	that	is	the	case,	E	=	E0ei(kx	−	wt)	is	reduced	to	 	and	the	electron	displacement
(x)	is	as	follows:

In	Equation	8.20,	γve	 is	a	frictional	force	 that	 results	 from	the	collision	of	electrons	with
atoms.	In	classical	theory,	electrons	cannot	be	accelerated	infinitely	under	an	electric	field.	It
is	assumed	that	electrons	are	accelerated	only	in	the	time	period	between	two	collision	events.



This	 assumption	 allows	 for	 quantitative	 analysis	 of	 a	 steady	 state	 using	 a	 damping	 factor.

Electron	 velocity	 at	 a	 steady	 state	 	 is	 called	 drift	 velocity	 (vd),	 which	 is

related	to	electric	current	density	(J)	as	follows:

Then,	the	damping	factor	can	be	described	using	free	electron	concentration	(Nf),	electric
conductivity	(σ),	and	electron	mobility:

This	indicates	that	the	damping	is	inversely	proportional	to	the	electron	mobility.	We	find	a
solution	 of	 Equation	 8.24	 by	 plugging	 Equations	 8.22	 and	 8.23	 into	 Equation	 8.21.	 Then,
charge	displacement	(x	=	x0eiwt)	is	given	by:

According	to	the	calculation	of	polarization	in	Chapter	7,	charge	displacement	is	related	to
polarization	per	unit	volume	as	follows:

where	Nd	is	dielectric	dipole	density,	α	is	the	polarizability,	and	q	is	the	charge	of	each	pole	(q
=	−e	for	electronic	polarization).	Then,	the	refractive	index	in	Equation	8.18	can	be	rewritten
by	plugging	the	charge	displacement	in	Equation	8.24	into	Equation	8.26.	If	only	free	electron
motion	contributes	to	dielectric	polarization,	Nd	is	the	same	as	free	electron	density	(Nf),	and
we	find	the	refractive	index	as:

In	 Equation	 8.27,	 it	 is	 noted	 that	 n	 can	 reach	 0	 at	 a	 specific	 frequency	 called	 plasma
frequency	(wp).	If	we	assume	that	free	electrons	do	not	experience	any	collision	with	atoms,
the	carrier	mobility	is	infinitely	high	(μ	=	∞),	and	wp	is	given	by:



If	the	frequency	of	an	electromagnetic	wave	is	smaller,	then	the	plasma	frequency	(w	<	wp),
n2	 in	 Equation	 8.27)	 becomes	 smaller	 than	 0	 and	 only	 an	 imaginary	 part	 is	 left	 in	n.	 This
implies	 that	 free	electrons	 react	quickly	 to	an	electromagnetic	wave	at	a	 low	frequency	and
that	no	incident	energy	is	stored	(i.e.,	materials	do	not	work	as	a	capacitor).	In	addition,	such
prompt	 motion	 of	 free	 electrons	 near	 metal	 surface	 shields	 materials	 from	 incident	 light
because	 a	 vibrating	 electron	 functions	 as	 a	 dipole	 antenna	 and	 generates	 a	 secondary
electromagnetic	 wave	 (radiation).	 More	 importantly,	 an	 electrodynamic	 calculation	 using
Maxwell’s	 equations	 shows	 that	 there	 is	 a	 180°	 phase	 difference	 between	 incident	 light	 and
forward	radiation	by	the	electron.	Due	to	the	out-of-phase	relation,	incident	light	and	forward
radiations	 cancel	 each	 other	 in	 the	 deeper	 region	 of	 bulk	 metals.	 This	 means	 that	 the
propagation	 of	 the	 incident	 light	 toward	 the	 inside	 material	 is	 blocked.	 Instead	 of
transmission,	 at	 a	 frequency	 lower	 than	 wp,	 strong	 radiation	 by	 free	 electrons	 causes
reflectance	of	 the	 electromagnetic	wave.	Since	 there	 is	 a	180°	 phase	difference	between	 the
incident	light	and	the	remitted	electromagnetic	wave,	reflected	light	by	metal	surface	is	out-
of-phase	in	comparison	to	incident	light.	Figure	8.10	schematically	 illustrates	 the	oscillation
of	a	free	electron	and	the	180°	phase	difference	between	the	 incident	 light	and	the	reemitted
electromagnetic	wave.

For	high	frequency	electromagnetic	waves	(w	>	wp),	however,	the	frequency	of	the	wave	is
too	 fast,	 and	 free	 electrons	 do	not	 follow	completely	 the	 incident	 electromagnetic	wave.	 In
that	 case,	 materials	 start	 to	 work	 as	 capacitors	 rather	 than	 conductors.	 Also,	 n2	 becomes
larger	than	0.	In	this	frequency	regime,	n	no	longer	is	an	imaginary	number.	A	positive	sign
for	n2	means	that	the	incident	wave	can	propagate	in	the	medium	because	free	electrons	have
no	response.	This	change	in	sign	for	n2	leads	to	an	abrupt	decrease	in	the	reflectance	near	the
plasma	 frequency,	 which	 is	 schematically	 shown	 in	 Figure	 8.11.	 The	 plasma	 frequency	 is
intuitively	 understood	 as	 the	 upper	 frequency	 limit	 below	 which	 free	 electrons	 vibrate
collectively	 without	 time	 lag	 in	 response	 to	 the	 electromagnetic	 wave.	 However,	 as	 the
frequency	 of	 the	 electromagnetic	 wave	 becomes	 larger	 than	 the	 plasma	 frequency,	 forced
electron	vibration	is	delayed	and	unique	metallic	behavior	starts	disappearing.

Equation	8.28	shows	that	wp	is	proportional	to	 .	In	metals,	wp	lies	near	the	visible	light
regime	due	to	the	high	free	electron	density,	which	explains	why	the	surface	of	metals	looks
very	 shiny	 (or	 very	 reflective)	 to	 our	 eyes.	 (Reflection	 at	 the	 surface	 and	 its	 relation	 to	 a
complex	refractive	index	will	be	covered	in	detail	in	Section	8.4.)	As	the	free	electron	density
decreases,	 the	 plasma	 frequency	 shifts	 from	 the	 visible	 light	 regime	 to	 the	 infrared	 (IR)
regime.	If	the	free	electron	density	is	comparable	or	smaller	than	the	bound	electron	density,
we	need	to	take	into	account	the	bound	electron	motion	to	calculate	the	refractive	index.	This
is	 a	 case	of	dielectric	materials	with	 ionic	 and	 covalent	 bond	characteristics.	 In	 addition,	 if
free	electron	density	is	very	low	in	materials,	propagation	of	visible	light	is	not	prevented	in
the	medium	and	reflectance	at	the	materials’	surface	is	reduced.	This	explains	why	silica	glass
made	of	covalent	bonds	looks	transparent	to	the	human	eye.



FIGURE	8.10 A	schematic	on	the	oscillation	of	a	free	electron	and	an	180°	phase	difference	between	the	incident	light	and
the	reemitted	electromagnetic	wave.

FIGURE	 8.11 Schematics	 on	 the	 frequency	 dependence	 of	 the	 reflectance	 (left	 axis)	 and	 the	 permittivity	 (right	 axis)	 in
materials	where	only	free	electron	motion	contributes	to	dielectric	polarization	(wp:	the	plasma	frequency).

Example	8.4: Plasma	Frequency	of	Metals

1.	 Estimate	the	plasma	frequency	(νp)	of	lithium	metal	using	the	atomic	density	of
lithium	metal.

2.	 Show	that	the	reflectance	of	the	metal	dramatically	changes	near	υp.
3.	 Explain	how	the	defect	density	of	lithium	metals	influences	a	slope	of	frequency

versus	the	reflectance	curve	near	υp.
Solution
1.	 As	shown	in	Equation	8.26,	the	permittivity	of	the	dielectric	is	given	by



where	 Nd	 is	 dielectric	 dipole	 density	 (=	 electron	 density	 for	 electronic	 polarization),	 α	 is
polarizability,	 and	q	 is	 the	charge	of	each	pole	 (q	=	−e	 for	 electronic	polarization).	Since	 each
lithium	 ion	has	one	valence	electron,	Nd	 is	 the	 same	 as	 the	 atomic	density	 (ρA),	which	 equals
(mass	density,	ρ)	×	(molecular	weight,	M)	÷	(Avogadro’s	number,	NA).	In	this	case,

If	electron	collision	is	ignored	(i.e.,	μ	is	very	large),	εr	(=	n
2)	changes	near	the	plasma	frequency,	

,	from	negative	to	positive

2.	 Note	 that	 reflectance	 (R)	 follows	 a	 relation,	 .	 In	 ideal

metals	where	 electron	 collision	 is	 ignored	 (i.e.,	 μ	 is	 very	 large),	 the	 complex
refractive	index,	 	is	given	by

For	w	<	wp,	 	is	negative,	which	requires	that	a	real	part	of	 	is	zero.	Then,

Reflectivity	of	1	shows	that	the	incident	radiation	energy	is	totally	reflected	at	the	surface	of	the
bulk	metal.	 In	other	words,	electronic	dipoles	are	not	generated	 in	 the	bulk	part	of	metals	 (no
energy	storage)	and	incident	light	cannot	penetrate	into	the	deeper	side	of	the	bulk	metal.	If	w	 is
larger	 than	 wp,	 	 becomes	 positive	 and	 n	 is	 not	 zero	 anymore.	 In	 other	 words,	 the
incident	 light	 can	 travel	 inside	metals	 and	oscillate	 free	 electrons	 inside	metals.	Therefore,	 the
reflectivity	of	the	metal	is	smaller	than	1.	This	indicates	that	a	small	increase	in	the	frequency	of
the	incident	electromagnetic	wave	near	wp	dramatically	changes	the	function	of	a	metal	from	a
total	reflector	to	a	mixture	of	a	reflector	and	a	capacitor	(e.g.,	εr	>	1	and	R 	<	1).

3.	 In	 an	 ideal	 metal	 where	 the	 damping	 of	 electron	 oscillation	 is	 ignored,	 the
refractive	 index	 (n)	 and	 permittivity	 (εr)	 dramatically	 change	 near	 w	 =	 wp.
However,	note	that	the	damping	cannot	be	ignored	in	real	metals.	Therefore,	the
frictional	force	is	not	zero,	and	a	transition	of	the	function	of	the	metal	occurs
over	 a	 broad	 range	 of	 the	 frequency	 domain	 in	 real	 materials.	 In	 this	 case,	

	is	rewritten	as:



This	equation	shows	that	μ	(electron	mobility)	is	the	main	material	property	that	determines	the	shape
of	 the	 frequency	versus	 the	 reflectance	curve	near	w	=	wp.	Hence,	 an	 increase	 in	 the	 defect	 density
makes	 the	 reflectance	 change	 more	 gradually	 in	 the	 frequency	 domain	 by	 reducing	 the	 electron
mobility.

8.3.2 RESPONSE	OF	BOUND	ELECTRONS	OVER	AN	ELECTROMAGNETIC	WAVE:	A	CASE	OF
DIELECTRICS

So	 far,	 we	 have	 studied	 free	 electron	 motion	 over	 a	 traveling	 electromagnetic	 wave.	 In
contrast	to	free	electrons,	electrons	bound	to	a	nucleus	are	not	completely	shielded	from	the
positive	 charge	 of	 ions.	 Therefore,	 there	 is	 attraction	 between	 the	 positive	 charge	 of	 ions
(nucleus)	 and	 the	negative	 charge	of	 electrons.	This	 interaction	generates	 a	 restoring	 force
that	prevents	electrons	from	freely	leaving	an	atom.	Since	free	electron	concentration	is	very
small	 in	 dielectrics,	 the	 aforementioned	 assumption	 is	 applicable	 for	 explaining	 the	 optical
properties	of	dielectric	materials.	In	this	case,	an	electron	bound	to	a	positively	charged	ion
can	be	treated	as	a	harmonic	oscillator,	as	shown	in	Figure	8.12.

FIGURE	 8.12 A	 schematic	 on	 a	 harmonic	 oscillator;	 a	 mass	 (electron)	 is	 attached	 to	 the	 immovable	 wall	 (positively
charged	ion)	through	a	spring	(Coulomb	force).

Lorentz	developed	a	model	that	explains	light–matter	interaction	through	bound	electrons.
An	 electron	 connected	 to	 a	 positively	 charged	 ion	 via	Coulomb	 force	 is	 similar	 to	 a	mass
attached	to	an	immovable	wall	through	a	spring.	If	there	is	no	damping,	the	sum	of	the	kinetic
energy	and	potential	energy	of	an	electron	is	maintained.	In	this	scenario,	the	restoring	force



of	a	displaced	electron	is	proportional	to	electron	displacement.	Hence,	constitutive	Equation
8.21	can	be	rewritten	for	the	damped	oscillation	of	an	electron	by	Coulomb	force:

where	κ	is	a	spring	constant	that	is	a	factor	quantifying	interactions	between	a	bound	electron
and	 positively	 charged	 ions.	 In	 an	 ideal	 harmonic	 oscillator	 without	 damping	

,	 the	 spring	 constant	 (κ)	 and	 the	 resonance	 frequency	 of	 the	 harmonic

oscillator	(wr)	are	related	as:

Plugging	wr	 =	 (κ/me)1/2	 and	 x	 =	 x0	 exp(iwt)	 into	 the	 constitutive	 relation,	 we	 find	 the
following	steady-state	solution:

Since	one	atom	exposed	to	the	electric	field	forms	one	dipole,	Nd	in	Equation	8.26	 is	 the
same	as	the	atomic	density	(Na),	and	n2	is	rewritten	as:

Equation	8.32	indicates	that	n	and	εr	are	complex	numbers.	Their	general	forms	are:

This	gives	the	real	and	imaginary	parts	of	εr:

Equations	8.31	and	8.32,	which	 connect	 the	 electron	displacement	with	 the	motion	of	 the
damped	oscillator,	 indicate	 that	 the	 origin	 of	 the	 imaginary	 part	 of	n	 and	 εr	 is	 the	 electron



collision	 that	 results	 in	 a	 decay	 of	 the	 propagating	waves.	 For	 this	 reason,	k	 is	 named	 the
extinction	 coefficient	 and	 represents	 energy	 dissipation	 during	 electron	 oscillation	 and	 the
consequent	attenuation	of	the	propagating	electromagnetic	waves.	In	Equations	8.32,	8.33	and
8.34,	it	is	also	important	to	understand	that	n	and	k	are	not	independent.	They	are	correlated
through	ε1	and	ε2.	In	the	equation	(n	+	ik)2	=	ε1	+	ε2,	n	and	k	are	given	by:

Comparing	Equations	8.35,	8.36	and	8.37,	we	find	that	an	increase	in	ε1	from	an	increase	in
the	in-phase	displacement	of	electrons	increases	n	and	decreases	k.	This,	in	turn,	slows	down
the	 electromagnetic	wave	 in	 the	media	 (see	Equation	8.15).	Due	 to	 the	 in-phase	motion,	 an
oscillating	 electron	 bound	 to	 a	 positively	 charged	 ion	 behaves	 like	 a	 dipole	 antenna	 and
reemits	the	electromagnetic	wave.	This	light–electron	interaction	decreases	the	wavelength	of
the	electromagnetic	wave,	which	reduces	the	speed	of	the	propagating	electromagnetic	wave.
On	the	other	hand,	out-of-phase	displacement	of	electrons,	which	is	the	origin	of	ε2,	increases
both	n	and	k.	The	out-of-phase	component	of	electrons	does	not	contribute	 to	a	 function	of
electron	motion	as	the	dipole	antenna.	An	increase	in	ε2	only	causes	the	energy	loss	that	leads
to	 attenuation	 of	 the	 propagating	 light	 (i.e.,	 a	 decrease	 in	 light	 intensity)	 and	 a	 decrease	 in
light	speed	in	the	media.

8.4 CHANGE	IN	LIGHT	TRAVELING	DIRECTION	AT	A	MATERIAL	INTERFACE:
REFRACTION	AND	REFLECTANCE

In	 Section	 8.3,	 we	 learned	 why	 the	 speed	 of	 light	 is	 different	 in	 free	 space	 and	 dielectric
materials.	The	electric	 field	component	of	 light	displaces	 free	and	atom-bound	electrons	of
media.	 Electron	 displacement,	 in	 turn,	 changes	 the	 speed	 and	wavelength	 of	 light.	 Inelastic
displacement	of	electrons	dissipates	the	energy	of	propagating	light	as	well	as	slows	down	the
light.	We	also	calculated	a	relation	between	dielectric	permittivity	and	electron	displacement
at	 the	 regime	 where	 the	 electronic	 polarization	 dominates	 the	 material’s	 response	 to	 the
electric	 field.	 For	 a	UV-Vis-IR	 regime	where	 the	 frequency	 of	 the	 electromagnetic	wave	 is
1014	 ~	 1016	 Hz,	 relaxation	 or	 resonance	 time	 of	 other	 polarization	 mechanisms	 (ionic,
orientational,	 and	 space-charge	 polarizations)	 is	 too	 large	 to	 follow	 the	 high	 frequency
electromagnetic	wave.

In	 this	 section,	 we	 will	 quantitatively	 study	 refraction,	 reflectance,	 scattering,	 and
transmittance	of	light	traveling	in	materials.	We	will	show	how	the	direction	and	intensity	of
propagating	light	change	at	the	interface	of	two	materials	with	different	refractive	indices	and
how	the	microscopic	view	of	the	refractive	index	(vibration	of	free	electrons	and	oscillation
of	bound	electrons)	is	correlated	to	the	macroscopic	property	of	light.

8.4.1 REFRACTION	AND	REFLECTION	OF	AN	ELECTROMAGNETIC	WAVE	AT	A	FLAT

INTERFACE



When	light	enters	from	air	to	water,	we	know	that	the	traveling	direction	of	light	is	altered	at
the	water–air	interface	unless	the	traveling	path	of	the	incident	light	is	normal	to	the	water–air
interface.	This	light	bending	is	called	refraction,	and	it	is	a	consequence	of	a	change	in	light
speed	 (or	wavelength).	Refraction	 is	 common	 in	our	daily	 life.	For	 example,	white	 light	 is
refracted	at	the	prism–air	interface	and	visible	light	with	color	is	separated	(see	the	left	plot	of
Figure	8.13).	 In	 addition,	 refraction	on	 the	 surface	of	 a	 convex	 lens	helps	us	 to	 see	objects
more	clearly.	Also,	silica	glass	fibers	deliver	light	without	energy	loss	by	using	refraction.

The	 right	 plot	 of	 Figure	 8.13	 intuitively	 explains	 the	 refraction	 of	 light.	 If	 light	 travels
from	air	to	glass	at	an	incident	angle	of	θ1,	light	experiences	refraction	due	to	the	change	in
light	speed.	As	shown	in	Figure	8.13,	light	traveling	a	distance	along	Path	1	 	and	Path	2	

	 is	 not	 the	 same	 because	 light	 speed	 is	 different	 in	 air	 and	 glass.	 Let	 us	 represent	 the
traveling	distance	in	air	and	glass	as	d1	and	d2,	respectively.	If	Medium	2	has	a	higher	n	than
that	of	Medium	1,	light	speed	(or	wavelength)	in	Medium	2	decreases	and	d1	is	larger	than	d2.
Because	of	a	difference	in	d1	and	d2,	the	refraction	angle	of	θ2	is	not	the	same	as	that	of	θ1,
and	their	relations	are	obtained	from	geometric	consideration:

FIGURE	8.13 (a)	Due	 to	 refraction	by	a	glass	prism,	 red,	yellow,	green,	blue,	 and	purple	components	of	white	 light	 are
split	at	glass–air	interfaces.	(From	Encyclopedia	Britannica.	With	Permission.)	(b)	A	schematic	showing	the	refraction	of	light
at	the	interface	of	two	media.

FIGURE	8.14 A	schematic	showing	the	wave	vector	component	parallel	to	the	interface	on	which	light	impinges.



Since	 ,	Equation	8.38	is	rewritten	as:

Equation	8.39	is	known	as	Snell’s	law	and	gives	the	angles	of	incidence	and	refraction	for
the	 electromagnetic	 wave	 impinging	 on	 the	 interface	 of	 media	 with	 different	 refractive
indices.	 This	 means	 that	 light	 entering	 the	 media	 with	 a	 higher	 refractive	 index	 is	 slowed
down	and	the	refraction	angle	is	smaller	than	the	incidence	angle.

We	 can	 also	 derive	 Snell’s	 law	 on	 refraction	 using	 wave	 vectors	 of	 light.	 First,	 let	 us
consider	 a	 change	 in	 the	 wave	 vector	 at	 the	 interface	 of	 two	 media.	 Since	 the	 tangential
components	of	 incident	and	 refracted	wave	vectors	must	be	continuous	at	 the	 interface	 (see
Figure	8.14),	the	wave	vector	component	(k||)	that	is	parallel	to	the	interface	must	satisfy	the
following	relation:

where	k1	 and	k2	 are	 the	 wave	 vectors	 of	 the	 light	 traveling	 in	Medium	 1	 and	Medium	 2,
respectively.	 Since	 the	 absolute	 value	 of	 a	 wave	 propagation	 vector	 is	 the	 same	 as	

,	|k|	can	be	expressed	using	the	refractive	index	 	and	frequency	(v)

as	follows:

Here,	 photon	 energy	 does	 not	 depend	 on	 a	 traveling	 medium	 and	 refraction	 does	 not
change	the	frequency	of	propagating	electromagnetic	waves.	Therefore,	we	can	derive	Snell’s
law	again	by	plugging	Equation	8.41	into	Equation	8.40.

In	addition	to	refraction,	the	electromagnetic	wave	traveling	from	one	medium	to	another
experiences	 reflection	 due	 to	 a	 difference	 in	 the	 refractive	 indices.	 If	 we	 consider	 both
reflection	 and	 refraction,	 the	 right	 plot	 of	 Figure	 8.13	 is	 redrawn	 as	 Figure	 8.15.	 To
circumvent	 the	discontinuity	of	 the	wave	vector,	a	 tangential	component	of	all	wave	vectors
for	incident,	reflected,	and	transmitted	waves	(i.e.,	ki,	kr,	kt)	in	Figure	8.13	must	be	the	same	in
any	 interface	 between	 two	 different	 media.	 Then,	 θi,	 θr,	 and	 θt	 must	 satisfy	 the	 following
relation:

As	 shown	 in	 Equation	 8.42,	 |k|	 is	 determined	 by	n,	 and	 ni	 is	 the	 same	 as	 nr.	 Therefore,
Equation	8.42	depicts	 the	 important	 relation	 that	 incident	angle	 is	equal	 to	reflected	angle	at
the	interface	(θi	=	θr),	in	addition	to	Snell’s	law	(nisinθi	=	ntsinθt).

Reflection	 can	 be	 understood	 by	 using	 the	 concept	 of	 the	 dipole	 antenna	 that	 is	 a
consequence	of	electron	oscillation.	In	Section	8.3.1,	we	noted	that	the	electric	field	of	a	light
swings	 both	 free	 electrons	 and	 bound	 electrons	 in	 an	 illuminated	 medium.	 This	 electron
motion	 by	 light	 induces	 AC	 electric	 current	 into	 the	 shined	 medium.	 If	 the	 electron–light
interaction	 is	 elastic	 (e.g.,	 no	 energy	 loss	 in	 the	 energy	 conversion	 process),	 AC	 electric



current	leads	to	reemission	of	the	electromagnetic	wave	(called	radiation).	Though	radiation
from	 an	 individual	 electron	 spreads	 out	 circularly,	 the	 sum	of	 reemitted	waves	 originating
from	many	electrons	is	not	circular.	This	is	because	the	interference	between	reemitted	waves
reconstructs	 the	 light	 propagation	 direction.	 Reconstruction	 of	 electromagnetic	 waves
originating	from	many	electrons	 through	interference	can	be	explained	using	 the	Huygens–
Fresnel	 principle.	 Reflected	 light	 is	 a	 part	 of	 the	 reconstructed	 electromagnetic	 wave	 that
travels	backward.	In	other	words,	backward	radiation	by	oscillating	(or	vibrating)	electrons	is
the	microscopic	origin	of	reflection.

FIGURE	8.15 A	schematic	showing	the	relation	among	incident	light,	refracted	light,	and	reflected	light;	the	refractive	index
of	an	incident	medium	(n1)	is	larger	than	that	of	a	transmitted	medium	(n2).

If	the	size	of	the	material	on	which	light	impinges	is	comparable	to	the	wavelength	of	the
incident	light,	backward	radiation	by	oscillating	electrons	is	called	light	scattering	rather	than
light	 reflectance.	Scattering	will	be	studied	 in	Section	8.5.	 In	 comparison,	 reconstruction	of
the	 reemitted	 electromagnetic	 waves	 along	 a	 forward	 direction	 is	 important	 to	 understand
refraction,	which	is	the	sum	of	incident	light	and	forward	radiation	by	electrons.

One	interesting	question	arising	from	Snell’s	law	is	what	if	θi	is	large	enough	to	make	θt
equal	to	90°	when	light	travels	from	a	medium	with	higher	refractive	index	to	one	with	lower
refractive	index	(i.e.,	ni	>	nt)?	This	incidence	angle	for	θt	=	90°	is	called	the	critical	angle	θc.
At	this	condition,	sinθc	is	the	same	as	nt/ni	and	the	refracted	wave	travels	along	the	interface.
For	a	critical	angle,	Snell’s	rule	can	be	rewritten:

where	sinθc	is	a	constant	(=	nt/ni).	If	θi	is	larger	than	θc	in	Equation	8.43,	we	reach	a	strange
conclusion	that	sinθt	must	be	larger	than	1.	This	requirement	cannot	be	met,	which	means	that



such	a	 transmitted	 light	component	does	not	exist.	Consequently,	 all	of	 the	 incident	wave	 is
reflected	at	the	interface.	This	phenomenon,	which	occurs	in	the	case	of	θi	>	θc,	is	called	total
internal	reflection.	Figure	8.16	explains	schematically	the	total	internal	reflection	of	the	wave.

Example	8.5: Condition	for	Total	Internal	Reflection

Green	light	with	the	wavelength	of	530	nm	travels	in	a	waveguide.	The	refractive	index	of	the	core	is	1.45	and	that
of	the	cladding	is	1.43.	What	is	the	condition	of	total	internal	reflection	at	the	core–cladding	interface?
Solution
The	critical	angle	(θc)	for	total	internal	reflectance	meets	the	condition:

sinθc	=	nt/ni

Since	ni	and	nt	are	1.45	and	1.43,	respectively,

θc	=	sin−1(nt/ni)	=	80.5°

If	 the	 incident	 angle	 is	 larger	 than	80.5°,	 total	 power	of	 the	 incident	 green	 light	 is	 reflected	back	 to	 the	 core	 at	 the
core–cladding	interface.

FIGURE	8.16 Schematics	showing	light	propagation	when	an	incident	angle	is	smaller,	same	as,	and	larger	than	the	critical
angle	(θc).

8.4.2 POWER	DISTRIBUTION	BETWEEN	REFRACTED	LIGHT	AND	REFLECTED	LIGHT	AT	A

FLAT	INTERFACE

8.4.2.1 A	Case	of	Normal	Incidence
From	Figure	8.15,	we	learn	that	the	energy	of	an	incident	electromagnetic	wave	is	distributed
between	reflected	light	and	transmitted	light	at	the	interface	of	the	two	different	media.	Also,
the	 light	 propagating	direction	of	 the	 transmitted	 light	 is	 deflected	 (called	 refraction).	Both
reflection	and	refraction	are	due	to	the	oscillation	or	vibration	of	bound	and	fee	electrons.	We
also	see	that	the	transmittance	is	not	allowed	for	a	certain	range	of	incident	angle	(θ	>	θc	 in
Figure	 8.16).	 Here,	 we	 will	 quantitatively	 estimate	 how	 the	 energy	 of	 incident	 light	 is
distributed	to	that	of	reflected	and	transmitted	light.

First,	we	start	with	the	simple	case	of	an	electromagnetic	wave	whose	traveling	direction	is
normal	to	the	interface	of	two	different	media,	which	is	schematically	shown	in	Figure	8.17.



The	incident	electric	field	(Ei),	reflected	electric	field	(Er),	and	transmitted	electric	field	(Et)
are	given	by:

Since	they	propagate	in	opposite	directions,	the	sign	of	the	wave	vector	is	different	for	Ei
and	Er	in	Equations	8.44,	8.45	and	8.46.	If	there	is	no	energy	loss	at	the	interface,	the	tangential
components	of	the	electric	field	vector	(i.e.,	vector	components	parallel	to	the	interface	of	two
media)	 must	 be	 continuous	 at	 the	 interface.	 In	 addition,	 the	 tangential	 components	 of	 the
magnetic	field	 intensity	must	differ	at	 the	 interface	by	any	surface	current	 that	 is	 located	on
the	 interface.	 Since	 surface	 electric	 current	 is	 negligible	 on	 the	 surface	 of	 dielectrics	 with
high	resistivity,	we	can	write	the	electric	field	and	the	magnetic	field	of	the	normal	incident
light	at	the	interface	using	a	condition	of	continuity	(see	Figure	8.17).	The	electric	field	and
magnetic	field	at	the	interface	are:

FIGURE	 8.17 Schematics	 on	 the	 wave	 vector,	 electric	 field,	 and	 magnetic	 field	 of	 incident	 light,	 reflected	 light,	 and
transmitted	light.	(Note	that	incident	and	reflected	light	have	a	180°	phase	difference.)

The	magnitude	of	the	electric	field	vector	is	related	to	that	of	the	magnetic	field	vector	as
|H|	 =	 (ɛr/μr)1/2|E|.	 In	 addition,	 	 equals	 the	 refractive	 index	 ratio	 (n2/n1)	 of	 two	 media.



Therefore,	 if	 μr	 is	 assumed	 to	 be	 1,	 Equations	 8.44	 and	 8.48	 regarding	 the	 electric	 field
vectors	of	incident,	reflected,	and	transmitted	light	are	reduced	to:

where	n1	 and	n2	 are	 the	 refractive	 index	 of	 the	 incident	 medium	 and	 transmitted	 medium,
respectively.

Electric	fields	obtained	from	Equations	8.49,	8.50,	8.51	and	8.52	also	enable	us	to	calculate
the	 intensity	 ratio	of	 incident,	 reflected,	 and	 transmitted	 light.	 In	 the	 late	nineteenth	 century,
Poynting	defined	a	vector	term	(S)	to	express	the	magnitude	and	direction	of	the	energy	flow
in	electromagnetic	waves	as	follows:

The	Poynting	vector	(S)	indicates	the	rate	of	energy	transfer	through	the	unit	surface	area.
Hence,	integration	of	S	over	 the	area	is	 the	power	that	 the	electromagnetic	wave	delivers	 to
the	surface,	which	is	often	called	light	intensity.	Since	the	magnitude	of	the	electric	field	and
the	magnetic	 field	has	a	 relation	of	 |H|	=	 (ɛr/μr)1/2|E|,	S	 is	 proportional	 to	 the	 square	of	 the
electric	field	magnitude:

where	 s	 and	 ε	 are	 the	 light	 speed	 in	 the	 medium	 and	 in	 the	 permittivity	 of	 medium,
respectively.	 According	 to	 Equations	 8.49,	 8.50,	 and	 8.54,	 reflectance	 (R),	 which	 is	 the
intensity	ratio	of	incident	light	and	reflected	light,	is	given	by:

If	 light	 absorption	 by	materials	 is	 negligible,	 the	 sum	 of	 reflected	 and	 transmitted	 light
intensity	should	be	the	same	as	the	incident	light	intensity.	Therefore,

Equations	8.55	and	8.56	clearly	demonstrate	that	the	reflectance	and	transmittance	of	light
at	the	interface	of	two	different	media	are	determined	by	the	difference	in	the	refractive	index.



As	the	difference	between	two	media	increases,	the	power	of	the	incident	light	is	distributed
more	to	reflected	light,	and	the	intensity	of	transmitted	light	intensity	is	weakened.

These	calculations	assume	that	materials	do	not	absorb	light	(i.e.,	the	imaginary	part	of	the
refractive	 index	 is	 neglected).	 However,	 if	 the	 energy	 of	 light	 is	 lost	 while	 it	 travels	 in
materials,	 the	 imaginary	 part	 of	 the	 refractive	 index	must	 be	 taken	 into	 account.	 For	 light
traveling	from	free	space	(n	=	1)	to	a	material	with	a	complex	refractive	index,	 ,	Equation
8.55	for	reflectance	changes	to:

where	the	complex	refractive	index	 	is	equal	to	(n	+	iκ).	A	comparison	of	Equations	8.55	and
8.57	demonstrates	that	an	increase	in	the	imaginary	part	of	the	refractive	index	(κ)	increases
the	 reflectance	of	materials.	This	 explains	why	metals	have	highly	 reflective	 surfaces	when
the	frequency	of	the	incident	wave	is	smaller	than	the	plasma	frequency	(w	<	wp).	As	shown	in
Equation	8.27,	the	oscillatory	response	of	free	electrons	in	the	regime	of	w	<	wp	increases	κ
and	 makes	 n	 much	 smaller	 than	 1.	 Therefore,	R	 in	 Equation	 8.57	 is	 rewritten	 as	 [(−1)2	 +
κ2]/(12	+	κ2),	which	equals	1.	A	reflectance	of	1	implies	that	all	incoming	light	is	reflected	at
the	air–metal	interface	due	to	the	electric	field	induced	motion	of	electrons.

Example	8.6: Reflectance	at	Glass	Window

1.	 Sunlight	is	incident	through	the	glass	window.	If	there	is	no	antireflection	layer
on	 the	 glass	 surface,	 how	 much	 radiation	 energy	 is	 transmitted	 through	 the
glass	for	blue	ray	(λ	=	450	nm,	n	=	1.47)	and	infrared	ray	(λ	=	3	μm,	n	=	1.42)?
Assume	that	absorption	is	negligible.

2.	 Can	you	reduce	the	transmittance	of	infrared	light,	which	delivers	heat,	without
changing	the	transmittance	of	blue	ray?

Solution

1.	 When	light	is	incident	from	air	to	the	medium,	

For	light	of	λ	=	450	nm	and	3	μm,	reflectance	(R)	is	3.6%	and	3.0%,	respectively.
2.	 Yes,	we	 can	 control	 the	 transmittance	of	 infrared	 (IR)	 light	 by	 coating	 a	very

thin	 oxide	 layer	 on	 the	 glass	 surface.	 If	 the	 coated	 layer	 exhibits	 high
transmittance	 for	 visible	 light	 and	 high	 reflectance	 for	 IR	 light,	 the	 glass	 has
selective	 reflectance	 for	 infrared	 light.	 This	 is	 a	 principle	 of	 low	 emissivity
glass,	which	 reflects	 a	 significant	 amount	 of	 the	 energy	 of	 infrared	 light	 and
preserves	 heat	 inside	 the	 building.	 A	 well-known	 coating	 material	 for	 low
emissivity	 glass	 is	 SnO2	 film	 and	 ceramic	 (e.g.,	 ZnO,	 SnO2,	 TiO2,
Si3N4)/Ag/ceramic	 (e.g.,	 ZnO,	 SnO2,	 TiO2,	 Si3N4)	 multilayers.	 Due	 to	 a
difference	 in	 the	refractive	 index	(n)	of	 the	coating	 layer	 for	visible	 light	and
infrared	 light,	 transmittance	 of	 low	 emissivity	 glass	 drops	 significantly	 for
infrared	light,	while	the	transmittance	of	visible	light	stays	high.

8.4.2.2 A	Case	of	Oblique	Incidence



Previously,	we	discussed	only	normal	incidence.	What	would	happen	if	an	incidence	direction
is	 not	 normal	 at	 a	 material’s	 interface?	 Fresnel	 studied	 reflection	 and	 transmission	 of	 an
electromagnetic	wave	 at	 an	 interface	with	 a	more	 general	 geometry	 and	 found	 an	 intensity
ratio	for	reflected	waves	and	transmitted	waves.

In	 a	 transverse	 electric	 (TE)	 mode,	 the	 electric	 field	 vector	 is	 normal	 for	 a	 traveling
direction	 of	 the	 electromagnetic	wave	 and	 parallel	 to	 the	 interface	 of	 the	media,	while	 the
magnetic	field	vector	is	parallel	to	the	plane	of	incidence	(see	the	left	plot	of	Figure	8.18).	In
that	case,	the	tangential	components	of	the	electric	field	and	magnetic	field	are	continuous	and
the	following	relations	are	valid:

FIGURE	 8.18 Schematics	 on	 the	wave	 vector,	 electric	 field,	 and	magnetic	 field	 of	 light	 for	 (a)	 transverse	 electric	 (TE)
mode	and	(b)	transverse	magnetic	(TM)	mode;	incident	angle	=	θi,	reflected	angle	=	θr,	transmitted	angle	=	θt.

From	 relations	 of	H0	 =	 	 and	 ,	 the	 substitution	 of	H	 with	E	 for	 the
light	traveling	in	nonmagnetic	media	provides	the	relation:

Then,	the	reflection	coefficient	(r)	and	transmission	coefficient	(t)	for	the	perpendicularly
polarized	light	(i.e.,	light	with	the	electric	field	vector	normal	to	an	incident	plane	containing
directions	of	incident	and	reflected	light)	are	given	by

These	 relations	 are	 called	 Fresnel’s	 equations	 for	 light	 with	 perpendicular	 polarization.
Equations	8.61	and	8.62	show	a	change	in	the	electric	field	and	magnetic	field	of	the	reflected
and	 transmitted	 light,	 which	 are	 separated	 at	 the	 boundary	 of	 two	 media	 with	 different



refractive	 indices.	 If	 the	 boundary	 of	 the	 two	media	 is	 not	 flat,	 incoming	 light	 is	 reflected
through	diffuse	reflectance.

In	 a	 transverse	magnetic	 (TM)	mode,	 the	magnetic	 field	 vector	 is	 normal	 to	 a	 traveling
direction	 of	 the	 electromagnetic	 wave	 and	 parallel	 to	 the	 incident	 plane,	 while	 the	 electric
field	vector	is	parallel	to	the	incident	plane	(see	the	right	plot	of	Figure	8.18).	The	relations	to
maintain	 the	 continuity	of	 the	 tangential	 components	of	 the	 fields	 are	 slightly	 changed,	 and
Fresnel’s	equations	for	the	light	with	parallel	polarized	light	(i.e.,	light	with	the	electric	field
vector	parallel	to	the	incidence	plane)	are	summarized	as	follows:

As	Poynting	postulated,	the	energy	ratio	of	reflected	light	and	incident	light	is	given	by	the
square	 of	 the	 reflection	 coefficients	 in	 Equations	 8.61,	 8.62,	 8.63	 and	 8.64.	 It	 is	 noted	 that
neither	 r||	 or	 r⊥	 can	 be	 used	 to	 describe	 the	 reflectance	 and	 transmittance	 of	 natural	 light
correctly.	Since	the	natural	light	has	both	TE	and	TM	modes,	the	electric	field	of	the	natural
light	has	both	perpendicular	and	parallel	components.	This	is	called	an	unpolarized	state.	For
unpolarized	natural	light,	therefore,	the	reflection	coefficient	is	determined	as	the	arithmetic

mean	of	r||	and	 .

Figure	8.19	 shows	 the	 effect	 of	 the	 incident	 light	 angle	 on	 r||	 and	 r⊥	 when	 light	 travels
from	 air	 (n~1)	 to	 glass	 (n~1.5).	 It	 is	 noted	 that	 r||	 and	 r⊥	 may	 have	 different	 signs.	 This
indicates	 that	 the	phase	of	 reflected	 light	 is	shifted	from	that	of	 the	 incident	 light.	The	right
plot	of	Figure	8.19	suggests	that	the	phase	of	perpendicular	polarized	light	is	always	flipped
at	 the	event	of	 reflection	when	 the	medium	with	a	higher	 refractive	 index	 reflects	 the	 light.
For	the	parallel	polarized	light,	incident	light	and	reflected	light	have	a	180°	phase	difference
only	when	the	incident	angle	is	smaller	than	the	Brewster ’s	angle.	If	θi	=	Brewster ’s	angle,	r||
becomes	zero,	and	reflected	light	has	only	one	polarization	component	(r⊥).	Therefore,	 the
reflected	component	of	natural	light	is	polarized	when	the	incidence	of	θi	equals	Brewster ’s
angle.	This	explains	why	Brewster ’s	angle	is	also	called	the	polarization	angle.	A	change	in
the	phase	of	reflected	light	is	intuitively	explained	in	Figure	8.20,	which	shows	the	motion	of
a	 rope	 tied	 to	 a	 boundary.	 Depending	 on	 the	 nature	 of	 rope	 motion	 at	 the	 boundary,	 the
incident	wave	and	reflected	wave	along	the	rope	may	have	different	phases.	When	a	transverse
wave	is	fixed	at	an	end,	a	reflected	wave	experiences	a	phase	change	of	180°.	However,	if	the
boundary	 is	 flexible,	 the	phase	 change	decreases.	For	 an	 end	where	 the	 rope	moves	 freely,
there	is	no	phase	change	between	the	incident	wave	and	reflected	wave.	This	implies	that	the
level	of	refractive	index	difference	at	the	boundary	controls	the	phase	shift	of	reflected	light.
If	n1	 >	n2,	 the	 reflection	 coefficient	 and	 phase	 change	 are	 very	 different	 from	 the	 data	 in
Figure	8.19.	 In	 this	 case,	 the	phase	of	 reflected	 light	 does	not	 change	 for	 an	 incident	 angle
smaller	than	the	Brewster ’s	angle,	which	is	analogous	to	the	case	of	free	end	motion	in	Figure
8.20.



One	last	factor	to	be	considered	about	light	reflectance	(shown	in	Figure	8.18)	 is	how	Et
(the	 electric	 field	 component	 of	 transmitted	 light)	 would	 change	 if	 the	 incident	 light	 is
completely	reflected	(for	a	case	of	total	reflectance).	If	the	incidence	angle	exceeds	the	critical
angle	(see	Equation	8.43),	the	transmitted	light	intensity	must	be	zero.	However,	this	does	not
mean	that	the	electric	field	and	magnetic	field	in	Medium	2	are	zero,	too.	If	Et	and	Ht	are	zero,
there	 is	no	analytic	solution	for	Equations	8.47,	8.48,	8.58,	and	8.59,	which	are	driven	from
Maxwell’s	 equations.	 This	 contradiction	 between	 no	 transmitted	 light	 and	 non-zero
electric/magnetic	 field	 is	 resolved	 by	 introducing	 a	 nonvanishing	 electromagnetic	 surface
wave	 that	 is	 bound	 to	 the	 surface	 region	 of	 Medium	 2.	 This	 surface	 wave	 is	 called	 an
evanescent	 wave.	 Since	 the	 evanescent	 wave	 neither	 propagates	 in	Medium	 2	 nor	 delivers
energy,	its	wave	vector	(k)	in	Medium	2	is	purely	imaginary.	Then,	k	can	be	expressed	as	(iα)
and	the	evanescent	wave	is	given	by:

FIGURE	 8.19 Dependence	 of	 (a)	 the	 reflection	 coefficient	 and	 (b)	 phase	 change	 on	 incident	 light	 angle,	 θi;	 r⊇	 =	 for
perpendicular	polarization,	r||	=	for	parallel	polarization.



FIGURE	8.20 The	motion	of	a	rope	tied	to	a	boundary;	there	is	(a)	a	180°	phase	difference	for	a	fixed	end	and	(b)	a	zero
phase	difference	for	a	free	end.

FIGURE	8.21 A	schematic	of	an	evanescent	wave;	when	an	incident	angle	of	the	plane	wave	is	larger	than	the	critical	angle
(θi	>	θc),	a	decaying	and	standing	transmitted	wave	is	generated.

Equation	8.65	shows	that	the	evanescent	wave	does	not	oscillate	as	a	function	of	position	(it
oscillates	 only	 over	 time).	The	 evanescent	wave	 is	 a	 standing	 transmitted	wave	 that	 decays
exponentially	from	the	interface	(see	Figure	8.21).	When	total	 internal	reflection	occurs,	 the
evanescent	 wave	 is	 generated	 in	 the	 transmitted	 medium	 side	 to	 provide	 a	 solution	 to
Maxwell’s	equation	as	well	as	to	satisfy	the	energy	conservation	law.

8.5 EXTINCTION	OF	LIGHT:	SCATTERING	AND	ABSORPTION

In	Section	8.4,	only	reflection	and	transmittance	of	light	were	considered	and	light	absorption
was	 neglected.	 The	 motion	 of	 free	 and	 bound	 electrons	 in	 response	 to	 incident	 light	 was
pointed	 out	 as	 an	 origin	 of	 reflection	 and	 transmittance.	 Excitation	 of	 electrons	 from	 a
valence	band	or	lattice	vibration	by	incident	light	was	not	discussed	in	Section	8.4.	However,
when	 light	 travels	 in	 real	 materials,	 it	 is	 attenuated.	 Extinction	 is	 a	 process	 by	 which	 the



radiant	intensity	of	traveling	light	is	decreased.	Two	different	mechanisms	are	responsible	for
the	extinction	process.	One	is	scattering,	by	which	the	energy	of	incident	light	is	radiated	in
all	 directions.	 Scattering	 occurs	 because	 vibration	 (oscillation)	 of	 dipoles	 by	 light	 reemits
secondary	electromagnetic	waves	in	every	direction.	The	other	is	absorption,	which	decreases
the	number	of	photons	in	the	light.	Absorbed	energy	of	light	is	converted	to	heat	(i.e.,	lattice
vibration)	or	light	with	different	wavelengths.	In	this	section,	we	will	study	how	incident	light
is	scattered	or	absorbed	in	materials	and	what	the	consequences	of	scattering	and	absorption
are.

8.5.1 SCATTERING	AT	ROUGH	SURFACE	OR	FINE	OBJECTS

Scattering	 of	 light	 means	 that	 incident	 light	 is	 bent	 from	 a	 straight	 trajectory	 and	 travels
toward	all	different	directions.	The	incident	light	is	scattered	when	it	hits	the	irregular	surface
of	a	large	object	or	a	very	fine	object	with	a	size	close	to	or	smaller	than	the	wavelength	of
incident	light.

8.5.1.1 Diffuse	Reflection
Strictly	 speaking,	 the	 scattering	 of	 large	 objects	 on	 a	 non-flat	 surface	 is	 called	 diffuse
reflection.	 Since	 the	 surface	 is	 rough	 or	 granular,	 the	 incident	 light	 is	 reflected	 in	 all
directions,	 as	 schematically	 shown	 in	 Figure	 8.22.	 The	 exact	 form	 of	 scattered	 light	 from
diffuse	reflection	depends	on	surface	features.	An	individual	reflection	occurring	on	a	local
surface	 follows	 the	well-known	mirror-like	 behavior	 of	 reflectance,	 and	 the	 total	 scattered
light	equals	the	sum	of	multiple	reflections	bouncing	at	different	parts	of	the	objects	having
irregular	 surfaces.	 The	 intensity	 of	 the	 diffuse	 reflection	 on	 a	 rough	 surface	 is	 expressed
using	 Lambert’s	 cosine	 law	 (see	 Figure	 8.22).	 In	 this	 model,	 the	 angle	 dependence	 of	 the
radiant	power	by	 the	diffuse	scattering	 is	estimated	by	 the	cosine	of	an	angle	θ	between	 the
surface–normal	direction	and	the	observer ’s	line	of	sight.	According	to	Lambert’s	cosine	law,
an	increase	in	the	angle	θ	(i.e.,	a	deviation	of	the	reflected	light	direction	from	the	surface–
normal	direction)	decreases	the	power	of	the	reflected	light.	However,	the	areal	power	density
(i.e.,	power/area)	of	reflected	light	by	the	diffuse	reflection	is	uniform,	regardless	of	angles.
Since	an	increase	in	the	angle	θ	decreases	the	area	exposed	to	the	reflected	light,	a	decrease	in
the	 power	 of	 the	 reflected	 light	 is	 compensated	 by	 a	 decrease	 in	 the	 area	 exposed	 to	 light.
Therefore,	the	areal	power	density	of	the	reflected	light	is	the	same	over	all	the	angles.



FIGURE	 8.22 Schematics	 on	 specular	 reflection	 on	 (a)	 a	 flat	 surface	 and	 diffuse	 reflection	 on	 a	 rough	 surface	 and	 (b)
reflected	light	power	by	diffuse	reflection	versus	reflected	light	angle—the	largest	power	along	the	surface–normal	direction.

8.5.1.2 Rayleigh	Scattering
Light	is	also	bent	and	scattered	when	it	strikes	a	very	small	subject.	As	explained	in	Section
4.2,	 the	 incident	 light	 oscillates	 the	 electrons	 of	 very	 fine	 materials,	 and	 the	 electron
oscillation	emits	secondary	electromagnetic	waves	in	all	directions.	Since	the	material	size	is
very	small,	emitted	electromagnetic	waves	from	fine	materials	do	not	exhibit	the	constructive
interference	of	bulky	materials.	Instead,	the	reemitted	light	by	fine	objects	spreads	out	in	all
directions,	 which	 is	 similar	 to	 the	 diffuse	 reflection	 by	 a	 rough	 surface.	 This	 spread	 of
incident	light	via	light–matter	interaction	is	also	called	scattering.	If	 the	scattering	is	elastic,
the	 energy	 of	 the	 incident	 photon	 is	 conserved	 and	 only	 the	 light-traveling	 direction	 is
changed	by	the	induced	polarization	of	materials.	In	an	inelastic	scattering	process,	however,
a	part	of	the	energy	is	consumed	by	the	scattering	media	and	converted	to	a	different	kind	of
energy	such	as	heat.

Since	 the	 electron	 oscillation	 by	 the	 incident	 waves	 and	 the	 interference	 of	 the	 emitted
electromagnetic	 waves	 play	 important	 roles	 in	 the	 scattering,	 the	 intensity	 of	 the	 scattered
light	depends	on	 the	polarizability	and	size	of	 the	scattering	media.	As	explained	 in	Section



8.3,	polarizability	is	a	parameter	quantifying	the	electron	oscillation	and	is	determined	by	the
dielectric	constant	of	materials	(P	=	Ndqx	=	NdαE	=	ε0(εr	−1)E).	Hence,	the	real	and	imaginary
part	of	the	dielectric	constant	is	the	first	material	parameter	that	influences	the	scattered	light
intensity	at	different	angles.	The	other	important	parameter	of	the	scattering	media	is	a	ratio
of	 the	 object	 size	 to	 the	 light	 wavelength.	 As	 the	 size	 (more	 strictly	 speaking,	 the	 surface
feature)	 of	 the	 scattering	 object	 becomes	 much	 larger	 than	 the	 light	 wavelength,	 the	 light
propagation	at	 the	 interface	 is	governed	by	 the	 reflection	 that	 is	described	 in	 the	Huygens–
Fresnel	principle.	Therefore,	 the	following	dimensionless	size	parameter	(x)	was	developed
to	express	the	characteristic	dimension	of	the	scattering	object	properly:

where	 r	 is	 the	 radius	 of	 the	 spherical	 scattering	 object	 and	 λ	 is	 the	 light	 wavelength.
Depending	on	the	value	of	x,	the	scattering	of	a	fine	object	is	classified	into	two	groups.	The
first	mechanism	is	Rayleigh	scattering,	which	is	applied	to	the	dielectric	object	of	x	<<	1.	This
means	that	the	radius	(r)	of	the	object	is	much	smaller	than	light	wavelength	(λ).	In	Rayleigh
scattering,	 the	 electric	 field	 of	 light	 is	 uniform	 in	 the	 scattering	 object.	 The	 ideal	 system,
which	is	explained	by	the	Rayleigh	scattering	model,	is	elastic	scattering	by	a	single	dipole,
which	does	not	absorb	 the	 incident	 light	at	all.	 In	 that	case,	 the	 intensity	(Is)	of	 the	scattered
light	coming	from	the	induced	polarization	of	the	dipole	is	given	by:

where	 I0	 is	 the	 incident	 light	 intensity,	 N	 is	 the	 scattering	 particle	 density,	 αp	 is	 the
polarizability,	R	is	the	distance	from	the	scattering	center,	λ	is	the	wavelength	of	the	incident
light,	and	θ	is	the	angle	between	incident	light	and	scattered	light	in	the	plane	of	the	electric
field	of	the	incident	light.	In	Equation	8.67,	it	is	noted	that	the	Is	of	forward	scattering	is	equal
to	that	of	back	scattering	for	the	same	cos	θ.	In	other	words,	the	intensity	of	scattered	light	is
symmetric	in	the	scattering	plane,	which	is	schematically	shown	in	Figure	8.23.

FIGURE	8.23 A	schematic	on	Rayleigh	scattering	of	light	by	a	very	fine	object	(λ	>>	r).



In	addition,	Equation	8.67	indicates	that	the	scattering	becomes	stronger	as	the	wavelength

decreases	 .	This	 is	why	blue	 light	 is	scattered	much	more	 than	 the	red	 light	when

sunlight	 passes	 through	 the	 atmosphere	 where	 N2	 and	 O2	 molecules	 function	 as	 light
scattering	 dipoles.	Consequently,	 an	 observer	 at	 sea	 level	 sees	 blue	 light	 scattered	 from	 all
directions	of	the	sky	and	feels	that	the	color	of	the	sky	is	blue.	Though	the	scattering	power	of
violet	light	is	stronger	than	that	of	blue	light,	the	intensity	of	violet	light	in	incident	sunlight	is
much	weaker	than	that	of	blue	light;	therefore,	the	sky	does	not	look	violet.	In	contrast	to	the
sky,	astronauts	feel	that	the	color	of	space	is	black	because	there	are	no	scatterers,	such	as	N2
and	O2	molecules,	in	space.

8.5.1.3 Mie	Scattering
The	Rayleigh	 scattering	model	 fits	 well	 with	 the	 scattering	 behavior	 of	 nonabsorbing	 fine
particles	 that	 have	 a	 single	 dipole.	 However,	 this	 model	 is	 limited	 in	 its	 explanation	 of
scattering	when	(1)	the	particle	size	is	comparable	to	the	wavelength	of	light	(e.g.,	x	≈	1)	or
(2)	particles	absorb	light.	In	these	conditions,	the	assumption	that	the	electric	field	is	uniform
throughout	is	no	longer	valid.

Gustav	 Mie	 explained	 scattering	 beyond	 the	 Rayleigh	 range.	 He	 solved	 Maxwell’s
equations	 for	 general	 cases	 of	 scattering	 and	 formulated	 solutions	 for	 scattering	 and
absorption	by	 spherical	 particles	without	 particular	 conditions	 of	 size	 and	 light	 absorption.
Mie	 scattering	 can	 be	 applied	 to	 very	 fine	 particles	 (x	 <<	 1)	 that	 are	 encompassed	 by	 the
Rayleigh	scattering	model.	However,	since	it	is	more	difficult	to	obtain	solutions	for	the	Mie
scattering	 model,	 the	 use	 of	 the	 Rayleigh	 scattering	 model	 is	 still	 preferred	 for	 very	 fine
particles	 (x	 <<	 1).	 One	 problem	 with	 the	 Mie	 scattering	 model	 is	 that	 it	 only	 provides
solutions	 to	 the	 problem	of	 scattering	 by	 spherical	 particles.	Later,	 some	modification	was
made	to	span	other	shapes	such	as	spheroids,	ellipsoids,	and	rings.

If	 the	 particle	 shape	 is	 arbitrary,	 general	 solutions	 are	 not	 available.	 In	 this	 theory,	 the
incident	plane	wave	and	the	scattering	field	are	expanded	into	radiating	spherical	vector	wave
functions,	 while	 the	 field	 inside	 the	 scattering	 particles	 is	 expanded	 into	 regular	 spherical
vector	wave	functions.	Then,	the	expansion	coefficients	of	the	scattered	field	can	be	calculated
by	applying	the	boundary	condition	of	the	spherical	surface	to	the	radiating	spherical	vector
wave	functions.	Based	on	this	process,	Mie	scattering	theory	provides	the	exact	solution	of	the
light	 scattering	 and	 absorption	 by	 spherical	 particles.	 The	 optical	 efficiencies	 Qi,	 which
describe	 the	 interaction	of	 radiation	with	a	scattering	sphere,	can	be	calculated	by	 the	cross
section	σi	and	geometrical	particle	cross	section	πa2,	shown	as



FIGURE	8.24 Schematics	showing	spatial	 intensity	distribution	of	scattered	visible	 light:	 (a)	By	Rayleigh	scattering	of	fine
particles	(r	=	10	nm),	 (b)	by	Mie	scattering	of	medium-sized	particles	 (r	=	100	nm),	and	 (c)	by	Mie	scattering	of	 relatively
large	particles	(r	=	100	μm).

Since	Mie	 scattering	 encompasses	 both	 scattering	 and	 absorption	 of	 light,	 the	 extinction
efficiency	 (Qext)	 of	 the	 incident	 light	 equals	 the	 sum	 of	 scattering	 efficiency	 (Qsca)	 and
absorption	efficiency	(Qabs),	which	are	given	by:

In	 Equation	 8.69,	 Qsca	 is	 obtained	 from	 the	 integration	 of	 the	 scattered	 waves	 in	 all
directions,	Qext	is	deduced	from	the	forward-radiation	theorem	of	the	incident	light,	and	Qabs
equals	the	difference	between	Qext	and	Qsca.	Qext	indicates	the	amount	of	light	that	is	scattered
or	absorbed	by	 the	particle.	Readers	can	 find	detailed	calculations	of	 radiating	vector	wave
functions	in	various	references.

The	relation	of	Qext	versus	x	and	the	spatial	distribution	of	the	scatter	power	are	presented
in	Figure	8.24.	Instead	of	a	detailed	calculation	process,	physical	meanings	of	Mie	solutions
are	introduced	here.	First,	the	scattering	efficiency	is	less	dependent	on	the	wavelength	in	Mie
scattering	 than	 in	Rayleigh	scattering.	This	means	 that	Qext	of	Mie	scattering	 lingers	over	a

wide	 range	of	 .	Second,	Qext	 is	maximized	when	 the	particle	 size	 is	 close	 to	 the

wavelength	of	 the	 incident	 light.	Third,	a	curve	of	Qext	vs.	 	 shows	 an	 oscillating

relation	 due	 to	 interference	 with	 the	 incident	 light.	 Near	 the	 wavelength	 of	 local	 Qext

maximum	(λmax),	Qext	approximately	depends	on	 .	Fourth,	Mie	solutions	show	that

scattering	 by	 relatively	 large	 particles	 redirects	 the	 incident	 light	 to	 asymmetric
electromagnetic	waves	in	the	scattering	plane.	In	comparison	to	Rayleigh	scattering,	a	ratio	of



the	 back	 scattered	 power	 over	 the	 forward	 scattered	 power	 is	 smaller	 than	 1	 for	 Mie
scattering.	This	forward	traveling	feature	of	Mie	scattering	explains	why	we	can	see	a	red	sun
with	a	spherical	shape	in	the	sky	near	sunset.

8.5.2 ATTENUATION	OF	LIGHT	BY	ABSORPTION

When	light	travels	in	materials,	it	can	be	absorbed	or	scattered/reflected.	The	main	difference
between	 absorption	 and	 scattering/reflectance	 is	 that	 the	 absorption	 process	 results	 in
dissipation	 of	 heat	 or	 reemission	 of	 light	 with	 a	 different	 wavelength.	 In	 other	 words,	 the
electromagnetic	 energy	of	 incoming	 light	 is	 consumed	 to	 excite	 electrons,	 ions,	 and	 atoms
from	a	lower	energy	state	to	a	higher	energy	state.	When	excited	electrons,	ions,	and	atoms
return	to	the	initial	lower	energy	state,	they	release	heat	or	light.	In	a	case	of	light	emission,	it
is	 noted	 that	 the	 incident	 and	 emitted	 light	 have	 a	different	wavelength.	Several	 phenomena
responsible	 for	 light	 absorption	 are	 grouped	 into	 electronic	 and	 lattice	 contributions.	 An
electronic	contribution	results	from	a	change	in	the	energy	state	of	electrons.

Light	absorption	by	a	lattice	involves	lattice	vibration	the	frequency	of	which	falls	into	the
regime	 of	 infrared	 light.	 Though	 a	 lattice	 vibrates	 in	 all	 kinds	 of	 solids	 above	 0	 K,	 the
absorption	 of	 infrared	 light	 by	 lattice	 vibration	 heavily	 depends	 on	 the	 type	 of	 atomic
bonding.	When	 ionic	 crystals	 are	 exposed	 to	 an	 electromagnetic	wave,	 oppositely	 charged
ions	move	in	opposite	directions	due	to	the	electric	field	component	of	light	(see	Figure	8.25).
If	 the	 force	 between	 displaced	 ion	 pairs	 is	 assumed	 to	 be	 proportional	 to	 the	 displacement
(harmonic	 approximation),	 the	 force	 exerted	 on	 the	 2nth	 atom	 by	 the	 (2n+1)th	 atom
approximates	 α(un−1	 −	 un).	 Then,	 the	 following	 relations	 between	 forces	 and	 acceleration
velocity	in	the	diatomic	ionic	crystal	are	found	to	be:



FIGURE	8.25 (a)	Lattice	vibration	of	 ionic	crystals	by	electromagnetic	wave	in	an	IR	regime;	(b)	extinction	coefficient	of
compound	semiconductors	as	a	function	of	wavelength	in	IR	regime—IR	light	is	absorbed	through	the	lattice	vibration.	(From
Kasap,	S.	O.,	Principles	of	Electronic	Materials	and	Devices.	New	York:	McGraw	Hill,	2006.	With	permission.)

where	positive	and	negative	ions	have	masses	(M1	and	M2)	and	electric	charges	(q	and	–q);	un
is	 the	displacement	of	 the	nth	 ion	exposed	to	 the	electric	field,	E	=	E0ei(kx	 −	wt);	and	α	 is	 the



proportional	constant	representing	an	interatomic	force.	This	forced	vibration	of	the	ion	pairs
by	the	electromagnetic	wave	is	called	an	optical	phonon.	The	natural	frequency	range	of	the
optical	phonons	lies	in	the	infrared	region.	Interactions	of	light	with	optical	phonons	lead	to
the	absorption	and	reflection	of	infrared	light	in	ionic	crystals.	This	indicates	that	the	electric
field	of	 IR	 light	oscillates	 ions	and	 that	 the	electromagnetic	energy	of	 light	 is	 converted	 to
phonons	 of	 ionic	 crystals.	 As	 shown	 in	 the	 bottom	 plot	 of	 Figure	 8.25,	 the	 extinction
coefficient	 of	 compound	 semiconductors	 exhibits	 a	 maximum	 peak	 for	 IR	 light	 with	 a
wavelength	of	20–100	μm.	It	is	also	noted	that	the	response	of	materials	to	visible	light	and	IR
light	 takes	 place	 through	 different	mechanisms.	While	 visible	 light	 activates	 the	 electronic
polarization	mechanism,	 IR	 light	 stimulates	 the	harmonic	motion	of	 ions—that	 is,	 phonons
(see	Figure	8.8).

From	Equations	8.70	and	8.71,	the	induced	polarization	by	the	displacement	of	the	(2n+1)th
ion	and	the	2nth	ion	is	also	given	by

where	wt	is	2α(1/M1+1/M2).	At	w	=	wt,	 the	 largest	 ionic	polarization	 is	 induced	by	light	and
the	light	absorption	by	the	lattice	vibration	becomes	maximized.

In	 comparison	 to	 the	 ionic	 bond,	 the	 effect	 of	 an	 electric	 field	 of	 light	 on	 atomic
displacement	 is	 marginal	 in	 covalent	 materials	 where	 atoms	 do	 not	 possess	 a	 net	 electric
charge.	 Hence,	 the	 absorption	 by	 the	 vibration	 of	 the	 covalent	 bond	 is	 weak	 and	 involves
higher-order	 processes.	 The	 difference	 in	 atomic	 bonding	 characteristics	 explains	 why
compound	 semiconductors	 such	 as	 GaAs	 and	 GaP,	 which	 possess	 ionic	 bonding
characteristics,	partially	respond	to	IR	light	more	strongly	than	pure	covalent	semiconductors
such	as	Si	and	Ge.

Although	 the	 absorption	 of	 IR	 light	 by	 ionic	 and	 covalent	 bonding	materials	 occurs	 via
phonon	generation,	a	major	absorption	mechanism	for	visible	light	is	the	interband	transition
of	electrons.	This	mechanism	also	works	for	infrared	light	in	a	semiconductor	with	a	small
band	 gap	 (Eg	 <	 1.2	 eV).	 Interband	 transition	 can	 occur	 in	 all	 types	 of	 materials	 if	 photon
energy	(E	 =	 hυ)	 is	 larger	 than	 band	 gap	 (Eg)	 of	materials	 (e.g.,	 hυ	 >	Eg).	 Supra	 band	 gap
photons	(photons	with	energy	larger	than	the	band	gap	of	a	material)	can	excite	an	electron
from	a	lower	energy	level	to	a	higher	energy	level	that	is	unoccupied.	From	the	relations	of	E
=	hυ	and	υ	=	c/λ	 for	 light,	 an	 edge	wavelength	 of	 the	 absorption	 spectrum	 is	 calculated	 as
follows:

In	Equation	8.73,	it	is	noted	that	the	unit	of	λ	and	Eg	are	nm	and	eV,	respectively.	Since	the
band	gap	of	semiconductors	ranges	from	~0.5	eV	to	3.2	eV,	Equation	8.73	demonstrates	 that
the	 absorption	 spectrum	 edge	 lies	 in	 the	 regimes	 of	 visible	 light	 and	 IR	 light,	where	most
solar	energy	is	concentrated.	This	explains	why	semiconductors	are	used	as	light	absorbing



materials	for	solar	cells.	Silicon,	which	is	a	dominant	material	in	solar	cells,	has	an	Eg	of	~1.1
eV	and	absorbs	photons	whose	wavelength	is	shorter	than	~1100	nm.

FIGURE	 8.26 Photon	 absorption	 in	 (a)	 direct	 band	 gap	 and	 (b)	 indirect	 band	 gap	 materials.	 VB:	 valence	 band,	 CB:
conduction	band.

The	efficacy	of	light	absorption	by	band-to-band	transition	is	strongly	related	to	the	band
structures	 of	 the	 semiconductor	 schematically	 displayed	 in	 Figure	 8.26.	 In	 direct	 band	 gap
materials,	 the	maximum	 in	 the	 valence	 band	 and	 the	minimum	 in	 the	 conduction	 band	 are
observed	 at	 the	 same	wave	 vector	 (k)	 of	 electrons.	 In	 this	 case,	 an	 electron	 can	 be	 excited
from	the	valence	band	to	the	conduction	band	by	absorbing	a	photon	of	energy	Eg.	According
to	 the	 quantum	mechanical	 approach,	 an	 electron	 has	 a	wave-like	 property	 and	 a	 traveling
electron	 with	 the	momentum	 p	 can	 be	 treated	 as	 a	 wave	 with	 the	 wavelength,	 λ.	 Relations
among	the	momentum,	wavelength,	and	energy	of	an	electron	are	given	by:

Since	p	of	the	electron	equals	ħ	×	k,	an	electron	moving	between	two	energy	states	at	the
same	wave	vector	does	not	need	to	change	its	momentum	during	the	 interband	transition	of
direct	band	gap	materials.	This	means	that	“the	photon	energy	equivalent	or	larger	than	Eg”	is
a	sufficient	condition	for	light	absorption	in	the	direct	band	gap	semiconductor.

However,	in	indirect	band	gap	semiconductors,	the	minimum	point	of	the	conduction	band
and	 the	maximum	point	of	 the	valence	band	have	different	wave	vectors	 (k).	Therefore,	 the
photon	energy	of	Eg	is	a	necessary	condition	for	light	absorption.	To	excite	an	electron	from
the	valence	band	edge	to	 the	conduction	band	edge,	 the	difference	in	electron	momentum	at
two	 points	 must	 be	 compensated.	 But,	 since	 the	 photon	 with	 energy	 Eg	 has	 negligible
momentum,	 the	 photon	 cannot	 supply	 or	 absorb	 enough	 momentum	 when	 it	 meets	 the
electron	 in	 the	 valence	 band.	 The	 lattice	 vibration	 (e.g.,	 phonon)	 briefly	 discussed	 in	 this
section	 provides	 a	 solution	 to	 the	 problem	 of	 the	 momentum	 mismatch.	 It	 is	 noted	 that



phonons	generally	have	larger	momentum	and	smaller	energy	because	the	mass	of	atoms	and
ions	is	much	larger	than	that	of	electrons.	As	shown	in	Equations	8.74	and	8.75,	the	energy	of
the	wave	is	inversely	proportional	to	the	mass	of	the	particle	if	the	momentum	is	fixed.	When
the	electron	takes	away	a	photon	with	an	energy	≥	Eg,	the	phonon	can	yield	its	momentum	to
the	electron	or	the	excess	momentum	of	the	electrons	can	be	transferred	to	the	lattice.	If	that
happens,	the	electron	can	be	excited	from	the	valence	band	maximum	to	the	conduction	band
minimum.	Therefore,	 the	 interband	 transition	 in	 indirect	 band	gap	 semiconductors	 requires
the	absorption	of	both	photon	and	phonon,	which	reduces	the	efficacy	of	light	absorption.	For
example,	if	the	material	thickness	is	the	same,	GaAs	and	CdTe	possessing	a	direct	band	gap
absorb	 visible	 light	much	more	 than	 that	 of	 Si	 possessing	 an	 indirect	 band	 gap	 by	 several
orders	of	magnitude.

FIGURE	 8.27 Schematic	 explanation	 of	 intraband	 transition	 of	 electrons	 in	 metals:	 (i)	 A	 dotted	 line	 represents	 a	 free
electron	in	the	Fermi	energy	level	(EF)	that	is	excited	into	empty	states	of	the	valence	band,	and	(ii)	a	solid	line	represents	the
maximum	energy	that	can	be	absorbed	via	interband	transition.

In	addition	to	the	interband	transition,	an	electron	excitation	within	the	same	band	(known
as	an	intraband	transition)	also	accompanies	the	absorption	of	photons.	Since	a	higher	empty
energy	 state	 must	 be	 available	 for	 the	 electron	 excitation	 within	 the	 band,	 this	 intraband
transition	often	 is	 found	 in	metals	 that	have	a	partially	 filled	valence	band.	Semiconductors
can	 also	 exhibit	 an	 intraband	 transition	 in	 limited	 cases	 (for	 instances,	 high	 temperature
and/or	 high	 impurity	 doping)	 that	 cause	 the	 semiconductor	 to	 be	 degenerated	 (or	 to	 have
enough	free	electrons).	As	schematically	shown	in	Figure	8.27,	the	intraband	transition	of	the
electron	 results	 from	 electron	motion	within	 a	 band	 consuming	 photons	mainly	 in	 IR	 and
visible	regimes.	The	maximum	photon	energy	that	can	be	absorbed	via	intraband	transition	is
equivalent	to	the	energy	width	of	the	electron	band.



8.5.3 QUANTITATIVE	EXPRESSION	OF	EXTINCTION:	BEER–LAMBERT	LAW

In	 previous	 sections,	 we	 learned	 that	 the	 intensity	 of	 light	 traveling	 in	 optical	 materials
continuously	 decreased	 due	 to	 the	 absorption	 and	 scattering	 phenomena.	 Since	 both
absorption	 and	 scattering	 reduce	 the	 intensity	 of	 traveling	 light,	 they	 are	 grouped	 as
extinction,	 which	 is	 the	 process	 of	 decreasing	 the	 intensity	 of	 light.	 However,	 they	 have
different	physical	mechanisms.	In	the	absorption	process,	the	energy	that	the	electromagnetic
wave	loses	is	transformed	to	other	forms	of	energy,	such	as	heat	or	longer	wavelength	light.
In	contrast,	scattering	is	a	process	that	redirects	the	traveling	light	in	other	directions	through
the	oscillation	of	 dielectric	 dipoles	with	negligible	 energy	 conversion.	Hence,	 the	 scattered
light	has	the	same	wavelength	as	the	incident	light.

A	 change	 in	 light	 intensity	 by	 scattering	 and	 absorption	 can	 be	 quantitatively	 expressed
using	relations	of	electric	field	and	electromagnetic	energy.	Wave	vector	k	in	E	=	E0ei(kx	−	wt)

equals	w/v	(w:	angular	frequency,	v:	velocity	of	the	electromagnetic	wave),	and	v	is	related	to
the	refractive	index	(n)	of	the	medium	such	that	v	=	c/n	(c:	light	velocity	in	free	space).	Thus,
we	find	that	E	=	E0ei(kx	−	wt)	is	rewritten	as

In	free	space,	n	has	only	a	real	component	and	a	propagating	wave	is	not	attenuated.	But,
the	 refractive	 index	of	 optical	materials	 has	both	 real	 and	 imaginary	 components,	 and	n	 in
Equation	8.76	ought	to	be	replaced	by	(n	−	ik).	Then,	the	electric	field	of	an	electromagnetic
wave	traveling	in	the	optical	material	with	refractive	index	n	is	given	by:

Equation	8.77	shows	an	 important	behavior	of	 the	electromagnetic	wave.	When	 the	wave
enters	 the	 material	 (i.e.,	 k	 ≠	 0),	 its	 electric	 field	 decays	 exponentially	 from	 an	 entering

interface,	and	a	decrease	 in	 the	electric	 field	 intensity	 is	described	by	 .	 This

shows	 again	 why	 k	 is	 called	 the	 extinction	 coefficient.	 There	 are	 multiple	 origins	 of
extinctions	such	as	 interband	 transition,	 lattice	vibration,	 scattering,	and	 intraband	 transition
that	are	reviewed	in	Sections	8.4	and	8.5.	 In	Equation	8.77,	 the	undamped	oscillating	part	of

the	electric	 field	 is	 represented	by	 .	We	can	also	deduce	a	 change	 in	 the

intensity	 of	 the	 electromagnetic	wave	 in	 the	material	 using	 the	 change	 in	 the	 electric	 field
intensity.	As	 explained	by	 the	Poynting	vector	 in	Equation	8.53,	 the	 intensity	 of	 the	 light	 is
equal	to	the	square	of	the	electric	field,	and	a	combination	of	Equations	8.53	and	8.77	leads	to

Equation	8.78	is	often	rewritten	as



where	 I0	 is	 an	 intensity	 of	 the	 oscillating	 electric	 field.	 Equation	 8.78	 explains	 how	 the
intensity	of	light	is	attenuated	in	optical	materials.	Extinction	of	light	through	the	material	has
a	 logarithmic	 dependence	 on	 a	 product	 of	 the	 extinction	 coefficient	 and	 the	 light	 traveling
distance	(x),	which	is	stated	in	the	Beer–Lambert	law;	(2wk/c)	in	Equation	8.79	is	equivalent	to
absorbance	(α)	in	the	Beer–Lambert	law,	and	Equation	8.79	is	rewritten	as

The	exponential	decay	of	the	oscillating	wave	in	Equation	8.80	quantifies	the	decay	of	the
electromagnetic	wave	that	travels	optical	materials	with	a	non-zero	extinction	coefficient.

As	 described	 previously,	 there	 are	 several	 physical	 origins	 underlying	 the	 extinction
process	 that	 includes	 scattering	 and	 absorption.	 In	metals,	 the	 intraband	 transition	 (electric
conduction)	 of	 free	 electrons	 is	 mainly	 responsible	 for	 extinction.	 In	 this	 case,	 since	 the
resistivity	 of	metals	 is	 not	 zero,	 the	 free	 electrons	 that	 oscillate	 under	 the	 electromagnetic
wave	experience	frictional	force	(see	Section	8.3.1	of	this	chapter)	and	a	damping	term	must
be	introduced	to	Maxwell	equations.	A	modified	relation,	taking	into	account	the	damping,	is
given	by:

where	σ	is	AC	conductivity	representing	free	electron	motion	induced	by	the	electric	field	of
the	 electromagnetic	wave.	According	 to	Equations	8.23	 and	8.27,	 displacement	 (x)	 obtained
from	Equation	8.24	is	connected	to	the	refractive	index	and	the	dielectric	constant	as	follows:

Since	 ,	AC	conductivity	and	extinction	coefficient	are	related	by:

This	 shows	 that	 the	 extinction	 coefficient	 (k)	 of	materials	with	 free	 electrons	 is	 linearly
proportional	to	AC	conductivity,	which	depends	on	the	free	electrons’	concentration.	Equation
8.83	also	leads	to	an	important	material	parameter	showing	how	deeply	light	can	reach	from
the	 incident	 surface.	 A	 degree	 of	 light	 penetration	 into	 materials	 is	 quantified	 by	 a
characteristic	penetration	depth	(W);	W	is	the	depth	at	which	the	intensity	of	the	traveling	light
is	equal	to	1/e	of	the	initial	value.	From	Equations	8.79	and	8.83,	the	characteristic	depth	W	is
given	by



Due	to	the	large	free	electron	concentration,	AC	conductivity	of	metals	is	very	high	and	so
is	 the	 extinction	 coefficient.	Consequently,	W	 of	most	metals	 turns	 out	 to	 be	 very	 thin.	 For
visible	light,	W	of	metals	is	in	the	order	of	10	nm.	Shallow	W	of	metals	implies	that	most	of
the	incident	light	cannot	penetrate	into	metals.	Electron	motion	excited	by	the	electric	field	of
the	 light	 redirects	 the	 light	 instead	 of	 transmitting	 it.	 In	 other	 words,	 light–free	 electron
interaction	 in	 a	 subsurface	 region	 causes	 light	 to	 be	 reflected	 (i.e.,	 a	 change	 in	 the	 light’s
traveling	direction).	Also,	because	of	the	damping	of	the	electron	motion,	light–free	electron
interaction	 is	 not	 a	 loss-free	 process,	 and	 a	 small	 amount	 of	 the	 light	 is	 converted	 to	 a
different	kind	of	energy	by	the	induced	oscillation	of	free	electrons.	In	gold,	W	for	light	with
the	 wavelength	 600	 nm	 is	 15	 nm,	 and	 93%	 of	 incident	 light	 is	 reflected	 at	 the	 surface.	 In
contrast,	CdTe	is	a	direct	band	gap	semiconductor,	W	is	~	1	μm	for	the	visible	light,	and	about
70%	of	light	is	absorbed	in	a	1-μm-thick	layer.	Doped	silicon,	which	is	widely	used	in	solar
cells,	has	W	of	~	100	μm	due	to	the	combined	effect	of	a	low	free	carrier	concentration	and	an
indirect	 band	 gap.	 This	 penetration	 depth	 is	 an	 important	 parameter	 that	 determines	 the
thickness	of	the	photoactive	component	(wafer	or	thin	film)	in	solar	cells	and	photodetectors.

Example	8.7: Attenuation	of	Electromagnetic	Waves	in	Metals	and	Semiconductors

1.	 If	the	AC	conductivity	and	the	real	refractive	index	of	Cu	are	3.1	×	102	(Ω	·	cm)
−1	and	0.38	at	λ	=	1	μm,	respectively,	what	are	the	extinction	coefficient	(k)	and
absorption	coefficient	(α)?

2.	 Experimentally	measured	α	of	p-type	silicon	for	light	with	the	wavelength	780
nm	 is	0.12	μm−1.	Can	you	calculate	 the	AC	conductivity	of	p-type	Si	 from	 its
absorption	coefficient?

Solution
1.	 Light	 absorption	 can	 occur	 via	 several	mechanisms	 such	 as	 electron	 band-to-

band	 transition,	 lattice	 vibration,	 and	 free	 electron	 oscillation.	 In	 the	 case	 of
extrinsic	silicon	(e.g.,	impurity	doped	silicon)	exposed	to	light,	the	role	of	free
electron	motion	 is	dominant.	Since	 the	frequency	of	 light	 is	much	higher	 than
that	 of	 the	 lattice	 vibration,	 radiation	 energy	 is	 not	 absorbed	 by	 the	 lattice
vibration.	 Also,	 the	 efficiency	 of	 electron	 excitation	 from	 valence	 band	 to
conduction	band	is	low	due	to	the	indirect	band	gap	nature	of	silicon.	Hence,	if
the	 free	 electron	 concentration	 is	 high	 in	 doped	 silicon,	 the	 free	 electron
oscillation	 dominantly	 dissipates	 incident	 radiation	 energy.	 In	 a	 constituent
equation	of	the	free	electron	oscillation,	the	friction	coefficient	(γ)	is	given	by:

If	 the	 free	electron	oscillation	 is	 responsible	 for	 the	dissipation	of	 incident	 light,	 an	equation	of
the	refractive	is	rewritten	as:

where	k	is	the	extinction	coefficient	(an	imaginary	part	of	the	complex	refractive	index).	From	this

equation,	 ε″	 is	 equal	 to	 2nk	 and	 k	 becomes	 .	 Note	 that	 the	 intensity	 of	 incident



electromagnetic	wave	 is	expressed	as	I	=	 I0exp(−αx)	where	absorbance	 (α)	 equals	 to	 (2wk/c).
Therefore,	k	and	α	are	related	to	AC	conductivity	(σ)	and	the	real	part	of	the	refractive	index	(n):

The	 addition	 of	 AC	 conductivity	 and	 frequency	 into	 these	 equations	 results	 in	 an	 extinction
coefficient	(k)	and	absorption	coefficient	(α);

∴	k	=	2.45,	α	=	3.1	×	107	(m−1)

2.	 Since	the	photon	energy	of	light	with	wavelength	780	nm	is	larger	than	the	band
gap,	the	attenuation	of	incident	light	occurs	through	electron	excitation	from	the
valence	band	to	the	conduction	band	as	well	as	free	electron	motion.	Therefore,
the	absorption	coefficient	and	AC	conductivity	do	not	have	a	direct	relation	in
p-type	Si	for	light	with	wavelength	780	nm.

8.6 EFFECTS	OF	SCATTERING,	REFLECTANCE,	AND	ABSORPTION	OF	LIGHT

8.6.1 COLOR	OF	MATERIALS

Absorption,	scattering,	and	transmission	depend	on	the	wavelength	of	light.	Therefore,	when
white	 light	 composed	 of	 red,	 green,	 and	 blue	 light	 is	 incident	 upon	materials,	 the	 relative
portion	of	absorption,	scattering,	and	 transmittance	 is	not	 the	same	for	red,	green,	and	blue
light.	 Since	 human	 eyes	 catch	 scattered	 electromagnetic	 wave	 that	 is	 neither	 absorbed	 nor
transmitted,	 the	 relative	 ratio	of	 scattering	and	absorption	over	 electromagnetic	waves	with
different	wavelengths	controls	the	color	of	materials.

For	example,	a	material	surface	that	scatters	red	light	more	than	blue	light	looks	red.	It	is
noted	 that	 both	 intrinsic	 and	 extrinsic	 properties	 of	 material	 surfaces	 influence	 light
scattering.	As	described	in	the	introduction	of	this	chapter,	water	molecules	in	the	ocean	and
in	 clouds	 result	 in	 different	 colors,	 though	 their	 molecular	 structures	 are	 the	 same.	 Since
water	drops	in	a	cloud	cause	Mie	scattering	for	the	entire	visible	range,	visible	light	coming
from	the	space	experiences	forward	scattering	by	the	water	drops	in	the	cloud,	regardless	of
its	wavelength.	Hence,	humans	on	 land	 feel	 that	 the	color	of	 the	cloud	 is	white.	 In	contrast,
Mie	scattering	does	not	occur	at	the	ocean’s	surface.	The	color	of	the	ocean	is	determined	by
diffuse	reflectance,	which	is	complementary	to	absorption.	Since	the	light	absorption	efficacy
is	the	highest	for	the	red	component	of	visible	light,	the	diffuse-reflected	light	contains	only
green	and	blue	components,	which	are	detected	by	human	eyes.

Scattering	 of	 light	 contributes	 to	 the	 colors	 of	 objects,	 regardless	 of	materials’	 electric
properties.	However,	the	scattering	mechanism	is	different	for	metals	and	semiconductors.	In
addition,	 the	 scattering	 efficacy	 of	metals	 is	 higher	 than	 that	 of	 semiconductors	 due	 to	 the
high	 free	 electron	 concentration	 of	 metals.	 The	 most	 distinguishable	 difference	 between
metals	and	semiconductors	is	that	the	plasma	frequency,	which	is	related	to	the	free	electron
density	 of	 metals,	 falls	 in	 the	 UV	 and	 visible	 regimes.	 When	 the	 frequency	 of	 incoming



photons	is	smaller	than	the	plasma	frequency,	photons	are	absorbed	and	reemitted	through	the
intraband	 transition.	 For	 photons	 with	 higher	 frequency,	 metals	 become	 transparent.
Therefore,	the	intraband	transition	and	the	plasma	oscillations	are	important	in	the	coloration
of	metals.	For	example,	the	plasma	frequency	of	silver	with	a	free	electron	concentration	of
5.9	×	1022	cm−3	is	~350	nm,	and	incoming	light	collectively	oscillates	free	electrons	existing
from	the	surface	to	a	depth	of	~350	nm.	This	oscillation	of	free	electrons	in	silver	reflects	all
visible	 light,	 resulting	 in	 the	 unique	 color	 of	 silver.	However,	 the	 plasma	 oscillation	 itself
does	not	fully	explain	the	color	of	metals.	The	free	electron	concentration	is	similar	for	gold
and	 silver;	 however,	 their	 colors	 are	 different.	 The	 difference	 in	 color	 between	 gold	 and
silver	 is	 due	 to	 the	 interband	 transition.	 In	 addition	 to	 plasma	 oscillation,	 gold	 and	 silver
absorb	photons	through	the	interband	transition	from	lower	energy	d-shell	(or	f-shell)	levels
to	higher	energy	s-shell	 levels.	The	energy	gap	 for	 this	 interband	 transition	corresponds	 to
the	UV	 light	 energy	 for	 silver	 and	 the	 blue	 light	 energy	 for	 gold.	 Therefore,	 in	 gold,	 the
interband	transition	of	gold	filters	the	blue	light;	the	intraband	transition	of	free	electrons	and
light	reemission	can	occur	only	for	green	and	red	light.	When	both	green	and	red	light	are
emitted	from	gold,	green	and	red	colors	are	mixed	and	the	gold	appears	yellow.	Examples	of
gold	and	silver	demonstrate	that	both	interband	and	intraband	transitions	are	important	factors
in	determining	the	color	of	metals,	while	the	color	of	semiconductors	mainly	is	controlled	by
the	interband	transition	of	electrons.

In	contrast	 to	metals,	 the	 free	electron	concentration	of	semiconductors	and	 insulators	 is
low,	and	the	electron	band	(valence	band	and	conduction	band)	is	either	fully	filled	or	empty.
Hence,	absorption	and	reemission	of	light	by	free	electrons	(i.e.,	intraband	transition)	are	not
expected.	 Instead,	 the	 color	 of	 semiconductors	 and	 metals	 is	 determined	 by	 the	 combined
effect	 of	 diffuse	 scattering	 at	 the	 surface	 and	 the	 interband	 transition	 of	 electrons	 from	 the
valence	 band	 to	 the	 conduction	 band.	 Since	 light	 with	 energy	 higher	 than	 the	 band	 gap	 is
absorbed,	 only	 light	 with	 energy	 smaller	 than	 the	 band	 gap	 leaves	 the	 material	 and	 is
recognized	as	the	color	of	the	material.

If	the	material	surface	is	flat	and	smooth,	the	diffuse	reflection	at	the	front	and	back	surface
is	negligible,	 and	 the	unabsorbed	part	of	 the	 incoming	 light	 transmits	 through	 the	material.
This	is	the	case	for	window	glass,	which	has	a	very	smooth	surface.	A	major	component	of
window	glass	is	SiO2	with	a	band	gap	>	8	eV.	Therefore,	all	visible	light	is	not	absorbed	by
the	window	glass,	and	the	very	smooth	surface	prevents	scattering	(diffuse	reflection),	which
makes	the	window	glass	transparent.	If	the	material	surface	is	rough,	the	unabsorbed	part	of
the	 light	 is	 scattered	 at	 the	 surface	 via	 the	 diffuse	 reflection,	 and	 the	 glass	 is	 no	 longer
transparent.

The	appearance	of	rusted	steel	is	another	example	showing	the	effect	of	the	band	gap	and
the	 scattering.	 The	 color	 of	 a	 rusted	 steel	 surface	 is	 due	 to	 the	 diffuse	 reflection	 of	 sub-
bandgap	light	by	Fe2O3.	The	main	composition	of	rust	on	an	iron	surface	is	Fe2O3	 showing
semiconducting	behaviors.	Since	the	band	gap	of	Fe2O3	is	2.2	eV,	the	iron	rust	absorbs	only
blue	and	green	light	whose	photon	energy	is	larger	than	2.2	eV.	The	unabsorbed	part	(yellow,
orange,	and	red)	of	visible	 light	 is	scattered	at	 the	surface	of	 the	rusted	steel	and	causes	 the
unique	reddish	brown	color	of	the	iron	rust.	Inorganic	semiconductors	such	as	CdS	with	band



gap	 2.42	 eV	 and	 GaAs	 with	 band	 gap	 1.42	 eV	 also	 exhibit	 yellow	 and	 black	 colors,
respectively,	due	to	the	scattering	or	reflectance	of	the	sub-bandgap	light.

Another	 example	 showing	 the	 role	 of	 scattering	 on	 the	 appearance	 is	 alumina	 (Al2O3),
which	is	well-known	in	structural	and	insulating	ceramics.	The	band	gap	of	Al2O3,	7.2	eV,	is
much	 larger	 than	 the	 energy	 of	 visible	 light.	 Therefore,	 single	 crystalline	 Al2O3	 and
polycrystalline	Al2O3	with	a	relative	density	>	99%	are	transparent	as	long	as	the	surface	is
flat	 and	 smooth.	 This	 is	 the	 reason	 why	 polycrystalline	 Al2O3	 can	 be	 used	 as	 a	 window
material	 in	 the	 aviation	 industry.	 Since	 dense	 Al2O3	 ceramics	 provide	 high	 mechanical
strength	 in	 addition	 to	 transparency,	 they	 can	 replace	 traditional	 SiO2	 glass	 in	 applications
requiring	 a	 high	 safety	 standard.	However,	 if	Al2O3	 ceramics	 have	micrometer-size	 pores,
they	 are	 no	 longer	 transparent.	 As	 the	 porosity	 of	 polycrystalline	 Al2O3	 increases,	 the
micrometer-sized	pores	diffuse	(scatter)	the	visible	light	and	polycrystalline	Al2O3	ceramics
appear	white	instead	of	being	transparent	(see	Figure	8.28).	The	effect	of	sintering	density	and
pore	 scattering	 on	 the	 transparency	 and	 color	 of	 alumina	 ceramics	 indicates	 that	 the	white
color	of	Al2O3	ceramics	comes	from	the	same	physical	origin	as	that	of	clouds	in	the	sky.

FIGURE	8.28 Photos	 of	 (a)	 transparent	 ceramics	 and	 (b)	 opaque	 ceramics;	 though	both	materials	 have	 band	gaps	 larger
than	the	energy	of	visible	light,	they	exhibit	different	colors	due	to	the	scattering	of	extrinsic	defects.	(Courtesy	of	Ceramtech,
Germany.)

8.6.2 RESULTS	OF	ENERGY	LOSS	OF	EXCITED	ELECTRONS	BY	LIGHT	ABSORPTION

Electrons	 that	 are	 excited	 to	 the	 conduction	 band	 via	 light	 absorption	 cannot	 stay	 in	 the
conduction	 band	 forever	 because	 it	 is	 not	 an	 energetically	 favorable	 state.	 The	 excited
electrons	eventually	 lose	energy	and	 return	 to	 the	 lower	energy	band.	This	energy	 released
via	 the	 de-excitation	 process	 generates	 photons	 or	 phonons	 (or	 both).	The	main	 difference
between	photon	generation	 and	phonon	generation	 is	whether	 the	 excited	 electrons	 directly
recombines	 with	 the	 holes.	 As	 schematically	 shown	 in	 Figure	 8.29,	 when	 electrons	 in	 the
conduction	 band	 meet	 with	 holes	 in	 the	 valence	 band	 at	 a	 specific	 location,	 they	 are



recombined,	 and	 photons	 with	 band	 gap	 energy	 Eg	 are	 emitted	 to	 conserve	 energy.	 This
process	is	called	radiative	recombination	or	spontaneous	light	emission,	which	is	exactly	the
opposite	of	the	interband	transition	in	Figure	8.26.	Radiative	recombination	is	widely	used	in
light	emitting	devices	and	in	material	characterization	techniques.	When	electrons	are	excited
via	 light	 absorption,	 the	 light	 emission	 process	 is	 called	 photoluminescence.	 If	 the	 energy
source	 for	 electron	 excitation	 is	 an	 electric	 field,	 the	 light	 emission	 is	 referred	 to	 as
electroluminescence.	In	the	radiative	recombination	process,	it	is	important	to	understand	that
the	momentum	as	well	as	 the	energy	must	be	conserved.	This	means	 that	 the	momentum	of
holes	in	the	valence	band	should	be	the	same	as	that	of	electrons	in	the	conduction	band.	This
condition	is	satisfied	only	in	the	direct	band	gap	semiconductor.	Therefore,	the	probability	of
radiative	 recombination	 is	 very	 high	 for	 the	 direct	 semiconductor	 because	 an	 additional
process	is	not	required	for	momentum	conservation.

However,	 the	minimum	 energy	 of	 the	 conduction	 band	 and	 the	maximum	 energy	 of	 the
valence	band	do	not	have	the	same	momentum	in	the	indirect	semiconductor.	In	this	case,	the
energy	 difference	 between	 electrons	 and	 holes	 can	 be	 conserved	 during	 the	 recombination
process	by	creating	phonons	as	well	 as	photons.	This	 is	 the	due	 to	 the	 fact	 that	 the	phonon
energy	ranges	from	10−2	eV	to	10−1	 eV	near	 room	temperature.	Let’s	 look	 into	 the	case	of
phonon	 generation.	 Since	 the	 phonon	 energy	 is	 much	 smaller	 than	 the	 band	 gap	 of	 most
semiconductors	 (1	 eV	 ~	 3.3	 eV),	 multiple	 phonons	 meet	 with	 the	 electron	 and	 the	 hole
together	 to	 compensate	 for	 the	 energy	 released	during	 the	 electron	de-excitation.	However,
when	 the	 recombination	center	 serves	as	a	 stepping	stone	between	 the	valence	band	and	 the
conduction	 band,	 the	 number	 of	 phonons	 involved	 in	 the	 energy	 conservation	 decreases.
Because	 fewer	 phonons	 are	 involved	 during	 the	 de-excitation	 process,	 the	 probability	 of
energy	 conservation	 by	 phonon	 generation	 increases	 significantly.	 The	 phonon-related
recombination	 is	 called	 nonradiative	 recombination—where	 the	 energy	 difference	 between
holes	and	electrons	is	lost	to	the	vibrating	lattice.

On	the	other	hand,	to	make	radiative	recombination	occur	in	an	indirect	semiconductor,	the
momentum	difference	between	the	conduction	band	minimum	and	the	valence	band	maximum
must	be	compensated	for.	The	momentum	conservation	for	the	nonradiative	recombination	of
the	 indirect	 semiconductor	 can	 happen	 by	 exchanging	 the	 extra	momentum	with	 the	 lattice
vibration	 (phonons).	 However,	 since	 this	 requires	 electrons,	 holes,	 and	 phonons	 to	 meet
simultaneously,	 the	probability	of	radiative	recombination	is	 low	and	the	lifetime	of	excited
electrons	 remains	 high.	Low	 light	 emission	 efficiency	 and	 slow	decay	 time	 are	 features	 of
radiative	recombination	in	indirect	semiconductors.	One	way	to	facilitate	the	de-excitation	of
electrons	is	to	introduce	a	recombination	center	between	the	conduction	band	and	the	valence
band.	 This	 recombination	 center	 functions	 as	 a	 trapping	 center;	 impurities,	 point	 defects
(vacancies,	interstitials),	and	extend	defects	(dislocations)	can	serve	as	recombination	centers.
When	electrons	 approach	a	 recombination	center,	 they	are	 trapped	 there.	Trapped	electrons
have	 a	 higher	 probability	 of	 meeting	 holes	 and	 phonons	 that	 satisfy	 the	 momentum	 and
energy	 conservation	 conditions	 than	 free	 electrons	 at	 the	 conduction	 band	 minimum.
Therefore,	light	emission	can	even	be	induced	from	Si	crystals,	if	extended	structural	defects
on	 the	 surface	 of	 the	Si	 are	 created	 by	 chemical	 etching	 (see	Figure	8.30).	While	 radiative
recombination	 produces	 light,	 phonon	 generation	 by	 nonradiative	 recombination	 generates
heat	 inside	 materials.	 Nonradiative	 recombination	 is	 undesirable	 in	 optical	 applications	 of



semiconductors	 (LEDs,	 phosphors)	 because	 it	 reduces	 their	 quantum	 efficiency	 (e.g.,	 light
generation	efficiency).

FIGURE	8.29 Schematics	of	photon	and	phonon	generation	in	(a)	direct	and	(b)	indirect	band	gap	semiconductors;	electron–
hole	recombination	releases	energy	in	the	form	of	a	photon	or	a	phonon.

FIGURE	8.30 (a)	and	(b)	Photoluminescence	(PL)	spectra	from	annealed	porous	silicon	at	different	conditions.	(c)	Relative
intensity	of	PL	components.	(From	Marin,	O.	et	al.,	Materials	Letters,	150,	55–58.	2015.	With	Permission.)

8.7 APPLICATION	OF	LIGHT–MATTER	INTERACTION



In	Sections	8.1,	8.2,	8.3,	8.4,	8.5	and	8.6,	we	have	studied	 the	optical	properties	of	materials
(e.g.,	how	materials	respond	to	light	and	how	light	travels	through	materials).	We	also	learned
which	 part	 of	 the	 materials	 controls	 their	 optical	 properties	 (a	 major	 contribution	 from
electrons	and	a	minor	contribution	from	lattice	vibrations).	The	remaining	content	discusses
how	 the	 optical	 properties	 of	materials	 feature	 in	 our	 daily	 lives.	Optical	materials	 have	 a
wide	range	of	applications—from	building	glass	 to	renewable	energy	devices	such	as	solar
cells.	 In	 this	 last	 section,	 we	 will	 review	 several	 examples	 of	 applications	 of	 light–matter
interactions.

8.7.1 ANTIREFLECTION	COATING

Scientific	knowledge	about	the	optical	properties	of	materials	described	earlier	in	this	chapter
has	 been	 applied	 throughout	 our	 daily	 lives.	 One	 well-known	 example	 is	 antireflection
coating	 on	material	 surfaces	 such	 as	 on	 optical	 lenses.	When	 light	 enters	 the	media	with	 a
different	 refractive	 index,	 a	 part	 of	 its	 energy	 is	 reflected	 at	 the	 interface.	 This	 could	 be	 a
problem	in	applications	requiring	high	transmittance	of	incoming	light,	such	as	in	lenses	of
imaging	systems	(cameras	or	telescopes).	One	purpose	of	antireflection	coating	is	to	suppress
the	reflection	and	increase	the	amount	of	transmitted	light	by	coating	the	surface	layer.	This
antireflection	coating	is	widely	used	in	glasses	for	human	eyes,	lenses	for	imaging	systems,
and	even	in	solar	cell	panels.

The	first	study	on	antireflection	coating	was	undertaken	by	Lord	Rayleigh.	 In	contrast	 to
intuitive	expectation,	he	accidentally	found	out	that	more	light	transmitted	through	a	tarnished
glass	 than	 a	 brand	 new	 glass.	 His	 explanation	 was	 that	 the	 tarnished	 glass	 decreased	 the
difference	 in	 the	 refractive	 media	 between	 air	 and	 glass	 since	 the	 tarnished	 layer	 had	 a
refractive	 index	 between	 glass	 and	 air.	As	 shown	 in	Equation	8.55,	 reflectance	 (R)	 of	 light
traveling	from	Medium	1	to	Medium	2	at	normal	geometry	is	given	by

(n1:	refractive	index	of	Medium	1,	n2:	refractive	index	of	Medium	2).
If	a	refractive	index	difference	between	Mediums	1	and	2	is	reduced,	the	reflectance	on	the

surface	 is	 also	 suppressed.	 Therefore,	 deposition	 of	 a	 surface	 layer	 with	 an	 intermediate
refractive	 index	 is	 a	 simple	 and	 effective	 way	 to	 fabricate	 the	 antireflective	 coating	 on	 a
material’s	surface.	To	maximize	the	effect	of	the	antireflective	coating,	the	refractive	index	is
gradually	 changed	 in	 the	 coating	 layer.	 For	 this	 purpose,	 an	 inhomogeneous	 film	 with	 a
gradual	compositional	variation	along	the	film	thickness	direction	is	often	used.	As	shown	in
Figure	8.31,	light	propagating	directly	is	gradually	bent	in	the	coating	layer	with	a	refractive
index	 gradient	 and	 reflection	 is	 effectively	 prevented.	 The	 refractive	 index	matching	 at	 the
film	 bottom–Medium	 2	 interface	 can	 be	 achieved	 by	 unifying	 the	 composition	 of	 the	 film
bottom	and	Medium	2.	However,	 if	Medium	1	 is	 air,	 it	 is	 difficult	 to	 remove	 the	 refractive
index	difference	between	Medium	1	and	the	coated	film	because	the	refractive	index	of	solid
material	 is	 always	 larger	 than	 1.	 To	 avoid	 the	 problem	 of	 finding	 materials	 with	 n	 =	 1,
engineers	 gradually	 control	 the	 porosity	 of	 the	 film.	 If	 the	 porosity	 of	 the	 film	 increases
toward	 the	 interface	with	 the	 air	 (e.g.,	 the	material	 packing	density	decreases),	 the	 effective



refractive	index	of	the	film	approaches	1	and	light	incident	from	the	air	does	not	experience	a
large	change	in	the	refractive	index	at	the	air–film	interface.	Though	a	gradual	change	in	the
packing	density	imparts	a	gradual	refractive	index	to	the	film,	the	low	mechanical	strength	of
the	antireflective	coating	layer	with	high	porosity	limits	its	long-term	reliability	and	stability.

FIGURE	 8.31 (a)	 A	 sharp	 drop	 in	 the	 refractive	 index	 in	 a	 single-layer	 antireflective	 film,	 (b)	 a	 smooth	 change	 in	 the
refractive	index	from	ns	to	nair	in	antireflective	films	with	a	graded	refractive	index,	and	(c)	the	gradual	bending	of	the	light
propagation	direction	 in	antireflective	films	with	a	graded	refractive	 index.	 (From	Raut,	H.K.,	et	al.,	Energy	Environ.	Sci.,	 4,
3779,	2011.	With	Permission.)

FIGURE	8.32 The	principle	of	antireflection	coating	of	multilayer	films:	destructive	interference	of	reflected	waves.

A	more	practical	way	to	enhance	transmittance	is	to	utilize	the	destructive	interference	of
waves.	 Figure	 8.32	 schematically	 shows	 destructive	 interference	 of	 electromagnetic	 waves
that	 are	 reflected	 at	 layer	 interfaces.	 As	 illustrated,	 phases	 of	 reflected	 light	 at	 different
interfaces	are	not	same.	Reflectance	at	the	interface	between	Medium	2	and	the	coating	layer
(Rc2)	is	expressed	in	a	vector	form	as	follows:



where	nc	and	dc	are	the	refractive	index	and	thickness	of	the	coating	layer,	respectively;	θc	is
the	incident	angle;	and	λ	is	the	wavelength	of	incident	light.	For	the	reflectance	at	the	interface
between	Medium	 1	 and	 the	 coating	 layer	 (R1c),	 we	 can	 use	 a	 similar	 relation.	 If	 the	 phase
difference	between	R1c	and	Rc2	is	mπ/2	(m:	odd	number),	R1c	and	Rc2	 interfere	destructively,
and	the	total	reflectance	(a	sum	of	R1c	and	Rc2)	is	significantly	reduced.	At	normal	incidence,
this	 requirement	of	 the	destructive	 interference	 is	 satisfied	when	a	 film	 thickness	 (t)	 equals
mλ/(4nc)	 (m:	 odd	 number,	 λ:	 wavelength	 of	 light	 in	 free	 space).	 In	 addition	 to	 the	 film
thickness	 condition,	 refractive	 index	 matching	 is	 also	 needed	 for	 the	 complete	 destructive
interference	of	R1c	and	Rc2.	If	refractive	indices	meet	a	matching	condition	in	Equation	8.88,
two	 reflected	 waves	 have	 the	 same	 intensity	 with	 a	 180°	 phase	 difference	 and	 complete
destructive	 interference	 takes	 place	 (i.e.,	 the	 total	 reflectance	 becomes	 zero);	 therefore,	 the
whole	incident	light	transmits	to	Medium	2.

This	 multilayer	 coating	 approach	 is	 commonly	 applied	 to	 UV	 coating	 or	 antireflection
coating	of	lenses	for	glasses	and	cameras.

The	third	way	to	decrease	the	reflectance	is	to	exploit	surface	textures.	If	the	feature	size	of
the	surface	texture	is	larger	than	the	light	wavelength,	incident	light	is	scattered	at	the	surface.
As	the	surface	roughness	increases,	multiple	scattering	of	incident	light	occurs	on	the	textured
surface	 and	 specular	 reflectance	 is	 suppressed.	 Figure	 8.33	 shows	 the	 surface	 texture	 on
chemically	 etched	ZnO	 film	 and	 its	 consequence	 on	 the	 haze	 (i.e.,	 the	 ratio	 of	 the	 diffused
light	 to	 the	 total	 transmitted	 light)	 of	 the	 film.	As	 the	 surface	 roughness	 increases	 (i.e.,	 the
surface	is	etched	more),	light	scattering	becomes	more	pronounced	and	surface	reflectance	is
suppressed.

If	the	surface	is	covered	with	sub-wavelength	surface	features,	the	antireflection	of	light	is
still	 observed,	 but	 the	 antireflection	 of	 the	 nanostructured	 surface	 is	 related	 to	 multiple
scattering.	A	good	example	of	antireflection	by	a	nanostructured	surface	 is	 found	 in	nature.
Moths	can	see	objects	well	even	at	night	using	a	small	amount	of	light	because	of	their	unique
eye	structure.	Figure	8.34	 shows	a	 scanning	electron	microscope	 (SEM)	 image	of	 a	moth’s
eye.	Very	fine	protuberances	with	a	size	of	~200	nm,	which	is	smaller	than	the	wavelength	of
visible	light,	cover	the	surface	of	a	moth’s	eye.	Since	the	size	is	smaller	than	the	wavelength,
light	cannot	detect	 the	 individual	protuberances	and	creates	only	a	 refractive	 index	gradient
profile.	 The	 hemispherical	 shape	 of	 the	 protuberances	 increases	 the	 packing	 density	 of
materials	gradually	toward	the	bottom	of	the	protuberances	(or	the	air	content	in	the	surface
structure	is	gradually	decreased	from	the	surface).	A	change	in	the	material	content,	in	turn,
gradually	modifies	the	effective	refractive	index	of	the	protuberance–air	mixture	layer.	As	the
air	 content	 decreases	 along	 the	depth	direction,	 the	 effective	 refractive	 index	 in	 the	 surface
layer	 gradually	 increases	 from	 the	 top	 to	 the	 bottom	 of	 the	 mixture	 layer.	 According	 to
Equation	8.86,	 the	 refractive	 index	 gradient	 at	 the	 surface	 of	 a	moth’s	 eye	 suppresses	 light
reflectance	 through	 the	multiple	 scattering,	 and	more	 than	 99%	 of	 incident	 light	 transmits
from	the	air	to	a	moth’s	eye	due	to	the	gradual	bending	of	the	light	propagating	direction	(see



Figure	 8.31c).	 Lessons	 learned	 from	 nature	 have	 led	 to	 the	 new	 area	 of	 biomimetic
antireflection	coating.	One	example	of	using	fine	surface	features	is	the	engineered	surface	of
solar	cells,	which	increases	light	transmittance	toward	semiconductors.	The	surface	of	solar
cells	is	often	machined	to	have	texture	(e.g.,	pyramid	shape	pits)	to	prevent	reflection	by	the
semiconductor	 surface	 and	 to	 increase	 power	 conversion	 efficiency.	 In	 addition,	 one-
dimensional	wires	or	hemispherical	domes	with	sub-micrometer	features	recently	have	been
investigated	to	increase	light	transmittance	from	air	to	materials	with	a	high	refractive	index.

FIGURE	8.33 (a)	An	SEM	image	of	the	textured	surface	of	a	chemically	etched	ZnO	film	and	(b)	the	enhancement	of	light
scattering	 by	 the	 texture	 structure	 of	 a	 ZnO	 film.	 (From	 O.	 Kluth,	 et	 al.,	 Thin	 Solid	 Films,	 351,	 247–253,	 1999.	 With
Permission.)

FIGURE	8.34 (a)	An	SEM	image	of	a	moth’s	eye	covered	with	nanoscale	protuberances	with	a	height	of	~200	nm;	(b)	ZnO
nanorods	grown	on	Si;	both	nanostructures	reduce	specular	and	diffuse	scattering	by	creating	a	gradient	of	the	refractive	index
on	the	surface.	(From	Pignalosa,	P.,	et	al.,	Optics	Letters,	37,	2808–2810,	2012	and	Chao,	Y.-C.,	et	al.,	Energy	Environ.	Sci.,
4,	3436–3441,	2011	With	Permission.)

8.7.2 OPTICAL	FIBERS

Fundamental	 understanding	 of	 light	 has	 also	 been	 used	 to	 develop	 glass	 fibers	 for	 optical
communication.	As	shown	in	Figure	8.35,	 in	optical	communication,	 the	electric	signal	 in	a
bit	form	is	first	converted	to	light	by	a	modulator.	The	modulator	encodes	a	serial	bit	stream
in	electrical	form	and	drives	a	light	source	such	as	a	laser.	Then,	pulsed	light	delivering	the
encoded	information	travels	through	the	optical	fiber.	At	the	receiver	end,	the	light	is	fed	to	a
detector,	 recovered	 to	 electrical	 form,	 and	 then	 is	 amplified.	Optical	 communication	 using



optical	fibers	has	several	advantages	over	electric	communication	using	copper	cables.	First,
the	 information	 capacity	 of	 optical	 communication	 is	 enormous.	 When	 optical	 fiber	 and
optical	amplification	are	combined,	 the	network	capacity	per	a	single	channel	of	 the	optical
fiber	exceeds	10	Tbit/s	over	a	single	160-km	line.	This	means	that	the	world’s	peak	telephone
traffic	 could	 be	 carried	 over	 a	 single	 fiber,	which	was	 not	 imagined	 in	 the	 age	 of	 electric
communication	built	on	copper	cables.	Second,	optical	fibers	are	cheaper,	smaller,	and	lighter
than	 electric	 cables,	 which	 significantly	 reduces	 the	 capital	 investment	 in	 optical
communications.	Third,	the	loss	of	signals	over	the	length	is	much	smaller	in	optical	fibers
than	in	copper	cables.	Therefore,	the	frequency	of	signal	regeneration	is	much	smaller	for	an
optical	 signal	 propagating	 through	 optical	 fibers.	 In	 addition,	 signal	 generation	 is	 much
easier	for	an	optical	signal	because	a	simple	optical	amplifier	is	enough	to	restore	the	signal.

As	described	earlier,	optical	fiber	is	a	key	component	of	optical	communication.	It	is	a	thin
and	circular	glass	fiber	composed	of	core	and	cladding	components;	the	interface	between	the
core	and	cladding	causes	 total	 reflectance	of	 light.	The	 role	of	 the	optical	 fiber	 is	 to	guide
light	as	it	travels	so	that	power	is	delivered	from	one	end	of	the	fiber	to	the	other	end	without
loss.	Optical	fiber	enables	modern	optical	communications	where	near	IR	light	is	exploited	to
deliver	 signals.	To	guide	visible	 and	near	 IR	 light,	 the	 core	of	 the	optical	 fiber	 is	made	of
silica	(SiO2)	glass	that	is	doped	with	heavy	impurities	such	as	GeO2	to	increase	the	refractive
index	 (typically	~3%).	The	cladding	 is	pure	silica	glass	 that	 is	 transparent	 in	visible	and	 IR
light.	This	structure	is	called	a	step-index	fiber	because	the	refractive	index	changes	in	a	step
at	 the	core–cladding	interface.	The	higher	refractive	 index	of	 the	core	means	that	 light	rays
travel	 slower	 in	 the	 core	 than	 in	 the	 cladding,	 and	 this	 causes	 the	 rays	 to	 reflect	 off	 the
cladding	as	they	travel	down	the	fiber.	Therefore,	the	stepwise	change	of	the	refractive	index
can	result	in	total	internal	reflectance	at	the	core–cladding	interface.	In	this	case,	a	light	ray	is
confined	in	the	core	and	guided	through	the	optical	fiber.	Figure	8.36	schematically	shows	the
structure	of	an	optical	fiber.	In	real	optical	fibers,	a	polymer	coats	the	surface	of	the	cladding
to	provide	mechanical	protection.	Also,	this	polymer	jacket	reduces	the	internal	reflection	at
the	 outer	 surface	 of	 the	 cladding	 so	 that	 a	 light	 ray	 is	 guided	 only	 into	 the	 core.	 Since	 the
refractive	 index	difference	between	the	core	and	 the	cladding	 is	~3%,	 the	critical	angle	(θc)
for	total	internal	reflectance	is	~80°	[θc	=	sin−1	(ncladding/ncore)].	This	means	that	only	light	at	a
glancing	 angle	 geometry	 is	 totally	 reflected	 at	 the	 core–cladding	 interface.	 If	 the	 entrance
angle	 is	 smaller	 than	 θc,	 the	 light	 ray	 passes	 through	 at	 the	 core–cladding	 interface	 and	 is
dissipated	or	refracted	at	the	cladding–polymer	jacket	interface.



FIGURE	8.35 A	schematic	of	the	overall	set-up	of	an	optical	communication	system.	(From	Dutton,	H.	J.	R.,	Understanding
Optical	Communications,	1st	ed.,	Prentice	Hall	PTR,	1998.	With	Permission.)

FIGURE	 8.36 The	 structure	 of	 an	 optical	 fiber	 and	 the	 basic	 principle	 of	 light	 transmission.	 (From	 Dutton,	 H.	 J.	 R.,
Understanding	Optical	Communications,	1st	ed.,	Prentice	Hall	PTR,	1998.	With	Permission.)

FIGURE	8.37 Attenuation	of	an	electromagnetic	wave	in	silica	glass	as	a	function	of	wavelength.	 (From	Dutton,	H.	J.	R.,
Understanding	Optical	Communications,	1st	ed.,	Prentice	Hall	PTR,	1998.	With	Permission.)



It	is	noted	that,	even	if	the	refractive	index	of	the	core	and	the	cladding	meets	the	condition
of	total	internal	reflectance,	light	transmission	efficiency	is	lower	than	100%.	This	is	ascribed
to	 light	 absorption	 by	 the	 cladding	 and	 the	 core	 and	 to	 light	 leakage	 through	 the	 cladding.
When	light	reflects	at	the	internal	surface	of	the	cladding,	the	light	ray	travels	a	small	distance
into	 the	 cladding	 and	 returns	 back	 to	 the	 core.	This	 short-distance	 travel	 of	 the	 light	 in	 the
cladding	 can	 attenuate	 the	 signal	 intensity.	More	 importantly,	 inherent	 characteristics	 of	 the
silica	 glass	 cause	 loss	 of	 light	 intensity,	 depending	 on	 the	wavelength	 of	 light.	 Figure	 8.37
shows	light	attenuation	in	the	silica	glass	as	a	function	of	light	wavelength.	High	attenuation
loss	at	mid-IR	range	(λ	>	1.6	μm)	is	due	to	the	vibration	of	Si–O	bonds	(e.g.,	phonon).	As	the
frequency	gets	close	to	9	μm	(the	natural	resonance	wavelength	of	Si–O	bond	in	silica),	the
light	attenuation	by	the	phonon	absorption	increases	dramatically.	This	indicates	that	the	silica
is	 not	 transparent	 for	 mid-IR	 and	 far-IR	 light.	 On	 the	 other	 hand,	 as	 the	 light	 wavelength
decreases	in	the	visible	range,	the	background	of	the	attenuation	curve	increases	continuously.
Attenuation	 in	 the	 visible	 range	 cannot	 be	 explained	 by	 the	 phonon	 absorption.	 Rayleigh
scattering	 is	 responsible	 for	 this	background	attenuation.	As	discussed	 in	 the	earlier	section
on	Mie	 scattering	 and	 Rayleigh	 scattering,	 very	 fine	 nanoparticles	 in	 the	 light	 path	 scatter
light	and	attenuate	light	intensity.	The	silica	glass	is	amorphous	and	its	crystal	structure	does
not	have	long-range	symmetry.	This	means	that	Si	and	O	are	randomly	located	in	the	glass.
Instead	 of	 the	 long	 range	 ordering	 observed	 in	 crystalline	 silica,	 the	 glass	 only	 has	 short-
range	ordering	of	Si	 and	O	 in	 the	 scale	of	 several	nanometers	 in	 size.	Consequently,	 silica
glass	can	be	depicted	as	an	assembly	of	nano-size	domains	that	scatter	light.	Since	Rayleigh
scattering	 becomes	more	 pronounced	 for	 light	 with	 a	 shorter	 wavelength,	 the	 background
light	 attenuation	 in	 the	 visible	 range	 exhibits	 the	wavelength	 dependence	 of	 Figure	 8.37.	 In
addition	to	the	attenuation	in	the	mid-IR	range	and	visible	range,	two	local	attenuation	peaks
between	1.0	μm	and	1.5	μm	are	found	in	Figure	8.37.	These	peaks	are	due	to	the	vibration	of
the	OH	group,	which	inevitably	is	added	to	the	silica	during	a	manufacturing	process	(Stone
et	al.	1982).

When	 the	 silica	 is	 exposed	 to	 water	 or	 hydrogen,	 Si–OH	 is	 formed	 and	 light	 with	 a
wavelength	 of	 1.0–1.5	 μm	 excites	 the	 first	 and	 second	 overtone	 vibrations	 of	 Si–OH.
Therefore,	near	the	IR	light	of	1.55	μm,	the	wavelength	light	exhibits	the	lowest	attenuation	in
the	 silica	 fiber	 and	 commonly	 is	 used	 in	 optical	 communications.	 The	 other	 important
wavelength	for	optical	communications	is	1.30	μm,	which	is	between	two	absorption	peaks	of
Si–OH.	To	exploit	this	local	minimum	of	1.30	μm,	the	content	of	the	OH	group	in	the	silica
must	be	carefully	controlled.

In	 the	 early	 stages	of	optical	 communications,	visible	 light	was	used	 to	deliver	 a	 signal.
However,	 due	 to	 the	 attenuation	 of	 visible	 light	 in	 optical	 fibers,	 current	 optical
communications	use	three	different	wavelengths	in	IR	range.	A	short	wavelength	band	at	800–
900	nm	was	first	used	in	the	1970s	and	early	1980s.	This	had	the	benefit	of	utilizing	low-cost
optical	sources	and	detectors.	In	the	1990s,	a	medium	wavelength	window	was	widely	used	for
long-distance	 communication.	 Though	 light	 sources	 and	 detectors	 are	more	 expensive,	 the
low	 attenuation	 (0.4	 dB/km)	 is	 very	 advantageous.	 The	 attenuation	 of	 0.2	 dB/km	 is	 very
attractive	 for	 lossless	 optical	 communications,	 but	 it	 was	 difficult	 to	 manufacture	 light
sources	and	detectors	working	at	this	wavelength.	Therefore,	this	long	wavelength	band	was
not	 commonly	 used	 until	 compound	 semiconductor	 (indium	 gallium	 arsenide,	 gallium



nitride)	lasers	and	photodiodes	were	developed.	Recently,	industry	and	academia	have	focused
on	this	long	wavelength	band.

Other	important	concepts	in	an	optical	fiber	are	the	mode	and	the	dispersion.	The	typical
diameter	of	an	optical	fiber	 is	about	125	μm	without	 the	polymer	 jacket.	The	core	diameter
depends	on	a	number	of	guided	modes.	It	is	8–10	μm	for	a	single-mode	fiber	and	50–100	μm
for	 a	multimode	 fiber.	 As	 schematically	 shown	 in	 Figure	 8.38,	 the	 core	 size	 and	 the	 light
entrance	 angle	 change	 the	 number	 of	 possible	 reflections	 per	 unit	 length	 of	 the	 fiber	 and
allow	 light	 ray	 paths.	 As	 the	 core	 diameter	 becomes	 larger,	 more	 reflections	 can	 be
accommodated	in	the	light	path,	and	more	modes	of	electromagnetic	waves	can	be	stabilized
in	the	core	(Paschotta	2010).	This	allowed	light	path	is	called	the	mode.

In	multimode	fibers,	many	light	paths	exist	in	the	core	of	the	optical	fiber.	For	a	light	of	1.3
μm	wavelength,	a	core	62.5	μm	 in	diameter	allows	 for	about	400	modes,	depending	on	 the
magnitude	of	the	refractive	index	step	at	 the	core–cladding	interface.	Due	to	the	larger	core
diameter,	the	efficiency	of	capturing	the	light	from	the	transmitter	and	giving	the	light	to	the
receiver	is	very	high.	Also,	high	precision	connectors	are	not	needed	to	join	wires	together.
The	problem	with	 the	multimode	optical	 fiber	 is	 the	dispersion.	Some	of	 the	paths	 taken	by
particular	modes	are	longer	than	other	paths	and	the	signal	propagation	speed	is	not	the	same
for	all	modes	(Figure	8.38).	Therefore,	the	optical	signal—in	the	form	of	pulses—spreads	out
over	 a	 period	 of	 time	 and	 the	 pulse	 tends	 to	 disperse.	 A	 short	 pulse	 becomes	 longer	 and
ultimately	 joins	with	 the	pulse	behind,	making	recovery	of	a	 reliable	bit	stream	impossible.
The	dispersion	problem	 limits	 the	 amount	 of	 bandwidth	 in	 the	multimode	 fibers.	However,
multimode	 optical	 fiber	 is	 still	 an	 affordable	 option	 for	 short-distance	 and	 high-power
communications.

FIGURE	8.38 Different	modes	of	 the	optical	 fiber.	 (From	Dutton,	H.	 J.	R.,	Understanding	Optical	Communications,	 1st
ed.,	Prentice	Hall	PTR,	1998.	With	Permission.)

In	contrast	to	a	multimode	fiber,	the	core	diameter	of	a	single-mode	fiber	is	much	smaller
(~10	μm),	and	only	one	mode	of	light	ray	can	travel	through	the	core.	There	is	no	longer	any
reflection	from	the	core–cladding	boundary.	Instead,	the	light	path	is	forced	to	be	parallel	to



the	 axis	 of	 the	 fiber.	 One	 strength	 of	 the	 single-mode	 fiber	 is	 that	 the	 propagation	 of	 one
mode	through	the	core	minimizes	the	dispersion	of	the	optical	signal.	Therefore,	the	single-
mode	fiber	allows	for	narrow	bandwidth	and	long-distance	 transmission	(50	km	or	 longer)
with	less	attenuation.	However,	the	narrow	core	generates	difficulties	in	the	fiber	connection
and	alignment,	which	increases	the	material	cost.

8.7.3 LIGHT-EMITTING	DIODES

A	light-emitting	diode	(LED)	is	a	device	that	converts	electric	energy	to	light	using	a	radiative
recombination	 of	 semiconductors.	 This	 phenomenon	 is	 a	 kind	 of	 electroluminescence,	 and
light	color	is	determined	by	the	band	gap	of	the	semiconductor	at	the	junction	between	p-	and
n-type	semiconductors;	III–V	compounds	such	as	GaN,	InGaN,	GaAs,	GaP,	GaAsP,	AlGaAs,
and	 AlGaInP	 mainly	 are	 used	 as	 electroluminescence	 materials.	 Round	 observed	 the
electroluminescence	 from	 SiC	 in	 1907.	 However,	 LEDs	 did	 not	 attract	 attention	 until
researchers	 started	 studying	 the	 electroluminescence	of	GaAs	 in	 the	1960s.	A	 turning	point
for	LEDs	was	when	Nakamura	successfully	fabricated	blue	GaN-based	LEDs	in	1993.	Since
then,	a	huge	amount	of	effort	has	been	devoted	to	developing	LEDs	that	generate	visible	light
(blue,	green,	and	red)	as	well	as	infrared	light.	In	the	1970s,	the	motivation	of	LED	research
was	to	develop	a	highly	bright	and	efficient	light	source	suitable	for	optical	communication
because	 the	 wavelength	 of	 emitted	 light	 can	 be	 tuned	 by	 changing	 the	 band	 gap	 of
semiconductors.	In	the	2010s,	however,	the	major	focus	of	LED	research	and	development	is
to	 formulate	 a	 cheaper,	 brighter,	 and	more	 efficient	 lighting	 that	 replaces	 incandescent	 and
florescent	bulbs.	LED	lighting	also	has	been	applied	to	display	devices	that	have	been	built	on
liquid	crystal	displays	(LCDs)	and	plasma	display	panels	(PDPs).

Today,	one-fifth	of	 the	electrical	energy	consumed	 is	used	 to	produce	 light.	LEDs	could
save	half	of	the	energy	used	for	lighting.	For	800	lumens	of	light,	an	incandescent	light	bulb
consumes	60	watts.	In	contrast,	an	LED	is	able	to	emit	the	same	amount	of	light	by	consuming
less	 than	8	watts.	Also,	 the	 lifetime	of	an	LED	is	much	longer	 than	that	of	 incandescent	and
florescent	 light	bulbs.	The	main	disadvantages	of	LED	lighting	are	 the	relatively	high	price
and	cold	light	quality.	Though	the	manufacturing	cost	of	LED	lighting	keeps	decreasing,	it	is
still	higher	than	that	of	other	bulbs	because	LEDs	require	a	semiconductor	process,	sapphire
single	 crystal	 substrates,	 and	 a	 control	 circuit.	Also,	many	 people	 feel	 that	 LED	 lights	 and
incandescent	bulbs	are	very	different	because	they	have	correlated	color	temperature	(CCT).
However,	these	technical	barriers	are	being	overcome	by	ongoing	extensive	research.

The	most	 practical	LED	 is	 built	 on	 epitaxially	 grown	heterogeneous	 p-n	 junctions.	This
structure,	 called	 a	 double-heterostructure	 (DH),	 uses	 two	 kinds	 of	 semiconductor	materials
with	 different	 band	 gaps	 to	 increase	 emission.	 As	 schematically	 shown	 in	 Figure	 8.39,	 a
lightly	doped	semiconductor	with	a	smaller	band	gap	is	sandwiched	between	cladding	layers
of	a	higher	band	gap	semiconductor	with	a	lower	refractive	index.	When	an	electric	field	is
applied	 in	a	 forward	direction,	a	potential	barrier	preventing	diffusion	of	majority	carriers
decreases	by	qV	(q:	charge	of	electron),	and	the	majority	carrier	diffusion	current	increases

by	a	 factor	of	 .	Thus,	electrons	 in	an	n-type	cladding	 layer	and	holes	 in	a	p-type

cladding	layer	diffuse	into	a	junction	layer	(i.e.,	carrier	injection	into	an	active	layer)	where



light	is	produced	via	radiative	recombination.	In	contrast	to	a	homogeneous	junction,	injected
electrons	and	holes	are	confined	in	the	active	layer,	which	has	a	lower	band	gap.	Therefore,
the	carrier	 recombination	occurs	 in	a	narrow	active	region	and	 the	radiative	recombination
efficiency	 is	 increased.	 Thinning	 of	 the	 active	 layer	 reduces	 the	 chances	 of	 nonradiative
recombination	 and	 light	 reabsorption.	 In	 addition,	 a	 smaller	 refractive	 index	 difference
between	 the	 active	 and	 cladding	 layers	 reduces	 the	 reflectance	 of	 light	 incident	 at	 a	 higher
angle,	and	the	larger	band	gap	of	the	cladding	layer	prevents	reabsorption	of	emitted	light	at
the	cladding.	Therefore,	the	emission	efficiency	of	DH-LED	is	higher	than	that	of	LED	with	a
homogeneous	structure.

For	 lighting	 applications,	 LED	 needs	 to	 provide	 a	white	 light,	which	 is	 close	 to	 natural
light.	There	are	two	ways	to	generate	a	white	light.

The	 first	 is	 to	 integrate	multiple	LED	chips	 that	emit	 light	with	different	colors.	Though
mixing	of	either	two	colors	(blue	+	yellow)	or	three	colors	(blue	+	green	+	red)	can	result	in
white	 light,	a	 three-color	 system	 is	preferred.	When	 lights	with	a	peak	 intensity	of	450	nm,
540	 nm,	 and	 610	 nm	 are	mixed,	 white	 light	 becomes	more	 luminous	 to	 human	 eyes.	 One
problem	of	this	multichip	method	is	that	it	requires	a	sophisticated	circuit	design	to	run	three
chips	together	and	to	mix	different	colors	uniformly	before	light	leaves	an	LED.

FIGURE	 8.39 A	 schematic	 on	 the	 operation	 of	 an	 LED	 with	 a	 double-heterostructure;	 injected	 electrons	 and	 holes
recombine	in	a	center	layer	with	a	low	carrier	density	and	small	band	gap.



FIGURE	 8.40 The	 principle	 of	white	 light	 production	 in	 LEDs	 using	 phosphors;	 the	mixing	 of	 red,	 green,	 and	 blue	 light
results	in	the	emission	of	white	light.

The	second	way	to	generate	white	light	is	to	combine	high	intensity	UV	or	a	blue	LED	with
phosphors	 that	 absorb	UV	 or	 blue	 light	 and	 convert	 it	 to	 green	 and	 red	 light.	Mixing	 red,
green,	 and	 blue	 light	 results	 in	 an	 emission	 of	 white	 light.	 This	 concept	 is	 schematically
explained	in	Figure	8.40.	Since	only	a	single	chip	is	used,	this	method	reduces	the	device	cost
and	provides	economically	viable	solid-state	lighting	(SSL).

One	other	benefit	of	utilizing	phosphor	is	to	make	up	with	low	efficiency	of	LEDs	emitting
green	 and	 yellow	 light.	 In	 an	 LED-based	 SSL,	 InGaN	 semiconductors	 are	 used	 for	 violet,
blue,	 and	 green	 luminescence,	 and	 AlInGaP	 semiconductors	 are	 used	 for	 red	 and	 amber
luminescence.	 One	 issue	 is	 that	 the	 blue	 luminescence	 of	 an	 InGaN	 LED	 is	 much	 more
efficient	than	other	visible	light	LEDs.	Therefore,	an	LED-based	SSL	using	phosphors	could
save	more	energy	than	an	SSL	composed	of	InGaN	and	AlInGaP	multichips.	The	simple	way
to	 produce	white	 light	 is	 to	 blend	 the	 blue	 electroluminescence	 of	 an	 LED	 and	 the	 yellow
fluorescence	 of	 phosphors.	 Phosphors	 commonly	 exploit	 the	 electron	 decay	 of	 rare	 earth
elements	 or	 transition	 metal	 elements	 such	 as	 Ce3+,	 Eu3+,	 Tb3+,	 and	 Mn2+.	 For	 example,
5d1→4f1	 emission	of	Ce3+	 leads	 to	 blue	 or	 yellow	 luminescence,	 depending	 on	 the	 crystal
field	of	 the	host	material	where	Ce3+	 is	 doped	as	 an	 impurity.	 In	 an	LED	SSL,	Ce3+	 doped
yttrium	aluminum	garnet	(Y3Al5O12,	YAG:Ce)	has	been	predominantly	used.	When	excited	by
UV	or	blue	light,	YAG:Ce	emits	yellow	light	with	a	peak	wavelength	of	560	nm	and	a	broad
peak	width	 of	more	 than	100	nm.	Blending	blue	 light	 from	an	LED	and	yellow	 light	 from
YAG:Ce	 results	 in	 white	 light	 with	 a	 daylight-like	 color	 temperature	 (CCT	 >	 4000	 K).	 Its
quantum	efficiency	reaches	85%	even	at	200°C.	One	weakness	is	that	the	white	light	from	this
combination	has	a	low	color	rendering	index	(CRI)	due	to	the	lack	of	red	color.



CRI	is	a	quantitative	measure	of	a	light	source’s	ability	to	reveal	object	colors	naturally	or
faithfully	in	comparison	to	an	ideal	or	natural	light	source	such	as	sunlight.	To	improve	the
CRI	 of	 the	 luminescence	 from	 the	 combination	 of	 a	 blue	 LED	 and	 a	 yellow	 phosphor,
phosphors	emitting	red	and	green	have	been	developed.	When	Gd3+	is	added	to	YAG	or	Si4+-
Mg2+	 replaces	Al3+	 of	 YAG:Ce,	 the	 phosphor	 emits	 a	 red	 color	 at	 a	 cost	 of	 low	 quantum
efficiency	and	larger	temperature	dependence.

To	 avoid	 issues	 of	YAG-based	 phosphors	 and	 to	 improve	CRI	 and	CCT,	 silicon	 nitride
such	 as	 Si3N4,	 Ca2Si5N8,	 and	 CaAlSiN3	 and	 silicon	 oxynitride	 such	 as	 Ca-SiAlON	 and
MSi2O2N2	 have	 been	 explored	 as	 host	materials.	 Though	 the	 use	 of	 nitride	 and	 oxynitride
grants	 significant	 progress	 in	 phosphor	 performance,	 researchers	 still	 need	 to	 circumvent
difficulties	 in	 the	manufacturing	process	because	nitride	and	oxynitride	are	synthesized	at	a
high	temperature	(>1500°C)	and	under	accurately	controlled	oxygen	partial	pressure.

In	 addition	 to	 inorganic	 semiconductors,	 organic	 polymers	 are	 also	 utilized	 to
manufacture	 LED.	 An	 organic	 light	 emitting	 diode	 (OLED)	 has	 several	 important
applications,	such	as	 flat	panel	displays	and	SSL.	Current	emphasis	 is	on	display	panels	 for
televisions	 and	 mobile	 phones.	 Compared	 with	 an	 LCD	 display,	 an	 OLED	 produces	 much
brighter	 light	 and	 has	 strength	 in	 light	 and	 flexible	 displays.	 An	 OLED	 exploits	 the
electroluminescence	of	organic	materials,	where	an	applied	electric	field	causes	the	injection
of	electrons	and	holes	to	form	emissive	states.

A	 typical	 OLED	 consists	 of	 an	 anode,	 a	 hole	 injection	 layer	 (HIL),	 a	 hole	 transporting
layer	 (HTL),	 an	 emitting	 layer,	 an	 electron	 transporting	 layer	 (ETL),	 an	 electron	 injection
layer	 (EIL),	and	a	cathode.	The	structure	shown	in	Figure	8.41	has	similarities	with	DHs	of
inorganic	LEDs	 in	 that	 injected	electrons	and	holes	are	 recombined	 in	 the	organic	emitting
layer	before	light	is	generated.

However,	 these	 two	 devices	 have	 several	 differences	 due	 to	 the	 unique	 properties	 of
organic	 semiconductors.	 First,	 organic	 semiconductors	 have	 a	 low	 intrinsic	 carrier
concentration	and	mobility	in	comparison	to	inorganic	semiconductors.	This	indicates	that	(1)
delivery	 of	 an	 electron	 and	 hole	 from	 the	 electrodes	 to	 an	 emitting	 layer	 is	 critical	 to	 the
design	of	high	efficiency	OLEDs,	(2)	the	dynamic	charge	equilibrium	under	the	electric	field
is	more	important	than	the	electrostatic	equilibrium	and	(3)	local	charge	imbalance	can	form
electric	dipoles	at	the	interfaces	of	an	OLED.	To	promote	the	charge	injection,	inorganic	and
organic	 layers	with	 a	 high	work	 function	 (for	 hole	 injection)	 or	 a	 low	work	 function	 (for
electron	injection)	are	inserted	between	metal	electrodes	and	an	organic	emitting	layer.	These
are	 called	 HIL	 or	 EIL,	 respectively.	 Polyethylene	 dioxythiophene	 polystyrene	 sulfonate
(PEDOT:PSS	 4,4’,	 4’’	 tris(3-methylphenylphenylamino)	 triphenylamine	 (m-MTDATA):
2,3,5,6-tetrafluoro-7,7,8,8,-tetracyanoquinodime	 thane	 (F4-TCNQ),	MoO3,	 CuOx	 have	 been
tested	 as	 the	 p-type	 injection	 layer,	 and	 Li:4,7-diphenyl-1,	 10-phenanthroline	 (BPhen)	 and
Al(C9H6NO)3	(abbreviated	as	Alq3)	have	been	studied	as	the	n-type	injection	layer.

Second,	 a	 pair	 of	 an	 injected	 electron	 and	 a	 hole	 forms	 excitons	 (e.g.,	 the	 state	 of	 an
electron	bound	to	a	hole)	in	the	emitting	layer,	while	free	electron–hole	pairs	are	produced	in
an	inorganic	semiconductor	such	as	Si.	When	neutral	molecules	are	excited	from	the	ground
state	by	taking	excitons,	excited	molecules	have	either	a	singlet	or	triplet	state.	When	the	spins
of	the	electron	and	the	hole	of	the	exciton	are	antiparallel	(e.g.,	the	net	spin	is	zero),	the	state



is	called	a	singlet.	If	the	sum	of	spin	momentum	is	not	zero	(e.g.,	parallel	spins),	the	state	is
called	 a	 triplet.	 Given	 the	 spinning	 direction	 and	 phase	 of	 the	 spin	 momentum,	 statistical
chances	of	forming	a	singlet	state	are	25%.	This	is	important	because	only	singlet	exciton	can
show	radiative	decay.	According	 to	a	quantum	mechanical	selection	rule,	 radiative	decay	of
the	triplet	excitons	is	not	allowed.	Since	the	electron	and	hole	have	the	same	spin	momentum
(parallel	 spins),	 radiative	 decay	 of	 the	 triplet	 excitons	 breaks	 Pauli’s	 exclusion	 principle.
Triplet	 excitons	 are	 quenched	 by	 molecular	 vibration,	 and	 applied	 electric	 energy	 is
converted	to	heat.	Hence,	the	maximum	internal	quantum	efficiency	of	a	fluorescent	OLED	is
the	 same	 as	 the	 theoretical	 concentration	 of	 the	 singlet	 excitons	 (25%).	Here,	 fluorescence
indicates	 light	 emission	 that	 results	 from	quantum-mechanically	 allowed	 radiative	decay	of
excited	states	(e.g.,	singlet	exciton).	In	contrast	to	an	organic	OLED,	electrons	and	holes	are
free	in	inorganic	semiconductors,	and	spin	states	of	free	electrons	and	holes	do	not	limit	the
theoretical	quantum	efficiency	of	the	inorganic	LED.

FIGURE	8.41 A	schematic	illustration	of	a	multilayer	structure	of	small	molecule-based	OLEDs.

This	problem	of	 the	 low	quantum	efficiency	of	an	OLED	has	been	solved	by	promoting
phosphorescence.	When	an	organometallic	containing	heavy	metal	 ions	(e.g.,	Ir,	Pt,	and	Os)
are	 added	 into	 the	 emitting	 layer,	 strong	 spin–orbit	 coupling	 around	 heavy	 metal	 ions
overcomes	 spin-prohibition	of	 radiative	decay	of	 the	 triplet	 excitation.	Due	 to	 the	 coupling
with	 the	 orbital,	 an	 exchange	 between	 the	 singlet	 state	 and	 the	 triplet	 state	 is	 kinetically
allowed.	Therefore,	molecules	 in	 the	 triplet	 state	can	 return	 to	 the	ground	 singlet	 state,	 and



light	is	emitted	from	an	active	organic	layer.	This	type	of	light	emission	from	the	quantum-
mechanically	 prohibited	 mechanism	 is	 called	 phosphorescence.	 A	 class	 of	 OLED	 using
phosphorescence	 is	 called	 a	 phosphorescent	 OLED.	 Since	 both	 singlet	 excitons	 and	 triplet
excitons	 contribute	 to	 light	 emission,	 the	 internal	 quantum	 efficiency	 of	 phosphorescent
OLEDs	is	significantly	improved.

In	addition	to	quantum	efficiency,	the	quick	aging	problem	of	the	organic	semiconductor,
which	shortens	the	lifetime	of	OLEDs,	plagued	the	introduction	of	OLEDs	to	the	displays	of
TV	and	to	the	mobile	device	industry	for	a	decade.	The	problem	is	that	organic	molecules	in
the	active	layer	of	OLEDs	easily	react	with	ambient	gas	and	the	semiconducting	property	of
molecules	 disappears.	 The	 display	 industry	 has	 solved	 this	 inherent	 problem	of	OLEDs	 by
developing	good	sealing	technology.	Currently,	the	organic	components	of	OLEDs	are	sealed
with	 a	 glass	 cover	 in	 a	 vacuum	 ambience	 or	 an	 inert	 environment	 (without	 oxygen).
Consequently,	OLEDs	are	now	used	even	for	 large	 (>	50	 inch)	 flat	panel	displays	and	have
quickly	replaced	LCD	display	panels	for	TVs	and	mobile	devices.

8.7.4 LASER

Laser	 is	 an	 acronym	 of	 “light	 amplification	 by	 stimulated	 emission	 of	 radiation.”	 As
speculated	in	its	name,	in	laser	devices,	radiative	recombination	is	stimulated	by	photons	and
intensified	 through	 multiple	 reflections.	 Major	 differences	 between	 a	 laser	 and	 other
luminescence	 is	 that	 a	 laser	 provides	 monochromatic,	 coherent,	 and	 directional	 light	 with
strong	 intensity.	 Monochromatic	 means	 that	 all	 photons	 have	 the	 same	 energy	 (e.g.,
wavelength	 and	 color),	 and	 coherent	 indicates	 that	 photons	 are	 generated	 in	 an	 organized
manner	 so	 that	 electromagnetic	waves	 in	 a	 laser	 have	 a	 single	 phase—though	 they	 are	 not
produced	at	the	same	time.	Due	to	these	unique	characteristics,	lasers	are	now	widely	used	in
optical	 communication,	 data	 recording	 and	 reading,	 accurate	 measurement,	 and	 in	 precise
machining	that	require	lights	with	a	controlled	phase	or	a	highly	concentrated	and	intensified
beam	(or	both).

Stimulated	 emission	 is	 a	 key	 process	 in	 producing	 coherent	 electromagnetic	 radiation
composed	 of	 photons	 that	 have	 the	 same	 phase,	 frequency,	 polarization,	 and	 traveling
direction.	Figure	8.42	schematically	explains	stimulated	emission.	When	an	incident	photon	is
absorbed,	an	electron	is	excited	from	an	energy	state	E1	 to	an	energy	state	E2	and	forms	an
excited	 state.	 The	 radiative	 decay	 of	 this	 excited	 state	 to	 the	 low	 energy	 state	 can	 occur
through	 two	different	mechanisms.	First,	 the	electron	 in	 the	conduction	band	 spontaneously
falls	 to	 the	 valence	 band	 and	 emits	 a	 photon	without	 an	 external	 triggering.	 This	 is	 called
spontaneous	 emission.	 It	 is	 important	 to	 know	 that	 the	 phase	 and	 polarization	 of	 photons
coming	 out	 of	 a	 spontaneous	 emission	 are	 not	 correlated.	 In	 certain	 kinds	 of	 materials,
however,	 a	 kinetic	 barrier	 suppresses	 the	 spontaneous	 recombination	 of	 the	 electron–hole
pairs.	If	 that	happens,	most	of	the	excited	electrons	stay	near	the	conduction	band	edge	until
the	second	photon	stimulates	their	decay	to	the	valence	band	edge.



FIGURE	 8.42 A	 schematic	 illustration	 of	 (a)	 spontaneous	 emission	 and	 (b)	 stimulated	 emission;	 excited	 electrons	 decay
cohesively	for	stimulated	emission.

FIGURE	 8.43 A	 schematic	 on	 the	 operation	 of	 an	 Nd:YAG	 solid-state	 laser;	 stimulated	 emission	 in	 a	 laser	 medium	 is
intensified	 by	 repeated	 reflection	 and	 leaves	 through	 a	 partially	 reflective	 mirror	 (Available	 at
https://en.wikipedia.org/wiki/Laser_construction#/media/File:Lasercons.svg.)

The	second	radiative	recombination	mechanism	is	called	stimulated	emission	because	the
electromagnetic	wave	of	the	second	photon	triggers	the	forced	oscillation	of	the	electron	at
E2	and	releases	the	energy	of	(E2	−	E1)	in	the	form	of	a	photon.	Due	to	the	force	oscillation	of
the	 electron,	 electromagnetic	 waves	 of	 the	 stimulating	 photon	 and	 emitted	 photon	 are
correlated	and	all	photons	in	the	stimulated	emission	have	the	same	phase.

Contrary	 to	 the	 thermodynamically	 preferred	 scenario,	 the	 electron	density	 at	E2	 can	 be
higher	than	the	density	at	E1	under	specific	circumstances	(for	example,	in	the	application	of	a
high	 electric	 field).	 This	 reversal	 of	 the	 electron	 density	 at	 two	 energy	 states	 is	 called
population	inversion.	To	intensify	light	generated	by	the	stimulated	emission,	the	population
inversion	of	electrons	between	the	excited	state	and	the	lower	energy	states	is	necessary.	The
other	important	requirement	for	a	laser	is	resonance	of	the	emitted	light.	As	shown	in	Figure

https://en.wikipedia.org/wiki/Laser_construction#/media/File:Lasercons.svg


8.43,	for	lasing,	stimulated	emission	in	the	laser	medium	needs	to	be	reflected	multiple	times
by	two	mirrors	of	the	resonant	cavity.	The	resonance	of	the	stimulated	emission	in	the	cavity
produces	 a	 cascade	 effect	 and	 a	 concentration	 density	 of	 photons	with	 the	 same	 phase	 and
wavelength.	Then,	the	intensified	light	(i.e.,	laser)	leaves	the	cavity	through	a	one-end	mirror,
which	 is	 less	 reflective	 (reflectivity	 of	 ~98%)	 than	 the	 other	 end	mirror	 (reflectivity	 of	 >
99%),	which	causes	partial	transmittance	of	the	stimulated	emission	at	the	less	reflective	end.
The	 resonance	 process	 is	 also	 responsible	 for	 the	 other	 important	 feature	 of	 a	 laser	 (i.e.,
directionality).	In	comparison	to	a	spontaneous	emission,	a	laser	is	a	very	tight	beam	and	does
not	diverge	when	it	travels	outside	the	resonance	cavity.

Commercially	 available	 lasers	 are	 classified	 into	 three	 groups	 depending	 on	 the	 active
medium	 of	 the	 stimulated	 emission.	 The	 first	 group	 of	 laser	 exploits	 gases	 as	 the	 laser
medium.	One	example	of	 the	gas	 laser	 is	 a	helium–neon	 (He–Ne)	 laser	 that	generates	 light
with	a	wavelength	of	633	nm.	As	the	name	implies,	a	mixture	of	He	and	Ne	(10:1	ratio)	is	used
as	the	active	medium.	If	a	high	electric	field	is	applied	between	the	cathode	and	anode	of	the
tube	in	Figure	8.44,	highly	energetic	electrons	are	discharged	from	the	cathode.	Since	most
gas	atoms	 filling	 the	 tube	are	 inert	He,	 the	electrons	excite	 the	He	atoms	 first.	He–Ne	 laser
exploits	inelastic	scattering	of	excited	He	atoms.	Since	the	energy	level	of	an	excited	He	state
(1s1	2s1)	is	close	to	the	energy	level	of	Ne	(2p55s1),	 the	collision	of	excited	He	and	ground
state	Ne	transfer	the	energy	from	He	to	Ne	via	inelastic	scattering.	Then,	excited	Ne	atoms	in
(2p55s1)	 state	 return	 to	 a	 lower	 (2p53p1)	 state	 by	 the	 stimulated	 emission,	 with	 photons	 of
wavelength	 633	 nm	 being	 produced.	 Subsequently,	 photons	 produced	 by	 the	 stimulated
emission	 resonate	 between	 two	 mirrors	 of	 the	 cavity,	 leading	 to	 a	 coherent,	 strong,	 and
directional	laser	beam	being	generated.

The	second	group	of	lasers	includes	the	solid-state	laser,	which	uses	solids	with	wide	band
gaps	 as	 the	 active	 laser	medium.	Glass	 or	 crystalline	material	 doped	with	 laser-active	 ions
such	as	rare	earth	ions	(Nd3+,	Yb3+,	Er3+)	and	 transition	metal	 ions	 (Ti3+,	Cr3+)	commonly
are	selected	as	the	laser	medium.	One	of	the	most	popular	high-power	solid-state	lasers	uses
Nd3+-doped	ytterbium	aluminum	garnet	(Nd:YAG),	which	provides	light	with	a	wavelength	of
1,024	nm.	Also,	Ti:sapphire	and	Er:glass	are	widely	used	in	a	solid-state	laser.	In	contrast	to
the	gas	laser,	the	population	inversion	in	the	medium	occurs	through	optical	pumping	by	flash
lamps,	arc	lamps,	or	 laser	diodes.	When	incident	photons	are	absorbed,	 the	ions	in	the	gain
medium	are	excited	to	a	higher	energy	state,	and	the	population	densities	of	lower	and	higher
energy	states	are	inversed.

The	benefit	of	rare	earth	ions	and	transition	metal	ions	is	that	they	have	several	generated
energy	 levels	 that	 elongate	 the	 lifetime	 of	 the	 excited	 energy	 state	 and	 prevent	 the
reabsorption	of	a	stimulated	emission.	If	the	optically	active	ions	have	only	two	energy	levels,
it	is	difficult	to	enhance	both	the	photon	absorption	probability	and	the	lifetime	of	the	excited
energy	 state.	According	 to	Heisenberg’s	 uncertainty	 principle,	 the	 larger	width	 of	 a	 higher
energy	 state	 promotes	 optical	 pumping	 efficiency,	 but	 it	 also	 increases	 the	 chances	 of
spontaneous	 emission.	 If	 the	optically	 active	 ion	has	 several	 energy	 states,	 a	 higher	 energy
state	 with	 a	 larger	 band	 width	 is	 used	 to	 improve	 the	 optical	 pumping	 efficiency.	 Excited
electrons	 then	 move	 quickly	 to	 a	 lower	 energy	 state	 with	 a	 narrower	 band	 width	 where
electrons	can	stay	longer	without	spontaneous	emission.	The	right	plot	of	Figure	8.44	shows
an	energy	 level	diagram	of	an	Nd:YAG	system.	Optical	pumping	excites	electrons	from	the



ground	state	to	a	wider	energy	level	(4F5/2).	Then,	electrons	decay	to	the	4F3/2	 level	and	via
nonradiative	 recombination.	 Forced	 oscillation	 of	 the	 electrons	 at	 a	 narrower	 energy	 level
(4F3/2)	by	photons	causes	electron	decay	from	4F3/2	 to	4I11/2	and	 the	stimulated	emission	of
light	with	a	l,064	nm	wavelength.

FIGURE	8.44 An	energy	level	diagram	of	(a)	He-Ne	gas	mixture	and	(b)	Nd:YAG	solid;	they	can	produce	a	laser	with	a
wavelength	of	 633	nm	emission	 (Ne-Ne)	or	 1064	nm	emission	 (Nd:YAG).	 (From	Byer,	R.	L.,	Diode	 Laser-Pumped	 Solid-
State	Lasers,	Science,	239:	742–747,	1988.	With	Permission.)

In	addition	to	the	energy	level	of	the	dopant,	the	dopant	concentration	is	also	important	for
optimizing	 laser	 output.	 If	 the	 dopant	 concentration	 is	 too	 small,	 the	 efficacy	 of	 optical
pumping	 and	 lasing	 is	 low,	 and	 the	 amplification	 effect	 of	 the	 optical	 medium	 is	 weak.
However,	 if	 the	 doping	 concentration	 exceeds	 the	 critical	 condition,	 dopant	 ions	 exchange
energy	between	each	other	and	 laser-active	 ions	spend	 less	 time	 in	 the	excited	state.	This	 is
called	 concentration	 quenching,	 which	 suppresses	 the	 population	 inversion	 and	 causes
nonradiative	decay	instead	of	the	stimulated	emission.

The	 last	 component	 to	 be	 considered	 is	 the	 host	 material.	 High	 transparency	 over	 the
pumping	 and	 radiation	wavelengths	 and	good	 thermal	 conductivity	 are	 requirements	 of	 the
host	material	 for	 low	 energy	 loss	 and	 stable	 operation.	 Though	 both	 glass	 and	 crystalline
materials	 can	 be	 the	 optical	medium,	 the	 crystal	 field	 of	 the	 dopants	 is	more	 uniform	 and
well-defined	when	the	crystalline	matrix	is	used.	Therefore,	a	crystal	medium	produces	more
monochromatic	 light	with	a	bandwidth	of	a	 few	nanometers	or	 less,	whereas	 selection	of	a
glass	medium	 broadens	 the	 energy	 levels	 of	 the	 dopants	 and	 the	 bandwidth	 of	 the	 emitted
light.

The	third	kind	of	laser	is	a	semiconductor	laser,	which	is	built	on	semiconductor	materials
including	GaAs	and	InP.	The	semiconductor	diode	has	the	capacity	of	emitting	a	continuous
and	high-power	(up	to	W)	laser.	In	addition,	a	relatively	narrow	bandwidth	of	the	emitted	light
is	suitable	for	the	optical	communication	at	high	bit	rates	(~10	Gb/s)	since	the	dispersion	of
the	 optical	 fiber	 is	 less	 significant.	As	 do	 gas	 and	 solid-state	 lasers,	 a	 semiconductor	 laser



also	 exploits	 optical	 gain	 by	 population	 inversion,	 stimulated	 emission,	 and	 the	 resonance
cavity.

Compared	with	other	lasers,	however,	a	semiconductor	laser	has	two	unique	features.	First,
the	optical	gain	of	a	semiconductor	laser	is	attributed	to	electron–hole	recombination	in	the
active	layer	rather	than	to	a	decay	of	the	excited	energy	states	of	the	optically	active	ions.	In	a
semiconductor	 laser,	 electrons	and	holes	are	 injected	 from	 the	heavily	doped	p-type	 region
and	n-type	 region	 to	 the	 junction	 layer	where	 the	 radiative	 recombination	 takes	place.	This
means	 that	 it	 is	 important	 to	 increase	 the	 probability	 of	 the	 radiative	 recombination.
Therefore,	 the	semiconductor	 laser	diode	also	utilizes	 the	DH	or	 the	multiple	quantum	well
(MQW)	structure	 that	 is	 found	 in	LEDs.	For	 laser	 application,	 the	 thickness	of	 the	 emitting
layer	and	the	cladding	layer	must	be	thin	(in	the	order	of	100	nm)	but	still	thick	(in	the	order
of	 1	 μm)	 enough	 so	 that	 the	 electron–hole	 pairs	 are	 confined	 and	 the	 emitted	 light	 is	 not
reabsorbed.	 Second,	 a	 semiconductor	 laser	 does	 not	 install	 reflective	 mirrors	 for	 lasing.
Instead	of	additional	metal	mirrors,	the	cleaved	ends	of	semiconductor	materials	along	their
crystal	planes	reflect	the	emitted	light	and	create	the	resonance	effect.	Due	to	the	sharp	change
in	 the	 refractive	 index	 between	 a	 semiconductor	 and	 the	 air,	 the	 cleaved	 ends	 of	 the
semiconductor	function	as	the	mirror.	Since	the	resonance	structure	shown	in	Figure	(8.43)	is
similar	 to	 a	 Fabry–Perot	 resonator,	 the	 semiconductor	 laser	 diode	 is	 called	 a	 Fabry–Perot
laser.	In	this	structure,	only	waves	that	can	resonate	between	two	mirrors	are	reinforced.	If	the

distance	 between	 two	 cleaved	 ends	 is	 multiple	 times	 the	 half-wavelength	 ,	 the

constructive	 interference	 of	 electromagnetic	 waves	 takes	 place	 and	 the	 emission	 intensity
increases.	Other	waves	experience	destructive	interference	between	two	cleaved	ends	and	are
filtered	 through	 rather	 than	 leaving	 the	 resonator.	 The	 cavity	 length	 of	 the	 semiconductor
laser	diode	emitting	the	visible	and	near	IR	light	typically	is	~100	μm.

As	 schematically	 explained	 in	 Figure	 8.45,	 the	 resonance	 by	 the	 cleaved	 ends	 also
distinguishes	a	semiconductor	laser	diode	from	an	LED	because	spontaneously	emitted	light
of	 an	 LED	 mainly	 goes	 through	 the	 cladding	 layer.	 In	 the	 laser	 diode,	 however,	 the
spontaneous	emission	triggers	the	stimulated	emission	in	the	population-inverted	region,	and
only	light	satisfying	the	Fabry–Perot	cavity	mode	survives	and	gets	intensified.	It	is	noted	that
the	 stimulated	 lifetime	 (~0.1–1	ns)	 is	much	 shorter	 than	 the	 spontaneous	 lifetime	 (~2–5	ns).
Therefore,	once	the	stimulated	emission	is	triggered,	the	spontaneous	emission	is	suppressed
and	the	population	inversion	is	maintained	for	the	stimulated	emission.

The	other	important	difference	between	a	laser	diode	(LD)	and	an	LED	is	the	input	electric
power.	Lasing	of	a	coherent	emission	requires	a	high	electric	input	power	for	the	population
inversion.	This	electric	input	power	dependence	is	shown	schematically	in	Figure	8.46.	If	the
electric	pumping	power	is	lower	than	the	threshold,	the	spontaneous	emission	dominates	and
the	 semiconductor	 device	 functions	 as	 an	 LED	 emitting	 incoherent	 light.	 The	 slope	 of	 the
curve	 (light	output	versus	electric	current)	 in	Figure	8.46	shows	how	efficiently	 the	excited
electron–hole	pairs	are	extracted	as	photons.	A	steeper	slope	in	the	LD	regime	indicates	that
the	extraction	efficiency	is	much	higher	for	the	LD	than	for	an	LED.	This	is	attributed	to	the
fact	that	the	stimulated	emission	reduces	the	probability	of	nonradiative	recombination.	Thus,
the	nonradiative	recombination	(relaxation	via	phonons)	becomes	less	critical	when	more	and



more	electrons	and	holes	are	inversely	populated.	The	extraction	efficiency	of	the	LD	is	more
than	10%,	whereas	that	of	an	LED	is	below	1%.

FIGURE	 8.45 A	 schematic	 illustration	 of	 (a)	 semiconductor	 lasers	 and	 (b)	 a	 comparison	 of	 a	 semiconductor	 laser	 with
semiconductor	LEDs,	optical	amplifier,	and	LDs.

FIGURE	 8.46 A	 schematic	 illustration	 of	 input	 electric	 current	 versus	 light	 output;	 below	 the	 threshold	 current,	 injected
electrons	and	holes	recombine	spontaneously.

As	summarized	here,	 a	 semiconductor	 laser	has	 several	 features	 that	 cannot	be	 found	 in
other	lasers.	However,	a	semiconductor	laser	has	also	its	own	weaknesses	that	are	not	found
in	 other	 laser	 systems.	 One	 of	 them	 is	 temperature	 dependence.	 As	 temperature	 increases,
spontaneous	emission	occurs	more	easily,	and	it	is	difficult	to	maintain	the	high	degree	of	the
population	 inversion.	This	 leads	 to	a	 significant	power	 loss	 for	LEDs	at	high	 temperatures.
Though	DH	 and	MQW	 structures	mitigate	 this	 temperature	 dependence,	 an	 increase	 in	 the



temperature	 reduces	 the	 extraction	 efficiency	 of	 the	 LD,	 and	 the	 elevated	 temperature	 also
increases	 the	 threshold	 current;	 this	 problem	 commonly	 can	 be	 found	 in	 LEDs	 and	 LDs.
Consequently,	when	an	LD	is	heated	by	lasing,	it	is	necessary	to	raise	the	electric	input	power
to	maintain	the	light	output	of	the	device.

PROBLEMS

8.1 Based	on	a	band	structure,	explain	why	metals	are	most	often	highly	 reflective	while
insulators	are	often	transparent.

8.2 Spectroscopic	ellipsometry	measurements	on	a	germanium	crystal	at	a	photon	energy
of	1.5	eV	show	that	 the	real	and	 imaginary	parts	of	 the	complex	relative	permittivity
are	 20.3	 and	 2.8,	 respectively.	 Find	 the	 complex	 refractive	 index.	 What	 is	 the
reflectance	 and	 absorption	 coefficient	 at	 this	wavelength?	How	 do	 your	 calculations
compare	with	the	experimental	values	of	n	=	4.63	and	K	=	0.30,	R	=	0.42,	and	α	=	4.53	×
106	m−1?

8.3 What	 is	 a	 major	 energy	 loss	 mechanism	 of	 light	 traveling	 inside	 materials?	 Please
explain	 this	 and	 include	 a	 material	 property	 parameter	 representing	 the	 dissipation
behavior	of	radiation	energy	in	optical	media.

8.4 What	is	the	characteristic	penetration	depth	(depth	at	which	intensity	is	37%	of	original
value)	of	a	600-nm	light	wave	traveling	in	copper	(n	=	0.14,	k	=	3.35)?

8.5 A	plane	wave	of	red	light	(λ	=	600	nm)	enters	a	nonmagnetic	metal	with	a	conductivity
of	 106	 S/m.	 Calculate	 (i)	 the	 reflectance	 at	 the	 surface	 and	 (ii)	 the	 intensity	 of	 the
impinging	wave	that	will	remain	at	a	depth	of	10	nm	from	the	surface.	Assume	that	n
and	k	are	0.15	and	3.5,	respectively,	at	λ	=	600	nm.

8.6 The	 intensity	 of	 a	 light	 wave	 having	 a	 wavelength	 of	 750	 nm	 traveling	 through	 a
material	decreases	to	37%	of	its	original	value	after	a	distance	of	9.5	nm.	(a)	Calculate
the	 absorption	 coefficient.	 (b)	 What	 is	 the	 value	 of	 k	 for	 this	 material?	 (c)	 Is	 this
material	 more	 likely	 to	 be	 a	 metal	 or	 an	 insulator?	 Rationalize	 your	 answer	 by
calculating	AC	conductivity.

8.7 (i)	Calculate	 the	plasma	 frequency	of	Na	metal	and	 (ii)	explain	 the	optical	properties
(reflectance	 and	 absorbance)	 of	 Na	 metal	 when	 the	 frequency	 of	 incoming	 light	 is
smaller	and	larger	than	the	plasma	frequency.	Assume	that	the	atomic	mass	of	Na	is	23.

8.8 In	 a	 semiconductor-based	 LED,	 a	 heterojunction	 structure	 (e.g.,	 p-type	 GaN/p-type
AlGaN/InGaN/n-type	 AlGaN/n-type	 GaN)	 is	 more	 popular	 than	 a	 homojunction
structure	 (p-type	 InGaN/n-type	 InGaN).	 Describe	 the	 benefits	 of	 a	 heterojunction
structure.

8.9 a. Calculate	 the	 plasma	 frequency	 and	 damping	 frequency	 of	 Ag	 (density	 =	 10.49
g/cm3,	 electric	 conductivity	 =	 1.59	 μΩ	 ·	 cm,	 and	 electron	 configuration	 in	 the
outermost	shell	=	4s2	4p6	4d10	5s1).

b. If	 the	 manufacturing	 process	 of	 bulk	 Ag	 goes	 wrong	 and	 the	 concentration	 of
extended	 defects	 is	 increased,	 which	 frequency	 (υ1	 or	 υ2)	 mainly	 is	 influenced?
Justify	your	choice.



8.10 In	 alkali	 metals,	 we	 can	 calculate	 the	 plasma	 frequency	 of	 free	 electrons	 on	 the
assumption	that	one	atom	supplies	one	free	electron.	Can	this	approach	also	be	applied
to	Mg	metal?

8.11 Consider	a	CsBr	crystal	that	has	a	CsCl	unit	cell	crystal	structure	(one	Cs+-Br−	pair	per
unit	cell)	with	a	lattice	parameter	(a)	of	0.430	nm.	The	electronic	polarizability	of	Cs+
and	Br−	 ions	are	3.35	×	10−40	F	m2	and	4.5	×	10−40	F	m2,	 respectively,	and	 the	mean
ionic	 polarizability	 per	 ion	 pair	 is	 5.8	 ×	 10−40	 F	 m2.	 What	 is	 the	 low	 frequency
dielectric	constant	and	what	is	it	at	optical	frequencies?

8.12 Transparent	conducting	oxide	(TCO)	exhibits	the	electrical	property	of	a	metal	and	the
optical	 property	 of	 a	 wide	 band	 gap	 insulator.	 Explain	 the	 unique	 characteristics	 of
TCO	using	a	band	structure.

8.13 The	 following	 equation	 is	 known	 as	 the	 Clausius–Mosotti	 equation	 that	 connects
permittivity	and	polarizability.	Please	explain	(i)	the	basic	assumptions	that	are	used	to
derive	the	Clausius–Mosotti	equation	and	(ii)	the	physical	meaning	of	this	equation.

8.14 You	add	Sr	into	the	Ba	site	of	BaTiO3	to	increase	permittivity	(ε)	at	room	temperature
and	 to	 smooth	a	peak	of	 the	 ε–T	curve	 at	 the	Curie	 temperature.	Do	you	expect	 that
pure	BaTiO3	and	(Ba,Sr)TiO3	each	will	show	a	different	refractive	index	(n)?

8.15 The	energy	loss	of	an	electromagnetic	wave	traveling	in	silica	(SiO2)-based	fibers	 is
heavily	 dependent	 on	 the	 wavelength.	 The	 energy	 loss	 is	minimum	 at	 λ	 =	 1.55	 μm.
Also,	the	local	minimum	is	found	at	λ	=	1.31	μm.	Please	explain	the	dependence	of	the
energy	loss	on	the	wavelength.

8.16 (a)	Light	traveling	the	core	of	optical	SiO2	fibers	experiences	scattering.	What	do	you
think	is	the	physical	origin	of	the	light	scattering?	(b)	Can	you	explain	how	an	increase
in	the	wavelength	changes	the	transmittance	of	visible	light	in	SiO2	fibers?

8.17 Metals	 and	 insulating	 materials	 exhibit	 the	 frequency	 dependence	 of	 reflectivity
differently.	Although	metals	 show	a	 step-like	 frequency–reflectivity	curve,	 insulators
are	more	likely	to	have	a	peak	in	the	reflectivity	at	a	certain	wavelength	in	the	infrared
range.	 Why	 is	 a	 peak	 observed	 only	 in	 the	 frequency	 versus	 reflectivity	 curve	 of
insulating	materials?

8.18 GaAs	has	a	direct	band	gap	structure,	and	its	band	gap	is	1.42	eV.	(a)	Calculate	the	ratio
of	the	absorption	coefficient	difference	for	blue	light	(λ	=	450	nm)	and	green	light	(λ	=
530	nm)	in	GaAs.	(b)	If	the	refractive	index	and	the	absorption	coefficient	at	λ	=	530
nm	are	4.1	and	8.0	cm−1,	 respectively,	how	much	radiative	energy	of	green	light	can
transmit	a	1-μm-thick	GaAs	film?
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9 Electrical	and	Optical	Properties	of	Solar
Cells

KEY	TOPICS

Key	aspects	of	solar	cells
Carrier	separation	through	p-n	junction
Current–voltage	characteristics	of	solar	cells
Fermi	energy	level	change	by	illumination
Carrier	generation,	recombination,	and	diffusion
Ideal	power	conversion	efficiency
Factors	that	limit	and	influence	solar	power	to	electricity	conversion
Design	of	high-performance	solar	cells
Emerging	solar	cells

A	 solar	 cell	 is	 a	 device	 that	 generates	 electric	 power	 (electric	 voltage	 and	 current)	 upon
optical	 illumination.	 There	 has	 been	 a	 focus	 on	 solar	 cell	 technology	 for	 the	 last	 several
decades	due	to	the	need	for	a	renewable	and	sustainable	energy	source	that	has	a	negligible
impact	on	the	environment.	Problems	with	traditional	fossil	fuel	energy	(global	warming	and
high	 gas	 prices)	 have	 accelerated	 efforts	 to	 decrease	 dependence	 on	 this	 source.	There	 are
several	renewable	and	alternative	energy	sources	(e.g.,	solar,	wind,	and	hydropower)	that	are
greener	 than	 fossil	 fuel	 energy.	Of	 them,	 solar	 energy	 is	 the	most	 abundant	 and	 accessible
energy	 source.	 The	 field	 of	 research	 and	 development	 for	 converting	 solar	 energy	 into
electricity	is	known	as	photovoltaics.

Most	of	photons	that	the	sun	emits	have	a	wavelength	below	1	μm,	which	corresponds	to
visible	light	and	near	infrared	(IR)	light.	Solar	cells	are	made	using	semiconductors	that	can
absorb	energy	of	UV,	visible	and	near	IR	light.	A	necessary	condition	for	light	absorption	by
the	semiconductor	is	hν	>	Eg,	where	ν	is	the	frequency	of	light	and	Eg	is	the	band	gap	of	the
semiconductor.	Absorbance	 of	 a	 semiconductor,	 therefore,	 is	 an	 important	 ability	 of	 solar
cells.	At	sea	level,	the	peak	energy	that	the	sun	delivers	to	the	Earth	is	100	mJ	per	second	per
cm2.	This	means	that	a	solar	cell	with	a	15%	power	conversion	efficiency	and	a	1	m2	surface
area	produces	150	W	at	peak	times.	Since	the	solar	spectrum	is	available	only	during	daytime
and	 its	 intensity	varies,	 the	average	electric	power	 that	a	solar	cell	produces	 throughout	 the
day	is	about	one-sixth	of	the	peak	power	output.

A	schematic	of	the	structure	of	a	junction-type	solar	cell	built	on	inorganic	semiconductors
(e.g.,	 silicon)	 is	shown	in	Figure	9.1.	Usually,	 the	 top	 layer	of	a	crystalline	 silicon	wafer	 is
doped	with	n-type	impurities,	and	the	bottom	layer	is	doped	with	p-type	impurities.	In	addition
to	 a	 light	 absorbing	 semiconductor,	 the	 solar	 cell	 has	 other	 elements	 to	 control	 light
reflectance	and	to	facilitate	carrier	transport/extraction.	An	antireflective	coating	on	top	of	the
semiconductor	helps	capture	as	much	of	the	light	energy	incident	on	the	solar	cell	as	possible
by	 minimizing	 reflection	 loss	 (see	 Figure	 9.1).	 Similarly,	 in	 addition	 to	 the	 p-n	 junction,



electrical	ohmic	contacts	are	required	for	operating	an	electrical	circuit.	The	back	contact	of
the	silicon	wafer	is	made	using	metals	such	as	aluminum	or	molybdenum.	The	front	contact
of	 the	 silicon	wafer	 is	 in	 the	 form	of	metal	grids	or	 transparent	 conductive	oxides	 such	as
indium	 tin	 oxide	 (ITO)	 so	 that	 light	 can	 still	 get	 through	 to	 the	 semiconductor	 below	 the
electrode.	A	key	component	 for	solar	energy	 to	electricity	conversion	 is	a	p-n	 junction	 that
separates	electrons	and	holes	that	are	produced	by	incident	solar	energy.	The	built-in	potential
at	 the	 interface	 of	 the	 p-n	 junction	 works	 as	 a	 slide	 that	 delivers	 electrons	 and	 holes	 in
different	directions.	Under	 illumination,	solar	 light	 is	converted	to	electricity	 in	both	n-type
and	 p-type	 semiconductors,	 and	 carrier	 transport	 direction	 is	 controlled	 by	 the	 built-in
potential	of	 the	 junction.	Therefore,	an	 ideal	 silicon	solar	cell	 is	considered	a	 two-terminal
device	 in	 which	 an	 electric	 current	 source	 and	 a	 diode	 are	 connected	 in	 parallel.	 In	 dark
conditions,	 the	 semiconductor	 does	 not	 generate	 current	 and	 the	 solar	 cell	 turns	 into	 a	 p-n
semiconductor	diode.	An	equivalent	circuit	and	a	symbol	of	the	ideal	solar	cell	are	shown	in
Figure	 9.2.	 In	 reality,	 since	 resistance	 of	 electrodes	 and	 semiconductors	 is	 not	 zero	 and
manufacturing	defects	provide	alternating	current	paths	(i.e.,	formation	of	shunt),	series	and
shunt	resistance	of	 the	two-terminal	device	need	to	be	taken	into	account	 to	model	 the	solar
cell	and	the	equivalent	circuit	of	real	solar	cell	changes	as	shown	in	Figure	9.2(c).

FIGURE	9.1 Basic	schematic	of	a	silicon	solar	cell.	The	top	layer	is	referred	to	as	the	emitter	(normally	n-type	Si)	and	the
bulk	material	is	referred	to	as	the	base	(normally	p-type	Si).



FIGURE	9.2 (a)	Equivalent	circuit	of	an	ideal	solar	cell,	(b)	symbol	of	an	ideal	solar	cell,	and	(c)	an	equivalent	circuit	of	a
solar	cell	with	shunt	and	series	resistances.

9.1 WHAT	IS	A	SOLAR	CELL?

Light	 absorbing	 materials	 used	 in	 solar	 cells	 include	 inorganic	 semiconductors,	 organic
semiconductors,	metal	 organic	 compounds,	 and	 organic–inorganic	 hybrid	 semiconductors.
Solar	 cells	 are	 named	 after	 what	 kind	 of	 light	 absorber	 is	 used:	 Si
(monocrystalline/polycrystalline/amorphous)	solar	cells,	GaAs	solar	cells,	CdTe	solar	cells,
organic	 solar	 cells,	 dye-sensitized	 solar	 cells	 (DSSCs),	 CuInGaSe	 (CIGS),	 and	 organic–
inorganic	solar	cells.	Each	light	absorbing	material	has	a	different	light	absorption	spectrum,
carrier	mobility,	long-term	stability,	and	importantly,	economic	benefit.	Carrier	transport	and
mobility	is	just	as	important	as	light	absorption	in	solar	cells.	In	addition	to	the	material	type
of	 the	 energy	absorber,	 the	 carrier	 extraction	behavior	 also	 is	 used	as	 a	 criterion	 to	group
solar	cells.	If	electrons	and	holes	are	strongly	bound	and	separated	by	a	built-in	potential	of	a
p-n	type	semiconductor	junction,	solar	cells	are	called	junction-type	solar	cells.	If	electron–
hole	bound	pairs	(i.e.,	excitons)	are	produced	and	dissociated	at	the	donor–acceptor	interface
by	a	change	in	the	energy	level,	solar	cells	are	known	as	excitonic	solar	cells.

The	 last	way	 to	 classify	 solar	 cells	 is	 based	 on	 their	 development	 time	 and	 the	 ratio	 of
power	 conversion	 efficiency	 to	 price.	A	 first	 generation	 solar	 cell	 is	 the	 traditional	 silicon
solar	 cell	 made	 of	 either	 monocrystalline	 silicon	 or	 polycrystalline	 silicon.	 The	 power
conversion	 efficiency	 of	 silicon	 solar	 cells	 generally	 is	 higher	 than	 that	 of	 other	 types	 of
solar	cells.	The	highest	efficiency	of	a	monocrystalline	solar	cell	using	a	 lab	scale	 is	about
25%	(as	a	single	cell)	and	22%	(as	a	module).	Polycrystalline	silicon	solar	cells	demonstrate
a	slightly	lower	efficiency	(∼20%	as	a	single	cell).	The	second	generation	solar	cells	are	thin
film	solar	cells	that	utilize	a	few	micrometer	thick	compound	semiconductor	films	(e.g.,	CdTe
and	CIGS)	 as	 light	 absorbers.	These	materials	 have	 very	 high	 light	 absorption	 coefficients
and	a	thin	layer	is	thick	enough	to	fully	absorb	incident	light.	Therefore,	the	advantage	of	thin
film	 solar	 cells	 is	 that	 a	 small	 amount	 of	material	 is	 used,	 and	material	 cost	 potentially	 is
lower	than	that	for	a	crystalline	Si	solar	cell.	The	highest	efficiency	of	a	thin	film	solar	cell	in
the	laboratory	is	slightly	larger	than	19%	for	CdTe	and	CIGS	solar	cells	as	a	single	cell.	The
third	generation	solar	cells	are	built	on	emerging	materials,	such	as	quantum	dots,	which	have
the	promise	of	high	power	 conversion	efficiency	and	 low	material	 cost.	This	 type	of	 solar
cell	is	not	commercialized	yet	and	extensive	research	is	ongoing	in	the	laboratory.



FIGURE	 9.3 Global	 annual	 production	 of	 PV	 modules	 from	 2000	 to	 2013;	 market	 shares	 of	 monocrystalline	 Si,
polycrystalline	 Si,	 and	 thin	 film	 solar	 cells	 are	 presented	 in	 different	 colors.	 (From	Fraunhofer	 Institue	 for	 Solar	 Energy
System	(ISE)	Annual	Report	2014/2015.	With	Permission.)

Among	 the	 several	 kinds	 of	 solar	 cells	 introduced	 here,	 wafer-based	 crystalline	 silicon
cells	dominate	other	solar	cells	 in	 the	commercial	market.	Global	annual	production	of	PV
modules	from	2000	to	2013	and	market	shares	of	monocrystalline	Si,	polycrystalline	Si,	and
thin	film	solar	cells	are	shown	in	Figure	9.3.	Cumulative	PV	module	shipment	exceeded	the
100	GWp	landmark	in	2012,	and	cumulative	worldwide	installed	PV	module	power	was	about
177	GWp	in	2014.	Global	annual	production	of	solar	cells	was	39	GWp	in	2013	and	45–55
GWp	in	2014.	Crystalline	silicon	solar	cells	account	for	about	90%	of	the	solar	cell	market.
Polycrystalline	 silicon	 is	 the	 most	 widely	 used	 because	 it	 costs	 less	 than	 monocrystalline
silicon	 with	 the	 same	 power	 conversion	 efficiency.	 In	 the	 last	 10	 years,	 the	 efficiency	 of
average	commercial	 silicon	solar	cell	modules	has	 increased	 from	about	12%	to	16%.	The
commercial	 market	 share	 of	 thin	 film	 solar	 cells	 is	 about	 10%	 using	 CdTe,	 CIGS,	 and
amorphous	silicon	as	 light	absorbers.	The	recent	average	module	efficiency	of	a	CdTe	thin
film	solar	cell	is	∼13%,	which	is	lower	than	that	of	Si.	However,	the	relatively	low	efficiency
of	a	thin	film	solar	cell	is	compensated	by	the	lower	material	cost	of	thin	films.	This	explains
why	thin	film	solar	cells	can	compete	with	silicon	solar	cells,	even	though	the	raw	material
cost	of	silicon	wafers	has	dramatically	decreased	since	2010.

One	 of	 the	most	 important	 factors	 affecting	widespread	 use	 of	 solar	 cells	 is	 cost.	 Solar
cells	 need	 to	 produce	 electricity	 at	 a	 cost	 that	 is	 comparable	 to	 other	 energy	 generation
technology	 (e.g.,	 natural	 gas/coal	 power	 plant	 and	 nuclear	 power	 plant).	 The	 economic
viability	of	solar	cells	has	improved	dramatically	over	the	last	decade.	The	learning	curve	of
PV	module	price	 shows	 that	 the	 average	 selling	price	 of	 these	modules	 decreases	 21%	 for
every	doubling	of	cumulative	PV	module	shipments.	The	module	price	was	0.72	US$/Wp	in
2013	and	0.62	US$/Wp	in	2014,	which	is	close	to	the	target	set	up	by	the	U.S.	Department	of
Energy	(∼0.5	US$/Wp	by	2020).	The	2014	PV	module	price	corresponds	to	the	levelized	cost
of	electricity	 (LCOE)	of	$0.05–0.1/kWh.	The	 learning	curve	suggests	 that	PV	module	price
and	LCOE	will	decrease	 to	0.33	US$/Wp	and	0.03–0.07	US$/kWh	by	2025.	LCOE	not	only



includes	PV	module	cost	but	also	balance	of	system	(BOS)	costs	that	span	the	wiring,	inverter,
mounting,	and	ground.	BOS	depends	on	the	location	of	the	system	installation	and	the	size	of
the	system,	and	LCOE	is	not	fixed.

As	noted,	BOS	includes	the	inverter.	This	means	that	the	inverter	is	a	necessary	component
for	 using	 a	 solar	 cell.	 Since	 solar	 cells	 produce	 direct	 current	 (DC)	 electric	 power,	 an
auxiliary	part	that	converts	DC	to	AC	electric	power	is	required	to	connect	the	solar	cells	to
the	 electric	 grid.	 If	 the	 solar	 cell	 stands	 alone,	 the	 inverter	 is	 not	 needed.	Due	 to	 the	 rapid
decrease	in	PV	module	price	and	the	need	for	carbon	dioxide	(CO2)	reduction,	the	portion	of
electricity	produced	by	solar	cells	continues	to	increase	globally.	In	Germany,	a	country	that
actively	seeks	renewable	energy	sources	and	shuts	down	nuclear	power	plants,	PV	modules
supplied	29.7	TWh	of	electricity	(about	5.3	%	of	the	national	demand)	in	2013.	This	amount
of	PV-generated	electrical	power	saved	about	20	million	tons	of	CO2	emissions.

In	 this	 chapter,	 we	 will	 study	 (1)	 operation	 of	 solar	 cells	 with	 an	 emphasis	 on
semiconductor	 theory,	 (2)	 voltage–current	 characteristics	 of	 the	 solar	 cells,	 (3)	 factors
affecting	the	power	conversion	efficiency	of	solar	cells,	(4)	key	components	for	PV	module
installation,	 and	 (5)	 different	 types	 of	 emerging	 solar	 cells	 for	 high	 energy	 conversion
efficiency.

Example	9.1: Elecricity	Generation	Capacity	and	Cost	of	Solar	Cells

Let	us	say	that	you	want	to	install	solar	panels	for	your	house	in	City	A	where	the	yearly	solar	radiation	is	1,600
kWh/m2.	Each	panel	costs	$550,	and	the	efficiency	and	active	area	of	each	panel	is	16%	and	2.5	m2.

1.	 In	2013,	the	average	annual	electricity	consumption	for	a	U.S.	residential	utility	customer
was	10,908	kWh.	How	many	solar	panels	do	you	need	to	cover	the	electricity	demand	of
your	house?

2.	 The	price	of	electricity	in	City	A	is	15	cents	per	kWh.	What	is	your	payback	period	(in
other	 words,	 how	 many	 years	 do	 you	 need	 to	 use	 the	 solar	 panels	 to	 get	 back	 your
investment)?	Assume	that	costs	of	 installation	and	other	auxiliary	parts	are	 the	same	as
the	panel	price.

Solution

1.	 Total	active	area	of	solar	cells	for	yearly	production	of	10,908	kWh	is

10,908	(kWh)	÷	[0.16	×	1600	(kWh/m2)]	=	42.9	(m2)

Therefore,	you	need	∼17	panels	with	an	active	area	of	2.5	m2	to	be	self-sufficient	in
electricity.

2.	 Each	panel	produces	640	kWh/year	of	electricity,	which	corresponds	to	$96/year.	Since
the	 total	 cost	 of	 the	 solar	 panel	 installation	 (panel	 price	+	 installation	 cost	 +	 auxiliary
parts)	is	$1,100/panel,	the	payback	period	is

∴	$1100	÷	$96/year	=	11.5	years.



9.2 OPERATION	PRINCIPLE	OF	P-N	JUNCTION-TYPE	SEMICONDUCTOR	SOLAR
CELLS

Basically,	a	silicon	solar	cell	is	a	p-n	junction	diode	that	absorbs	energy	from	light	radiation
when	 illuminated	 (Figure	 9.2).	 Figure	 9.4	 shows	 the	 operating	 principle	 of	 typical	 p-n
junction-type	semiconductor	solar	cells.	Absorption	of	light	causes	the	creation	of	electron–
hole	pairs	(EHPs).	This	effect	is	known	as	photogeneration	or	optical	generation	of	carriers.
It	is	noted	that	EHPs	in	silicon	do	not	form	an	exciton	that	is	a	strongly	bound	electron–hole
pair.	In	contrast,	some	solar	cells	(such	as	organic	solar	cells)	generate	excitons	that	must	be
broken	 and	 converted	 to	 the	 current	 before	 electrons	 and	 holes	 recombine.	 These	 types	 of
solar	cells	are	sometimes	called	excitonic	solar	cells.

To	produce	electric	current,	photogenerated	electrons	and	holes	must	move	in	the	opposite
direction.	If	electrons	and	holes	move	together,	their	movements	cancel	each	other	and	there
is	no	net	 flow	of	electric	charge.	 In	Sections	9.2.1	and	9.2.2,	general	 equations	 for	current–
voltage	 characteristics	 (called	 an	 I–V	 curve)	 and	 conversion	 efficiency	 of	 solar	 power	 to
electric	 power	 are	 introduced	 using	 the	 example	 of	 p-n	 junction	 solar	 cells.	 Fundamental
physics	underlying	the	operation	of	the	p-n	junction-type	solar	cells	is	found	in	Section	9.3.



FIGURE	9.4 Operating	principle	of	p-n	junction-type	semiconductor	solar	cells.

9.2.1 CURRENT–VOLTAGE	CHARACTERISTICS	OF	P-N	JUNCTION-TYPE	SEMICONDUCTOR

SOLAR	CELLS

As	schematically	shown	in	Figure	9.1,	a	silicon	solar	cell	is	made	mostly	from	a	200–500	μm
base	 (mainly	 p-type	 silicon	 wafer)	 that	 is	 lightly	 doped	 with	 boron	 or	 other	 acceptor
impurities	 (e.g.,	∼1016	 B/cm3).	 To	 form	 a	 p-n	 junction,	 the	 surface	 of	 a	 p-type	 wafer	 is
heavily	doped	with	donor	impurities	through	diffusion	(e.g.,	∼1019	P/cm3).	The	bulky,	lightly
doped	region	is	called	the	base	and	the	top	heavily	doped	region	is	called	the	emitter.	A	key
function	of	the	junction	is	to	filter	the	carriers	depending	on	the	sign	of	their	electric	charge.

In	p-n	junction-type	solar	cells,	electrons	and	holes	are	separated	by	the	built-in	potential
that	exists	in	a	carrier-depleted	interface	region	(see	Figure	9.4	and	Section	5.1).	This	means
that	photogenerated	carriers	need	 to	 travel	 to	 the	 junction	 region	 to	provide	electric	power.
This	 travel	 to	 the	 junction	region	occurs	purely	 through	a	diffusion	mechanism.	Therefore,
only	the	photogenerated	carriers	within	the	carrier	diffusion	distance	from	the	depletion	layer
(Lp	 or	Ln,	 for	 hole	 or	 electron,	 respectively)	 can	 travel	 to	 the	 depletion	 layer	 and	 generate



electric	 power.	 Photogenerated	 carriers	 that	 are	 recombined	 during	 diffusion	 do	 not
contribute	 to	 electricity	 production.	 If	 photogenerated	 electrons	 and	 holes	 are	 produced
outside	 the	 diffusion	 distance	 from	 the	 depletion	 region,	 they	 mainly	 are	 recombined	 and
their	 energy	 is	 dissipated	 as	 heat.	 This	 is	 the	 reason	 why	 carrier	 diffusion	 (particularly
minority	carrier	diffusion)	is	very	important	in	silicon	solar	cells.

If	 the	 diffusion	 distance	 is	 short,	 only	 a	 small	 number	 of	 photogenerated	 carriers	 are
converted	to	electric	power.	To	increase	the	carrier	diffusion	distances,	a	high	quality	silicon
wafer	 with	 a	 negligible	 concentration	 of	 recombination	 centers	 is	 required.	 However,	 this
approach	increases	the	production	cost	of	silicon	solar	cells,	and	manufacturers	are	forced	to
find	 a	 balance	 between	 the	 cost	 and	 the	 performance	 of	 the	 solar	 cell,	 depending	 on	 the
application	of	the	solar	cells.

Once	photogenerated	carriers	reach	the	depletion	region,	the	electron	and	hole	are	swept
up	into	opposite	directions	by	the	internal,	built-in	electric	field.	Since	the	electric	field	is	a
driving	force,	drift	is	the	mechanism	responsible	for	carrier	sweeping	near	the	junction.	The
photogenerated	holes	(i.e.,	additionally	produced	minority	carriers	on	the	n-side)	drift	toward
the	p-side	of	the	depleted	region	with	the	negatively	charged	space-charge.	On	the	other	hand,
photogenerated	 electrons	 in	 the	 p-side	 drift	 toward	 the	 positively	 charged	 space-charge
region	on	the	n-side.	Both	of	these	motions	result	 in	a	photocurrent	 (IL),	which	 is	produced
through	 light	 illumination.	As	explained	earlier,	 IL	 inside	 the	p-n	 junction	semiconductor	 is
directed	from	the	electron-rich	side	(n-side)	to	the	hole-rich	p-side	(Figure	9.4),	which	is	the
direction	of	the	built-in	electric	field	(E)	at	the	junction.

The	photocurrent	(IL)	is	also	known	as	the	short-circuit	current	(Isc),	which	the	solar	cell
generates	 when	 the	 cell	 is	 connected	 to	 the	 resistance	 of	 zero	 ohm.	 Hence,	 this	 is	 the
maximum	current	that	flows	through	an	external	circuit.	The	photocurrent	magnitude	depends
on	the	rate	at	which	electron–hole	pairs	are	created	per	unit	volume	(gop).	If	A	is	the	area	of
the	p-n	junction	and	Lp	and	Ln	are	the	diffusion	lengths	for	holes	and	electrons,	respectively,
then	the	photocurrent	(IL)	is	given	by

In	Equation	9.1,	notice	 that	gop	 is	not	constant	 in	 the	solar	cell	but	dependent	on	 incident
photon	density;	gop	 is	higher	near	 the	front	surface	of	 the	solar	cell	where	 light	 is	 incident.
Since	most	 photons	 are	 absorbed,	 the	 number	 of	 photons	 reaching	 the	 back	 surface	 of	 the
solar	cell	is	very	small,	and	gop	comes	close	to	zero	at	the	back	surface.	We	also	assume	in
Equation	9.1	that	only	the	carriers	that	are	generated	within	carrier	diffusion	distances	from
the	 depletion	 layer	 will	 contribute	 to	 IL.	 The	 rest	 of	 the	 carriers	 created	 outside	 of	 the
diffusion	length	from	the	junction	will	not	result	in	the	generation	of	electric	current	because
they	will	 recombine	before	being	separated	at	 the	 junction.	 In	Equation	9.1,	we	also	assume
that	the	number	of	carriers	generated	in	the	depletion	layer	itself	is	small	compared	to	those
created	 in	 the	neutral	 region	n-	and	p-sides	of	 the	 junction.	This	assumption	 is	 true	 in	most
cases	except	in	p-i-n	junction	solar	cells	where	the	depletion	region	is	intentionally	expanded
to	compensate	for	the	weakness	of	the	small	diffusion	length.



When	an	external	 resistance	 (R)	 is	 connected	 to	 a	 solar	 cell,	 electric	 current	 passing	 the
resistor	 experiences	 a	 voltage	 drop	 ((VIdeal	 –	 VReal)∼IR).	 This	 voltage	 drop,	 which	 is
equivalent	to	applying	a	forward	bias	to	the	diode,	reduces	the	barrier	height	at	the	junction.	A
decrease	in	the	barrier	height,	in	turn,	causes	an	increase	in	the	forward	current	of	the	diode
(IF).	Since	electrons	 travel	 toward	 the	p-side	of	 the	 junction	 in	 the	diode	under	 the	 forward
bias,	 the	forward	current	direction	inside	the	diode	(IL	 from	p-side	 to	n-side)	 is	opposite	 to
that	of	the	photogenerated	carriers’	current	by	the	built-in	potential	of	the	junction	(IF	from	n-
side	 to	 p-side)	 (refer	 to	 Sections	 5.9	 and	 5.10	 on	 diffusion	 current	 and	 drift	 current).	 This
indicates	that	IL	and	IF	have	opposite	signs.	The	appearance	of	this	forward	voltage	across	an
illuminated	p-n	junction	explains	how	the	current	and	potential	of	the	photogenerated	carriers
is	determined	at	a	practical	operating	condition.	Thus,	the	net	current	(I)	flowing	through	the
external	circuit	is

Note	that	the	photocurrent	(IL)	that	is	provided	by	a	current	source	of	Figure	9.2,	and	 the
net	 solar	cell	 current	 (I)	 always	 flow	 in	 the	opposite	direction	 to	 that	 of	 the	 forward	diode
current	(IF).

The	maximum	value	of	the	solar	cell	current	(I)	is	IL;	when	there	is	no	resistance	(R	=	0),	it
is	also	known	as	the	short-circuit	current	(Isc).	The	minimum	value	of	the	solar	cell	current
(I)	is	zero	when	the	external	resistance	is	infinite	(R	=	∞),	and	it	is	known	as	an	open-circuit
condition.

We	 now	 derive	 expressions	 for	 the	 solar	 cell	 current	 (I)	 and	 open-circuit	 voltage	 (Voc),
starting	with	the	diode	equation

Characteristics	of	the	p-n	junction	diode	in	Equations	5.56	and	5.63	of	Chapter	5	show	that
the	 saturation	current	 (Is)	 is	 determined	by	 the	diffusion	of	minority	 carriers	 in	 the	neutral
region	 and	 followed	 by	 the	 drift	 of	 the	 minority	 carriers	 through	 the	 depletion	 junction.
Therefore,	Equation	9.3	can	be	rewritten	as

where	Dp	and	Dn	are	the	diffusion	coefficients	for	holes	and	electrons,	and	Lp	and	Ln	are	the
diffusion	 lengths	 for	 holes	 and	 electrons.	 In	 an	 equilibrium	 state,	 the	 product	 of	 hole	 and
electron	concentrations	is	a	constant	 	 for	a	given	semiconductor	at	 fixed	 temperature	T,
which	 means	 	 and	 .	 Since	 nn	 =	 Nd	 and	 pp	 =	 Na	 in	 the	 doped
semiconductor,	 	and	 ,	where	Na	and	Nd	are	the	dopant	concentrations
for	the	p-	and	n-sides,	respectively.

Recall	that	subscripts	for	the	electron	and	hole	concentrations	refer	to	the	side	of	the	p-n
junction;	for	example,	pn	is	the	concentration	of	holes	on	the	n-side.	Thus,	Equation	9.4	can	be



rewritten	as

Substituting	the	expression	for	IS	in	Equation	9.4,	we	can	write	IF	as

The	 diffusion	 lengths	 for	 a	 carrier	 are	 related	 to	 the	 lifetime	 of	 the	 carrier	 (τ)	 by	 the
following	equations:

The	longer	the	lifetime	(τ)	of	a	carrier,	the	higher	the	diffusion	length	(L).	The	longer	the
carrier	can	survive	without	 recombining,	 the	higher	 the	probability	of	 it	contributing	 to	 the
photocurrent.

Sometimes,	we	prefer	 to	express	IF	without	directly	 involving	diffusion	coefficients.	For
example,	using	Equations	9.7	and	9.8	and	substituting	them	into	Equation	9.6	and	rearranging,
we	get

Now,	let	us	plug	IL	in	Equation	9.1	and	IF	 in	Equation	9.9	 into	 total	current	 I	 in	Equation
9.2.	We	get

In	 addition	 to	 electric	 current	 of	 the	 solar	 cells,	 Equation	 (9.10)	 shows	 the	 maximum
voltage	 that	 the	solar	cell	can	produce.	This	upper	 limit	of	 the	voltage	can	be	obtained	 in	a
case	of	I	=	0	(i.e.,	open	circuit).	When	the	external	load	connected	to	the	solar	cell	has	a	very
high	resistance,	a	 large	voltage	drop	(V)	across	 the	resistor	creates	 the	effect	of	applying	a
large	 forward	 bias	 to	 the	 diode,	 and	 the	 forward	 current	 (IF)	 increases	 dramatically.	 If	 the
magnitude	of	the	forward	current	(IF)	is	equal	to	the	photocurrent	(IL),	IF	and	IL	cancel	each
other,	and	the	output	voltage	of	the	solar	cell	reaches	the	maximum	that	is	called	open-circuit
voltage	(Voc):

where	Voc	is	the	maximum	voltage	that	can	be	generated	from	the	p-n	junction	in	a	solar	cell.
We	can	see	the	appearance	of	this	voltage	on	a	band	diagram	upon	the	illumination	of	a	p-n



junction,	called	the	photovoltaic	effect	(Figure	9.4).
We	can	combine	Equations	9.1,	9.5,	and	9.11	to	find	the	following	equation	for	Voc:

In	 Equations	 9.11	 and	 9.12,	 it	 is	 noted	 that	 Voc	 is	 not	 a	 constant.	 It	 increases	 with	 the
increasing	photocurrent	(IL)	or	with	the	rate	of	the	optical	generation	of	electron–hole	pairs
per	unit	volume	 (gop).	This	 indicates	 that	 an	 increase	 in	 the	 light	 intensity	 increases	Voc	 by
increasing	gop.	 However,	 the	 open-circuit	 voltage	 (Voc)	 cannot	 keep	 increasing	 indefinitely
with	 the	 increasing	gop.	As	 the	 rate	of	 the	optical	 carrier	generation	 increases,	 the	minority
carrier	concentration	increases.	This	causes	the	lifetime	(τ)	of	the	carriers	to	become	shorter.
Thus,	 more	 carriers	 recombine,	 which	 prevents	 the	 voltage	 from	 exceeding	 the	 built-in
potential	(V0).	Effects	of	the	increase	in	the	minority	carrier	concentration	and	the	decrease	in
the	 lifetime	 at	 large	 light	 intensity	 are	 described	 in	 Equation	 9.12.	 In	 other	 words,	 if	 Voc
becomes	the	same	as	V0,	the	forward-biased	current	of	the	solar	cell	diode	(see	the	equivalent
circuit	 of	 Figure	 9.2)	 becomes	 larger	 than	 the	 photocurrent	 (IL).	 This	 means	 that
photogenerated	carriers	are	consumed	within	the	solar	cells	instead	of	being	delivered	to	the
external	load	when	Voc	is	larger	than	V0.	Note	that	V0	cannot	be	larger	than	the	band	gap	(Eg)
of	 the	 host	 semiconductor	 in	 the	 p-n	 junction	 of	 the	 semiconductor	 (Section	 5.1).	Now	we
know	(i)	 that	the	upper	limit	of	Voc	is	Eg	of	 the	host	semiconductor	 in	 the	p-n	 junction-type
solar	cell	and	(ii)	that	the	electron–hole	recombination	consumes	a	part	of	the	photogenerated
carriers	 and	makes	Voc	 smaller	 than	Eg.	 In	 many	 cases,	 the	maximum	Voc	 of	 a	 single	 p-n
junction	semiconductor	solar	cell	is	∼85%	of	Eg	of	the	semiconductor.

In	 our	 discussion,	we	 assumed	 that	 concentrations	 of	 thermally	 generated	 electron–hole
pairs	are	negligible.	However,	if	the	rate	of	thermal	generation	of	electron–hole	pairs	(gth)	is
comparable	to	gop	(which	means	operation	at	a	very	high	temperature)	and	the	p-n	junction	is
symmetric	(which	means	pn	=	np	and	τp	=	τn),	then	Voc	can	be	rewritten	as

As	the	intensity	of	the	illuminating	light	increases	in	Equation	9.13,	the	optical	generation
rate	increases	again	on	both	sides	of	the	p-n	junction.	This	leads	to	an	increase	in	the	open-
circuit	voltage	(Voc).	We	can	see	this	correlation	in	the	I–V	curves	for	a	solar	cell	in	Figure
9.5.	The	maximum	voltage	from	the	solar	cell	is	Voc	for	zero	current	in	the	external	circuit.
The	minimum	voltage	is	zero	when	the	current	 is	maximum	under	a	short-circuit	condition
(Isc).	This	gives	us	the	diode	current	(I)	as	a	function	of	the	diode	voltage	generated	as	shown
in	Figure	9.5.

Example	9.2	illustrates	the	calculation	of	the	open-circuit	voltage	(Voc)	for	a	solar	cell.

Example	9.2: Solar	Cell	Open-Circuit	Voltage



A	solar	cell	is	made	using	a	Si	p-n	junction	with	Na	=	10
18	cm–3	and	Nd	=	10

16	cm–3.	The	diffusion	lengths	for

electrons	and	holes	are	25	and	10	μm,	respectively.	Assume	that	ni	=	1.5	×	10
10	cm–3	at	T	=	300	K,	Dp	=	20,	and

Dn	=	10	cm
2/s,	and	that	the	photocurrent	density	(JL)	is	10	mA/cm

2.	(a)	What	is	the	open-circuit	voltage	(Voc)?	(b)
How	does	this	compare	with	the	contact	potential	(V0)	for	this	p-n	junction?
Solution

1.	 We	rewrite	Equation	9.11	by	replacing	current	with	current	densities:

At	300	K:

FIGURE	9.5 I–V	curve	of	the	solar	cell	in	dark	and	illuminated	conditions.

The	value	of	JL	is	given	as	10	mA/cm
2.	To	get	the	value	of	the	saturation	current	density	(Js)	for	the	solar

cell	diode	(refer	to	the	equivalent	circuit	of	the	solar	cell	in	Figure	9.2),	we	rewrite	Js	as

Substituting	the	values	for	diffusion	coefficients,	diffusion	lengths,	and	dopant	concentrations:

Therefore,	for	Js,	the	saturation	current	density	=	7.21	×	10
–11	A/cm2	or	7.21	×	10–8	mA/cm2.	We	use

both	current	densities	in	the	same	units	to	calculate	Voc	from	Equation	9.13:



2.	 From	Equation	5.21,	the	contact	potential	(V0)	is	given	by

Then,

The	contact	potential	 is	 the	maximum	forward	bias	that	can	appear	across	the	p-n	junction.	Therefore,	 the
value	of	the	open-circuit	voltage	(Voc)	is	always	less	than	V0.

9.2.2 FILL	FACTOR,	POWER	CONVERSION	EFFICIENCY,	AND	QUANTUM	YIELD	OF	A	SOLAR
CELL

The	power	a	solar	cell	delivers	to	a	load	is	obtained	by	calculating	the	value	of	I	×	V.	Note	that
the	sign	of	I	(output	current	of	the	solar	cell)	is	negative,	if	the	forward	bias	direction	of	the
p-n	junction	is	treated	positive.	Since	the	photocurrent	(IL)	flows	in	the	reverse-bias	direction
and	the	voltage	generated	in	the	solar	cell	has	a	positive	sign,	the	product	of	I	×	V	is	negative.
This	means	that	the	solar	cell	generates	power	rather	than	consuming	the	power.

From	Equations	9.2	and	9.3,	the	power	generated	by	the	solar	cell	can	be	written	as

Equation	9.15	shows	that	the	power	of	the	solar	cell	depends	on	V	 (voltage	applied	to	the
solar	cell	diode	or	output	voltage	of	the	solar	cell).	Given	that	the	external	load	connected	to
the	solar	cell	controls	V	of	the	solar	cell	diode,	we	can	state	that	the	power	of	the	solar	cell	is
a	 function	 of	 the	 external	 load.	 From	Equation	 9.15,	 we	 can	 calculate	 the	 current	 (Im)	 and
voltage	(Vm)	that	will	result	in	maximum	power	(Pmax)	of	the	solar	cell.	Please	note	that	 the
subscript	“m”	in	Vm	and	Im	does	not	stand	for	maximum	voltage	and	maximum	current.	The
subscripts	instead	represent	the	values	of	voltage	and	current	that	lead	to	the	maximum	power.

At	the	maximum	power	point,	we	can	equate	dP/dV	=	0.	Then,

At	T	=	300	K,	Vt	=	(kBT/q)	=	0.026	volt,	and	Equation	9.16	can	be	rewritten	as	follows:



Since	the	right-hand	side	is	known	for	a	given	p-n	junction,	we	can	solve	for	Vm	by	 trial
and	error	for	a	given	IL.	The	Vm	and	the	corresponding	value	of	Im	are	shown	in	Figure	9.5.

From	Figure	9.5,	we	can	see	 that	 the	product	Vm	×	 Im	 is	 less	 than	Voc	×	 Isc.	 The	 ratio	 of
these	two	products	is	called	the	fill	factor	(FF)	of	a	solar	cell:

Good	solar	cells	have	an	FF	of	0.7∼0.8.	FF	is	sensitive	to	processing	variables	of	the	solar
cell.	 As	 shunt	 resistance	 and	 series	 resistance	 are	 added	 to	 the	 ideal	 solar	 cell	 (or	 carrier
recombination	 increases),	FF	decreases	 (see	Figure	9.2).	 In	Equation	9.18,	 it	 is	 important	 to
understand	that	the	maximum	power	of	the	solar	cell	is	given	by	Pmax=	Vm	×	Im	=	Voc	×	Isc	×
FF.	 Therefore,	 Voc,	 Isc,	 and	 FF	 are	 often	 used	 as	 three	 factors	 for	 evaluating	 solar	 cell
performance.

Equation	 9.18	 also	 helps	 to	 quantitatively	 express	 power	 conversion	 efficiency	 (ηconv);
ηconv	of	the	solar	cell,	which	shows	the	fraction	of	solar	energy	converted	to	electric	energy,
is	defined	as	the	ratio	of	maximum	power	over	the	incident	power	(Pin)	delivered	to	the	solar
cell:

The	 best	 ηconv	 of	 commercially	 available	 solar	 cells	 was	 close	 to	 0.2	 as	 of	 2014.	 This
means	 that	 even	 the	 best	 solar	 cell	 on	 the	market	 converts	 only	 about	 20%	 of	 input	 solar
energy	to	electric	energy	and	80%	of	input	energy	is	lost	during	the	conversion	process.

In	 solar	 cell	 operation,	 note	 that	 impedance	 matching	 between	 the	 solar	 cell	 and	 the
external	load	is	very	important.	To	extract	electric	power	from	the	solar	cell,	the	external	load
should	be	connected	 to	 the	 solar	cell.	The	amount	of	 the	output	power	 from	 the	 solar	cells
depends	 on	 the	 impedance	 of	 the	 load,	 and	 there	 is	 the	 resistance	 maximizing	 the	 output
power.	This	impedance	is	called	the	characteristic	resistance	(RCH)	of	the	solar	cell.	As	shown
in	Figure	9.6,	RCH	 is	determined	from	the	slope	of	Vmp/Imp.	An	impedance	smaller	 than	RCH
cannot	draw	out	enough	output	voltage	from	the	solar	cell	because	output	voltage	of	the	solar
cells	 becomes	 smaller	 (refer	 to	R2	 in	 Figure	 9.6).	 If	 the	 impedance	 of	 the	 external	 load	 is
larger	 than	RCH,	 the	 output	 voltage	 of	 the	 solar	 cell	 could	 increase,	 but	 the	 output	 current
becomes	smaller.	This	is	the	case	of	R1	in	Figure	9.6.	Due	to	a	trade-off	between	current	and
voltage,	there	is	an	RCH	corresponding	to	an	optimum	operating	point,	and	the	power	output
from	the	solar	cell	is	maximized	by	connecting	RCH	to	the	solar	cell.	Example	9.2	shows	how
we	can	find	RCH	of	the	solar	cell	from	its	J–V	curve.



FIGURE	9.6 A	schematic	illustration	of	characteristic	resistance	(RCH)	of	the	solar	cell.

Example	9.3: Performance	Parameters	of	Solar	Cells	(Jsc,	Voc,	FF)

You	are	trying	to	connect	an	external	load	to	a	solar	cell.	This	solar	cell	exhibits	the	current	density	(J)	and	power
(P)	versus	voltage	relations	in	Figure	9.7.	What	is	the	resistance	of	the	external	load	that	allows	you	to	pull	out	a
maximum	 power	 from	 this	 solar	 cell?	 Active	 area	 (the	 area	 of	 the	 p-n	 junction	 semiconductor	 exposed	 to
illuminating	light)	is	100	cm2.

Solution
In	Figure	9.7,	out	power	(P)	is	calculated	by	multiplying	current	and	voltage	at	each	point	of	the	J–V	curve.	Then,	a
relation	between	P	and	V	shows	that	maximum	power	of	the	solar	cell	is	found	at	Vm	∼	0.55	volt	and	Jm	∼	5.5
mA/cm2.	 Since	 the	 active	 area	 is	 100	 cm2,	 total	 current	 is	 0.55	A	 (=	 0.0055	A/cm2	 ×	 100	 cm2).	 This	 current–
voltage	relation	is	obtained	when	the	resistance	of	1	Ω	(R	=	V/I	=	0.55/0.55)	is	connected	to	the	solar	cell	with	an
active	area	of	100	cm2.	Therefore,	connection	of	 the	external	 resistance	10	kΩ	to	 the	solar	cell	makes	 the	solar
cell	supply	the	maximum	power	to	the	external	resistance.

In	addition	to	ηconv,	incident	photon-to-current	efficiency	(IPCE)	is	an	important	parameter
that	evaluates	 the	electron	conversion	process	of	 the	solar	cell.	 IPCE	 is	also	called	external
quantum	 efficiency	 and	 represents	 the	 ratio	 of	 the	 photogenerated	 and	 collected	 electron
number	over	 the	 incoming	photon	number	at	a	 fixed	 light	wavelength.	From	 the	definition,
IPCE	is	given	by

Since	 incoming	 power	 (Pin)	 =	N	 ×	 hν	 and	 short-circuit	 current	 (Isc)	 =	 en/t	 (e:	 electron
charge,	t:	time),	Equation	9.20	can	be	rewritten	as:



When	 all	 constants	 are	 inserted	 in	 Equation	 9.21,	 we	 find	 that	 IPCE	 for	 light	 with	 the
wavelength	λ	is

FIGURE	9.7 Exemplary	 plot	 showing	 the	 dependence	 of	 output	 current	 and	 power	 on	 the	 external	 bias	 in	 the	 solar	 cell
under	illumination.

FIGURE	9.8 Incident	photon-to-current	efficiency	(IPCE)	of	the	solar	cell.



where	 the	unit	of	 Isc,	Pin,	 and	λ	are	A,	watt,	 and	nm,	 respectively.	As	 the	 solar	 cell	 absorbs
more	photons	(i.e.,	reflectance	and	transmittance	decreases)	and	the	carrier	recombination	is
suppressed	more,	IPCE	of	the	solar	cell	increases.	Therefore,	high	IPCE	is	indicative	of	high
light	absorption	and	low	carrier	recombination	for	a	given	wavelength.	Figure	9.8	shows	an
exemplary	IPCE	of	a	solar	cell.	When	photon	energy	is	smaller	than	Eg	of	the	semiconductor,
IPCE	becomes	zero.	For	 the	 longer	wavelength	 light	near	Eg,	 IPCE	decreases	 dramatically.
This	is	due	to	the	recombination	at	the	rear	surface	and	in	the	bulk.	Also,	IPCE	dramatically
decreases	 for	 light	 with	 a	 very	 short	 wavelength	 because	 most	 of	 photons	 with	 the	 short
wavelength	 are	 absorbed	 near	 the	 front	 surface	 of	 the	 solar	 cell	 where	 defects	 (dangling
bonds)	 of	 the	 front	 surface	 on	 which	 solar	 light	 is	 incident.	 Facilitate	 recombination	 of
photogenerated	carriers.

Example	9.4: Incident	Photon-to-Current	Efficiency	and	Photocurrent

An	indium	gallium	arsenide,	(In,Ga)As,	photodiode	is	irradiated	by	IR	light	with	the	wavelength	1	μm	and	the	power
density	1.5	mW/cm2.	Assume	 that	 incident	 photon-to-current	 efficiency	 (IPCE	or	 external	 quantum	efficiency)	 of
the	photodiode	is	90%	over	IR	light,	and	the	light	receiving	area	is	2.5	cm2.	What	is	the	electric	current	coming	out
of	the	photodiode?

Solution
Since	the	wavelength	λ	is	1	μm,	the	energy	of	each	photon	(Eph	=	hc/λ)	is	1.24	eV.	Also,	total	incident	power	over

the	area	of	2.5	cm2	is	2.8	mW.	Therefore,	the	number	of	incident	photons	(Nph)	per	unit	time	is

The	quantum	efficiency	is	90%	and	electric	current	from	the	semiconductor	is

Iph	=	1.4	×	1016	×	1.6	×	10−19	×	0.9	=	2.0	mA

9.3 PHYSICAL	EVENTS	UNDERLYING	P-N	JUNCTION-TYPE	SOLAR	CELLS

In	 Section	 9.2,	 we	 learned	 the	 operating	 principle	 of	 solar	 cells,	 the	 equivalent	 circuit
composed	of	an	electric	current	source	and	a	diode,	and	the	important	factors	demonstrating
solar	cell	performance.	In	this	section,	we	will	study	details	of	the	physical	events	occurring
in	p-n	junction-type	solar	cells.

9.3.1 CHANGES	IN	FERMI	ENERGY	LEVEL	UNDER	ILLUMINATION

According	to	Section	9.1,	photocurrent	(IL)	flows	from	the	solar	cell	to	an	external	resistance
(R)	 that	 is	 connected	 to	 the	 solar	 cell	 and	 produces	 work.	 However,	 in	 Chapter	 5,	 EF	 is
constant	 through	 the	 p-n	 junction	 at	 equilibrium	 and	 there	 is	 no	 net	 electric	 current	 unless
external	 field	 is	biased.	How	should	we	modify	diode	equations	 in	Chapter	5	 to	 explain	net
current	 of	 the	 solar	 cell?	 Let	 us	 recall	 the	 fact	 that	 Fermi	 energy	 (EF)	 becomes	 flat	 at	 a
semiconductor–semiconductor	 junction	 and	 semiconductor–metal	 junction.	 Since	 EF	 of



different	constituents	comprising	the	junction	is	leveled,	EF	must	be	uniform	throughout	 the
junction	(see	Equation	9.23).

and

where	EF	 is	Fermi	 energy	 level	 of	p-n	 junction,	Ei	 is	 intrinsic	 Fermi	 energy	 level,	ni	 is	 an
intrinsic	 carrier	 concentration,	ND	 is	 donor	 impurity	 concentration	 in	 an	 n-semiconductor,
and	NA	is	donor	impurity	concentration	in	a	p-semiconductor.

If	 the	 p-n	 junction	 semiconductor	 reaches	 equilibrium	 even	 under	 the	 illumination,	 this
means	that	photogeneration	of	electrons	and	holes	increase	ni	and	decrease	the	barrier	height
at	 the	 junction	(Vbi).	Then,	Ei	 is	bent	 less	 to	maintain	EF	 constant,	 (see	 the	band	diagram	of
Figure	 9.9).	 Regardless	 of	 band	 bending,	 if	 the	 p-side	 and	 n-side	 of	 the	 p-n	 junction
semiconductor	 have	 the	 same	 EF	 (Figure	 9.9),	 a	 driving	 force	 for	 the	 net	 flow	 of
photogenerated	carriers	cannot	be	developed.	Thus,	electrons	cannot	flow	from	the	n-side	to
the	p-side	even	though	the	n-side	and	the	p-side	are	connected	through	an	external	circuit.

FIGURE	9.9 Band	diagram	of	p-n	junction	semiconductor	at	thermal	equilibrium.



FIGURE	9.10 Band	diagram	of	p-n	junction	semiconductor	at	quasi-equilibrium.

To	 resolve	 the	 contradictions	of	 these	 two	 facts	 (the	 leveling	of	EF	 through	 the	 junction
region	and	net	electric	current	under	illumination	without	external	bias)	in	p-n	junction-type
solar	 cells,	 it	 is	 important	 to	 understand	 that	 the	 solar	 cell	 exposed	 to	 light	 is	 not	 under
thermal	equilibrium,	and	EF	 at	 the	quasi-equilibrium	state	 is	not	uniform	so	 that	 the	charge
carrier	 can	 flow	 through	 an	 external	 circuit	 (Figure	 9.10).	 When	 the	 solar	 cell	 absorbs
photons	with	energy	larger	than	Eg,	photogenerated	carriers	increase	both	electron	and	hole
concentrations	above	 the	equilibrium	concentration.	To	 restore	 the	 thermal	equilibrium,	 the
semiconductor	 needs	 time	 in	 the	 order	 of	 the	 carrier	 lifetime,	 which	 is	 a	 millisecond	 in
silicon.	However,	 if	 the	 solar	cell	 is	 continuously	exposed	 to	 light,	 the	 thermal	equilibrium
cannot	be	recovered.	Instead,	electrons	in	the	conduction	band	(CB)	and	holes	in	the	valence
band	(VB)	pursue	quasi-equilibrium	within	each	band.	In	this	case,	free	electron	concentration
in	CB	and	free	hole	concentration	at	VB	do	not	change	as	a	function	of	time	as	long	as	a	light
with	 constant	 intensity	 illuminates.	 This	 quasi-equilibrium	within	 the	 band	 can	 be	 achieved
because	 carriers	 restore	 equilibrium	 through	 two	 different	 relaxation	 mechanisms.	 When
extra	electrons	and	holes	are	 injected	 into	CB	and	VB,	 they	rearrange	 themselves	and	relax
through	 collision	 with	 the	 lattice	 (i.e.,	 phonon	 scattering)—that	 is,	 relaxation	 occurs
independently	in	CB	and	VB.	Of	course,	free	electrons	at	CB	and	free	holes	at	VB	recombine
to	regain	the	thermal	equilibrium	through	the	relaxation	between	CB	and	VB.

Here,	it	is	important	to	know	that	relaxations	within	the	band	and	between	the	bands	occur
at	 different	 time	 scales.	 Although	 phonon	 scattering	 time	 is	 ∼10−12	 second	 or	 smaller,
electron–hole	recombination	time	is	at	least	∼10−9	second	(as	large	as	∼10−3	second	for	an
indirect	semiconductor	such	as	silicon).	This	means	that,	if	an	incident	photon	flux	is	constant,
the	relaxation	within	the	band	is	achieved	much	faster	than	the	relaxation	between	the	bands.
Consequently,	electrons	at	CB	and	holes	at	VB	have	their	own	quasi-equilibrium	states	where
quasi-Fermi	 energy	 levels	 are	 expressed	 as	EFn	 and	EFp.	Figure	9.10	 shows	 a	 schematic	 on
quasi-Fermi	energy	levels.	It	is	noted	that	electrons	and	holes	in	the	quasi-equilibrium	states
do	not	meet	well-known	relations	of	 	and	 .

Now,	let	us	figure	out	how	to	quantitatively	express	the	quasi-Fermi	state	that	appears	as	a
result	 of	 an	 illumination-induced	 disturbance.	 If	 an	 extrinsic	 semiconductor	 is	 at	 thermal
equilibrium,	electron	concentration	and	hole	concentration	are	given	by:



In	the	quasi-equilibrium	state,	carrier	concentrations	still	can	be	formulated	by	modifying
Equation	 9.24.	 This	 assumption	 is	 valid	 as	 long	 as	 the	 disturbance	 of	 electron	 and	 hole
profiles	is	not	so	great	and	the	time	interval	between	disturbance	events	(i.e.,	photogeneration)
is	not	smaller	 than	 the	carrier	 scattering	 time.	Strictly	speaking,	 the	 reasoning	of	 the	quasi-
Fermi	 state	 is	 valid	 only	 when	 the	 photogeneration	 rate	 of	 electron	 and	 hole	 is	 between	

	 and	 .	 If	 a	 time	 interval	 between	 electron–hole

photogeneration	events	is	shorter	than	the	scattering	time,	even	the	relaxation	within	the	band
is	too	slow	to	achieve	a	quasi-equilibrium	state.	On	the	other	hand,	if	a	time	interval	between
electron–hole	 pair	 photogeneration	 events	 is	 longer	 than	 the	 recombination	 time,	 the
relaxation	between	the	bands	is	fast	enough	to	achieve	thermal	equilibrium.	When	the	quasi-
equilibrium	 state	 is	 established,	 concentrations	 of	 electrons	 and	 holes	 at	 CB	 of	 n-type
semiconductor	 and	 VB	 of	 p-type	 semiconductor	 can	 be	 expressed	 using	 EFn	 and	 EFp,	 as
follows:

If	Equation	9.25	is	rewritten	for	EFn	and	EFp,

Equation	 9.26	 indicates	 that	EFn	 and	EFp	 approaches	Ec	 and	Ev	 as	 more	 photogenerated
electrons	and	holes	are	injected.	From	Equations	9.25	and	9.26,	we	also	find	that	the	product
of	ne	and	nh	of	the	quasi-equilibrium	state	changes	from	 	to:

Given	that	 ,	Equation	9.27	can	be	rewritten	as:

From	Equation	9.28,	we	learn	that	a	new	mass–action	law	is	established	for	electrons	and
holes	at	the	quasi-equilibrium	state.	As	the	gap	between	EFn	and	EFp	increases,	a	deviation	of
ne	 ×	 nh	 between	 the	 quasi-equilibrium	 state	 and	 the	 thermal	 equilibrium	 state	 increases
exponentially.

Note	 that	EFn	of	 the	n-side	and	EFp	 of	 the	p-side	 are	not	 the	 same	anymore	 in	 the	quasi-
equilibrium	state,	although	the	p-side	and	n-side	are	 in	contact.	Different	quasi-Fermi	levels



explain	why	a	potential	difference	is	developed	between	the	terminals	of	the	n-side	and	the	p-
side.	In	the	open-circuit	state,	this	potential	difference	becomes	Voc	and	is	written	as:

Once	terminals	of	the	p-side	and	the	n-side	are	connected	with	an	external	circuit,	electrons
flow	from	the	n-side	terminal	to	the	p-side	terminal	due	to	Voc.

9.3.2 GENERATION,	RECOMBINATION,	AND	TRANSPORT	OF	ELECTRONS	AND	HOLES

In	Equation	9.1,	the	assumption	is	that	the	electric	current	of	the	solar	cell	is	due	to	the	flow	of
electrons	 and	 holes	 that	 can	 reach	 the	 built-in-potential	 at	 the	 p-n	 junction.	 Photogenerated
carriers	outside	the	carrier	diffusion	distances	from	the	depletion	layer	do	not	contribute	to
photocurrent	(IL);	instead,	they	recombine	and	produce	photons	or	phonons	(or	both).	In	this
section,	we	will	study	the	details	of	recombination	and	diffusion	of	photogenerated	carriers,
which	will	allow	us	to	calculate	IL,	estimated	as	IL	=	q	×	A	×	(Lp	+	Ln)	×	gop	in	Equation	9.1.

Before	starting	our	calculations,	we	need	to	revisit	the	concept	of	carrier	recombination.	In
previous	sections,	recombination	is	used	to	describe	a	physical	event	by	which	electrons	and
holes	meet	and	combine.	The	term	recombination	 includes	several	different	cases.	Electrons
in	 the	 conduction	 band	 and	 holes	 in	 the	 valence	 band	 can	meet	 directly	 for	 recombination.
Also,	electrons	can	be	trapped	and	stay	at	localized	defect	sites	between	the	conduction	band
edge	(Ec)	and	the	valence	band	edge	(Ev)	before	recombining	with	holes.	The	consequences
of	recombination	are	not	the	same	for	all	cases.	Energy	loss	by	recombination	can	be	used	to
produce	photons	or	phonons	or	to	excite	electrons	from	Ec.	In	order	to	distinguish	the	three
different	 types	 of	 recombination,	 the	 event	 generating	 heat	 is	 called	 nonradiative
recombination	 and	 the	 other	 event	 generating	 light	 is	 called	 radiative	 recombination.	 The
energy	 loss	 process	 by	which	 an	 electron	 is	 excited	 is	 called	Auger	 recombination.	 These
three	different	recombination	events	are	schematically	described	in	Figure	9.11.



FIGURE	 9.11 Loss	 processes	 in	 a	 standard	 solar	 cell:	 (1)	 nonabsorption	 of	 below	 band	 gap	 photons;	 (2)	 lattice
thermalization	 loss;	 (3)	 and	 (4)	 junction	 and	 contact	 voltage	 losses,	 respectively;	 (5)	 recombination	 loss	 (radiative
recombination	is	unavoidable).

As	 explained	 in	 Section	 9.6.2,	 radiative	 recombination	 is	 dominant	 in	 a	 direct	 band	 gap
semiconductor	 with	 good	 crystallinity.	 When	 the	 semiconductor	 has	 indirect	 band	 gap	 or
possesses	 high	 defect	 density,	 nonradiative	 recombination	 prevails.	 Although	 other
recombination	events	are	based	on	combining	one	electron	with	one	hole,	two	electrons	and
one	hole	need	to	meet	for	the	occurrence	of	an	Auger	recombination.	Since	more	carriers	are
involved,	 an	Auger	 recombination	becomes	pronounced	 in	 a	 semiconductor	with	high	 free
electron	density.

9.3.2.1 Continuity	Equation	in	a	Neutral	Semiconductor	at	Quasi-Equilibrium
It	 is	 time	 to	 quantify	 electron	 and	 hole	 concentrations	 of	 a	 neutral	 semiconductor	 that	 is
exposed	to	illumination.	Neutral	means	that	the	semiconductor ’s	free	electrons	and	holes	are
not	 depleted.	 In	 the	 junction	 region	 where	 the	 built-in	 potential	 is	 developed,	 the
semiconductor	is	not	neutral.	As	we	learned	in	Chapter	8,	the	semiconductor	absorbs	photons
with	 E	 >	 Eg	 to	 produce	 surplus	 electrons	 and	 holes	 that	 disturb	 thermal	 equilibrium	 and
establish	quasi-Fermi	energy	levels.	When	a	p-type	semiconductor	is	under	illumination,	the
excess	electron	concentration	(Δnp)	can	be	expressed	as	the	difference	between	total	electron
concentration	(np)	and	an	equilibrium	electron	concentration	(np0);	that	is,	Δnp	=	np	−	np0.	Note
that	the	minority	carrier	is	selected	for	the	convenience	of	calculation,	because	np/np0	is	much
larger	 than	pp/pp0	 in	p-type	 semiconductor.	 If	we	 assume	 that	 the	 rate	 of	 electron–hole	 pair
creation	per	unit	volume	(gop)	 is	uniform	throughout	 the	semiconductor,	an	excess	electron
concentration	is	also	uniform	throughout	the	semiconductor.	Then,	we	can	connect	the	time-
dependent	 change	 of	 np	 (dnp/dt)	 with	 gop	 by	 introducing	 the	 recombination	 rate	 of
photogenerated	carriers	(U):



In	 Equation	 9.30,	 np0	 is	 a	 constant	 at	 a	 fixed	 temperature	 and	 dnp0/dt	 is	 zero.	 U	 is	 a
parameter	showing	how	many	free	carriers	disappear	per	unit	time.	Here,	let	us	recall	that	τn
is	the	minority	carrier	lifetime	showing	how	long	it	takes	for	excess	electrons	to	recombine
electrons	 in	 a	 p-type	 semiconductor.	 If	 the	 number	 of	 excess	 minority	 carriers	 and	 their
lifetimes	are	known,	you	can	find	that	the	excess	minority	carriers	disappear	at	a	rate	of	Δnp/
τn.	Therefore,	we	can	estimate	U	as	Δp/τn	and	rewrite	Equation	9.30	as:

where	 τn	 is	 carrier	 lifetime.	 Equation	 9.31	 describes	 the	 time	 dependence	 of	 the	 excess
electron	concentration	with	 the	assumption	 that	 the	photogeneration	rate	 is	constant	 through
the	sample	(in	other	words,	zero	driving	force	for	diffusion).	In	reality,	however,	the	rate	of
photogeneration	is	highest	near	the	front	surface	of	the	solar	cell	and	decreases	exponentially
as	a	function	of	the	depth.	As	summarized	in	the	Beer–Lambert	law	(I	=	I	exp(−αx))	of	Section
8.5.3,	 light	 intensity	 continuously	 decreases	 though	 a	 material	 and	 so	 does	 the	 amount	 of
photons	 absorbed	 by	 the	 semiconductor.	 Notice	 that	 the	 change	 in	 the	 light	 intensity	 as	 a
function	 of	 depth	 implies	 that	 the	 photogeneration	 rate	 per	 volume	 (gop)	 also	 has	 depth
dependence.	 If	 the	 density	 of	 photons	 in	 the	 light	 is	Nph,	 the	 Beer–Lambert	 law	 leads	 to	 a
relation	of	Nph	=Nsexp(αx)	(NS:	photon	flux	density	at	 the	surface).	Then,	we	find	 that	gop	 is
related	to	the	depth	and	the	photon	density	as	follows:

This	 tells	 us	 that	 the	 rate	 of	 carrier	 generation	 by	 illumination	 is	 determined	 by	 depth,
absorption	coefficient,	and	NS,	with	the	assumption	that	there	is	no	surface	reflection	and	all
absorbed	photons	 are	 converted	 to	 electron–hole	 pairs.	 If	 there	 is	 surface	 reflection,	Ns	 in
Equation	9.32	needs	to	be	changed	to	(Ns	−	R),	where	R	is	reflectance	at	the	surface.

When	the	slab	in	Figure	9.11	is	illuminated	from	one	surface,	profiles	of	absorbed	photon
density	 and	photogenerated	 carriers	 exponentially	 decay	 from	 the	 illuminated	 surface.	This
excess	electron	concentration	gradient	causes	both	diffusion	current	and	drift	current	(that	is
due	 to	 the	quasi-Fermi	energy	 level	gradient).	Therefore,	 it	 is	necessary	 to	add	an	effect	of
carrier	transport	to	Equation	9.30.

Now,	let	us	imagine	a	slab—one	end	of	which	is	exposed	to	light	(see	Figure	9.4).	 In	 this
slab,	 two	 end	 surfaces	 have	 different	 excess	 electron	 concentrations	 and	 electrons	 diffuse
from	one	surface	to	the	other,	which	results	in	an	electric	current	along	the	x-axis.	Then,	the
excess	 carrier	 concentration	 profile	 can	 be	 obtained	 from	 the	 following	 time-dependent
continuity	equation:



where	Jn	is	electric	current	density	and	q	is	the	charge	of	an	electron.

9.3.2.2 Photogenerated	Carrier	Transport	through	Diffusion	and	Drift	in	a	Neutral
Semiconductor	at	Quasi-Equilibrium

In	 Equation	 9.33,	 	 is	 the	 difference	 between	 influx	 and	 outflow	 of	 electrons	 and

represents	 the	 concentration	 of	 electrons	 that	 are	 left	 in	 the	 slab	 due	 to	 nonuniformity	 of
carrier	 transport	 and	 photogeneration.	 In	 this	 section,	 we	 will	 study	 how	 to	 quantitatively
describe	Jn	 in	 the	 neutral	 semiconductor.	 For	 this	 purpose,	we	 need	 to	 recall	 two	 previous
points:

1.	 The	 quasi-Fermi	 energy	 level	 (EFn)	 profile	 is	 expressed	 as	 a	 function	 of	 carrier

concentration,	 	(Equation	9.26).

2.	 Electric	 current	 is	driven	by	a	 carrier	 concentration	gradient	 (that	 is	diffusion)	 and	an
electric	field	(that	is	drift).

According	 to	 (1),	 the	 concentration	gradient	 of	 the	 excess	 electrons	 results	 in	 the	quasi-
Fermi	 energy	 level	 gradient	 along	 the	 x-axis	 of	 the	 slab.	Note	 that	 the	 quasi-Fermi	 energy

level	 gradient	 along	 the	 x-axis	 of	 the	 slab,	 in	 turn,	 applies	 electric	 field	 ,	 which

induces	 the	 movement	 of	 free	 carriers	 (i.e.,	 drift	 current).	 Then,	 drift	 current	 of	 minority
electrons	 driven	 by	 the	 quasi-Fermi	 level	 gradient	 is	 ,	 where	 μn	 is

electron	mobility.	 In	previous	chapters,	we	 learned	 that	 the	diffusion	current	 (Jn,diffusion)	 is	a

product	 of	 electron	 charge	 and	 diffusion	 flux,	 ,	 where	Dn	 is	 the	 electron	 diffusion

coefficient.	 If	 we	 combine	 the	 diffusion	 current	 and	 drift	 current,	 the	 electric	 current	 of
minority	carriers	(Jn)	is	given	by:

Then,	in	the	steady	state	(i.e.,	there	is	no	time	dependence),	Equation	9.34	can	be	rewritten
by	combining	Equation	9.26	and	Equation	9.33:

The	solution	of	Equation	9.35	leads	to	the	minority	carrier	concentration	profile	(np(x))	at
steady	state	that	takes	into	account	photogeneration,	diffusion,	drift,	and	recombination.	Once



you	know	np(x),	you	can	insert	np(x)	into	Equation	9.34	and	find	the	electron	current	(Jn)	in	an
illuminated	p-type	semiconductor	at	the	quasi-equilibrium	state.

In	Equation	9.35,	you	may	question	whether	Dn	and	μn	can	be	correlated	because	both	of
them	are	a	measure	of	electron	movement	over	different	driving	forces.	Dn	shows	how	easily
electrons	 diffuse	 when	 there	 is	 a	 concentration	 gradient.	 On	 the	 other	 hand,	 μn	 represents
electron	 transport	 over	 a	 potential	 gradient	 (i.e.,	 electric	 field).	 This	 implies	 that	materials
with	high	Dn	may	also	have	high	μn	because	both	Dn	and	μn	represent	how	electrons	transport
over	 external	 driving	 forces	 (electron	 concentration	 gradient,	 electric	 field).	 In	 fact,	 from
basic	diffusion	and	drift	equations,	a	correlation	between	Dn	and	μn	is	extracted	as:

Equation	9.36	 is	 called	 the	Einstein	 relation,	 and	 its	 detailed	 calculation	 can	 be	 found	 in
other	textbooks	on	semiconductor	theory.	From	Equation	9.35,	we	can	calculate	excess	carrier
distribution	at	the	surface	and	bulk	of	the	illuminated	semiconductor.

1.	 Excess	Carrier	Distribution	in	Bulk	(gop	=	0)
Now,	let	us	figure	out	what	would	happen	if	the	aforementioned	illuminated	slab	is	very
thick	or	the	absorption	coefficient	(α)	is	very	large.	Because	most	photons	are	absorbed
near	 the	 illuminated	surface	and	before	 reaching	 the	opposite	side,	we	can	assume	 that
incoming	photons	do	not	 reach	 the	bulk	of	 the	 slab	 (i.e.,	gop	 =	 0)	 and	EFn	 is	 relatively
uniform	(i.e.,	no	drift	current).	Then,	Equation	9.36	needs	to	be	rewritten	as:

Here,	 we	 use	 a	 well-known	 diffusion	 relation	 :	 (Ln:	 electron	 diffusion
length)	to	couple	τn	and	Dn:

A	solution	of	Equation	9.38	is	given	by:

or

In	Equation	9.39,	we	find	that	Ln	controls	the	minority	carrier	profile,	and	an	increase	in
Ln	elongates	the	minority	carrier	concentration	profile	(Δp(x)).	Notice	that	both	intrinsic
material	property	(e.g.,	band	gap)	and	extrinsic	material	property	(e.g.,	structural	defects)



change	Ln.	Indirect	semiconductors	have	longer	Ln	than	direct	semiconductors.	Materials
with	high	defect	density	exhibit	shorter	Ln.	Although	minority	electron	diffusion	length
(Ln)	is	100	∼	300	μm	for	single	crystal	p-type	silicon,	it	is	>10	μm	for	single	crystal	p-
type	GaAs.

2.	 Excess	Carrier	Distribution	near	Surface	(gop	≠	0)
An	assumption	for	Δnp(x)	in	Equation	9.39	is	that	the	slab	is	very	thick	and	light	cannot
reach	 the	point	 of	 interest	 (i.e.,	gop	 =	 zero).	However,	 if	 the	 slab	 is	 thin,	 the	 incoming
photon	flux	inside	the	slab	is	not	zero	and	gop	is	not	zero.	In	the	case	of	gop	≠	zero,	the
general	form	of	Δnp(x)	is	modified	as:

or

In	 this	 section,	 we	 have	 reviewed	 how	 photogeneration,	 diffusion,	 and	 recombination
determine	 the	 electron	 concentration	 profile	 in	 a	 neutral	 p-type	 semiconductor	 that	 is	 a
minority	carrier	density	profile.	Once	we	know	Δnp,	we	can	calculate	the	electric	current	by
the	 electrons	 in	 a	 p-type	 semiconductor	 (Jn)	 using	 Equation	 9.34	

.	 Figure	 9.12	 schematically	 shows	 the	 formation	 of	 excess

carrier	profiles	and	the	diffusion	current	when	its	one	end	is	illuminated.	From	Equations	9.39
and	9.40,	we	 learned	 the	quantitative	expressions	of	 the	excess	carrier	concentration	profile
under	illumination	and	the	consequent	electric	current	in	the	neutral	semiconductor.



FIGURE	9.12 (a)	Schematic	illustration	of	the	carrier	distribution	in	an	illuminated	slab,	(b)	Excess	carrier	concentration	vs.
distance	 from	 the	 illuminated	 surface,	 (c)	 Electric	 current	 due	 to	 concentration	 gradient	 vs.	 distance	 from	 the	 illuminated
surface.	(From	Kasap,	S.	O.,	Principles	of	Electronic	Materials	and	Devices,	3rd	ed.,	New	York:	McGraw	Hill,	2006.	With
Permission.)

One	remaining	question	regarding	the	photogenerated	carrier	transport	is	“Is	the	electron
transport	 influenced	 by	 the	 hole	 transport?”	 The	 answer	 to	 this	 question	 depends	 on	 the
difference	of	diffusion	coefficient	between	electrons	and	holes.	If	we	use	the	same	reasoning
process	for	Equation	9.40,	 the	excess	hole	concentration	 in	a	p-type	semiconductor	 is	given
by



A	comparison	of	Equations	9.37	and	9.39	(or	Equations	9.38	and	9.40)	shows	that,	if	Ln	=	Lp
and	Δnp(0)	=	Δpp(0),	Δnp(x)	 is	 the	same	as	Δpp(x).	Then,	electrons	and	holes	have	 the	same
concentration	profile	and	quasi-Fermi	 level	gradient,	which	 leads	 to	no	 interaction	between
excess	electron	 transport	 and	excess	hole	 transport.	 In	 silicon,	however,	Ln	 is	 several	 times
longer	than	Lp,	and	excess	electrons	and	excess	holes	have	different	concentration	profiles.	If
their	concentrations	are	not	 the	same,	different	quasi-Fermi	level	gradients	of	electrons	and
holes	generate	an	electric	 field	 that	causes	 the	drift.	 In	 the	case	of	silicon,	 this	electric	 field
arising	 from	 different	 excess	 carrier	 profiles	 suppresses	 the	 travel	 of	 photogenerated
electrons	and	promotes	the	transport	of	the	photogenerated	holes.	This	is	called	the	Dember
effect.	Figure	9.12	schematically	illustrates	how	a	difference	in	excess	carrier	profiles	(Δnp(x)
and	Δpp(x))	develops	an	additional	driving	force	for	the	drift.	If	the	mobility	of	the	crystalline
semiconductor	 is	 large	 or	 the	 semiconductor	 is	 in	 contact	 with	 electrode	 materials,	 the
Dember	effect	becomes	less	significant	and	is	omitted	when	calculating	electric	current.

In	 Section	 9.3.2.1,	 we	 found	 that	 the	 diffusion	 mechanism	 is	 dominant	 over	 the	 drift
mechanism	 in	 the	 neutral	 semiconductor	 at	 quasi-equilibrium,	 based	 on	 reasonable
assumptions	 such	 as	 uniform	 doping,	 small	 quasi-Fermi	 level	 gradient,	 and	 high	 carrier
mobility.	 The	 last	 important	 concept	 to	 understand	 is	 that	 the	 minority	 carrier	 diffusion
contributes	to	the	electric	current	much	more	than	the	majority	carrier	diffusion.	In	the	quasi-
neutral	 state,	 the	 magnitude	 of	 the	 excess	 concentration	 is	 not	 much	 different	 between	 the
majority	 carrier	 and	 the	 minority	 carrier	 (Δnp(x)∼	 Δpp(x)).	 However,	 the	 relative	 change
controlling	 the	diffusion	is	much	larger	for	 the	minority	carrier	(Δnp(x)/np0	>>	Δpp(x)/pp0).
Therefore,	 it	 is	 concluded	 that	 the	 current	 from	 the	 minority	 carrier	 diffusion	 prevails	 in
carrier	transport	in	the	neutral	semiconductor	at	quasi-equilibrium.

9.3.2.3 Photogenerated	Carrier	Transport	in	a	Depletion	Region	of	the	p-n	Junction
Our	understanding	from	the	previous	section	is	that	minority	carrier	diffusion	is	important	to
quantify	electric	current	in	a	neutral	semiconductor	under	illumination.	In	this	section,	we	will
study	how	photogenerated	electrons	and	holes	travel	in	the	depletion	region	of	a	p-n	junction
where	space	charges	build	up	the	built-in-potential.	If	there	is	no	external	electric	bias	and	no
illumination	(that	 is,	 thermal	equilibrium),	 the	built-in	potential	 in	Equation	9.23	 is	set	up	at
the	interface	between	the	p-semiconductor	and	the	n-semiconductor.	As	shown	in	Figure	9.9,
this	built-in	potential	at	the	junction	suppresses	the	diffusion	of	majority	carriers	and	causes
the	drift	 of	minority	 carriers.	At	 equilibrium,	 electric	 current	by	majority	 carrier	 diffusion
and	 electric	 current	 by	 minority	 carrier	 drift	 have	 the	 same	 magnitude	 and	 opposite	 flow
direction.	Consequently,	the	net	current	is	zero	at	thermal	equilibrium.	If	that	is	the	case,	the
hole	concentration	at	the	boundary	of	the	depletion	region	in	the	n-side	(pnb)	is	given	by:

where	VB	 is	 the	 equilibrium	barrier	 height	 at	 the	 junction	 region,	ni	 is	 the	 intrinsic	 carrier
concentration,	pn0	and	nn0	are	the	equilibrium	concentration	of	the	hole	as	a	minority	carrier
and	a	majority	carrier,	and	ND	is	a	donor	impurity	concentration	on	the	n-side.



When	the	barrier	height	 (V)	decreases	 (or	 forward	bias	 is	applied),	 the	diffusion	barrier
decreases	and	there	is	an	exponential	increase	in	the	diffusion	current.	From	the	viewpoint	of
the	 drift	 current,	 a	 decrease	 in	 VB	 decreases	 the	 driving	 force	 for	 the	 drift	 current	 but
increases	the	minority	carrier	concentration	for	the	drift.	Since	the	drift	current	is	a	product
of	the	driving	force	and	the	carrier	concentration,	a	decrease	in	V	makes	a	negligible	change
in	 the	drift	 current.	Then,	 the	diffusion	 current	 becomes	 larger	 than	 the	drift	 current	 under
forward	bias,	leading	to	a	net	current	at	the	junction	and	an	increase	in	pnb.	The	effect	of	the
electric	field	on	the	electric	current	density	through	the	junction	under	no	illumination	(called
dark	current	density	Jdark)	and	the	minority	carrier	concentration	at	the	boundary	condition	is
given	by:

where	VA	is	applied	voltage	(VA	>	0	for	forward	bias	and	VA	<	0	for	reverse	bias)	and	npb	is
electron	concentration	at	the	boundary	of	the	depletion	region	in	the	p-side	(pnb).	A	pre-factor	

	 in	Equation	9.44	also	 implies	 that	 the	diffusion	 is	 responsible	 for	 the

net	current	under	 the	bias;	pnb	 in	Equation	9.45	 also	 provides	 a	 boundary	 condition	 for	 the
carrier	diffusion	in	the	neutral	region	in	contact	with	the	depletion	region.	Figure	9.13	shows
a	 schematic	 on	 the	 transport	 and	 concentration	 profiles	 of	 an	 electron	 and	 a	 hole	 in	 a	 p-n
junction	under	forward	electric	bias.	Readers	can	find	that	the	minority	carrier	concentrations
at	 the	end	of	 the	 junction	boundary	 (pnb,	npb)	 are	not	 the	 same	as	 the	bulk	minority	 carrier
concentrations	(pn0,	np0).

From	Equations	9.44	and	9.45,	we	find	that	the	forward	bias	to	the	p-n	junction	can	break
the	 thermal	equilibrium.	 In	addition	 to	 the	bias,	 there	are	several	ways	 to	break	 the	 thermal
equilibrium	of	the	p-n	junction,	and	illumination	is	one	of	them.	When	the	semiconductor	is
illuminated,	both	minority	carrier	concentration	and	majority	carrier	concentration	increase
in	both	the	n-side	and	the	p-side.	Though	absolute	changes	of	the	carrier	concentration	are	the
same	for	majority	and	minority	carriers,	a	relative	change	is	much	more	significant	for	the
minority	carrier	in	the	neutral	region.	Hence,	in	contrast	to	the	dark	case,	the	drift	current	of
minority	carriers	in	the	illumination	case	becomes	much	larger	than	the	diffusion	current	of
the	majority	carriers	and	net	current	flows	through	the	depletion	layer.	In	other	words,	under
illumination,	the	drift	of	excess	holes	from	the	n-side	to	the	p-side	and	that	of	excess	electrons
from	 the	 p-side	 to	 the	 n-side	 overwhelm	 the	 diffusion	 of	majority	 carriers,	 leading	 to	 the



development	of	quasi-equilibrium.	That	is	schematically	explained	in	Figure	9.10.	In	an	open
circuit,	there	is	no	external	electric	current	between	the	p-side	and	the	n-side,	and	a	difference
of	quasi-Fermi	 energy	 levels	between	EFn	 of	 the	n-side	 and	EFp	 of	 the	 p-side	 is	maintained
under	continuous	photon	flux.	This	explains	why	the	open-circuit	voltage	(Voc)	is	developed
under	 illumination.	 As	 incident	 light	 intensity	 increases,	 more	 majority	 carriers	 are
accumulated	and	Voc	(=EFn,n-side	−	EFp,p-side)	gets	close	to	the	barrier	height	(VB)	at	the	junction
in	a	dark	condition.	If	Voc	reaches	VB,	Voc	 is	saturated.	Additionally,	photogenerated	carriers
are	consumed	through	recombination,	instead	of	being	used	to	increase	Voc.	Therefore,	at	a
steady	state,	Voc	between	two	terminals	of	the	p-n	junction	solar	cell	is	constant,	and	the	drift
current	passing	through	the	depletion	region	equals	the	rate	of	the	recombination	occurring
in	both	neutral	and	depletion	regions.

FIGURE	 9.13 A	 schematic	 on	 the	 transport	 and	 concentration	 profiles	 of	 an	 electron	 and	 a	 hole	 in	 a	 p-n	 junction	 under
forward	electric	bias.

If	 the	 n-side	 and	 the	 p-side	 are	 connected	 through	 an	 external	 circuit	 with	 zero	 electric
impedance	 (i.e.,	 a	 short-circuit	 state),	 accumulated	 electrons	 in	 the	 n-side	 flow	 toward
accumulated	holes	 in	 the	p-side	 to	make	 the	EFn	of	 the	n-side	equal	 to	 the	EFp	of	 the	p-side.
The	leveling	of	the	EFn	of	the	n-side	with	the	EFp	of	the	p-side	is	the	origin	of	the	short-circuit
current	through	an	external	circuit.	In	this	case,	the	drift	current	passing	through	the	depletion
region	is	equivalent	to	the	sum	of	minority	carrier	diffusion	currents	(Jtotal	=	Jn,p-side	+	Jp,n-
side)	 in	 the	neutral	 regions.	Here,	Jn,p-side	and	Jn,p-side	can	be	calculated	from	Equations	9.34,
9.40,	 and	 9.41.	 It	 is	 time	 to	 recall	 the	 photocurrent	 (IL)	 in	 Equation	 9.1	 and	 the	 equivalent
circuit	in	Figure	9.2.	According	to	Figure	9.2,	the	electric	current	of	the	solar	cell	consists	of
the	photocurrent	(IL)	and	the	forward	bias	direction	diode	current	(IF).	However,	since	there	is
no	voltage	drop	by	the	external	resistance	in	the	short-circuit	state	(see	Section	9.2.1),	we	can
think	that	no	forward	bias	is	applied,	and	IL	in	Equation	9.1	is	equivalent	to	the	short-circuit
current	(It	=	A	×	Jtotal	=	A	×	Jn,p-side	+	A	×	Jp,n-side).

Now,	 let	 assume	 that	 external	 impedance	 is	 connected	 to	 the	 solar	 cell.	 Then,	 electric
current	 flowing	 through	 the	 resistor	 causes	 the	potential	 drop	 across	 the	 resistor.	Since	 the



solar	cell	is	connected	to	the	impedance	in	parallel,	the	potential	drop	across	the	impedance
also	works	as	the	forward	bias	for	the	solar	cell	diode.	Then,	electric	current	flowing	through
the	solar	cell	diode	is	not	zero	anymore	and	is	called	the	forward	bias	current	(IF).	Notice	that
IL	 flows	 in	 the	 drift	 current	 direction	 of	 the	 depletion	 junction,	 which	 is	 opposite	 to	 the
forward	 bias	 current	 direction	 of	 the	 solar	 cell	 diode.	 Therefore,	 if	 we	 ignore	 the
photogeneration	 in	 the	depletion	 region	and	 the	drift	 current	 in	 the	neutral	 region,	 the	 total
current	density	(Jtotal)	of	the	solar	cell	is	the	difference	between	photocurrent	density	(JL)	and
the	forward	diode	current	(JF).	Jtotal	is	given	by:

where	R	is	the	resistance	of	the	external	impedance	connected	to	the	solar	cell.	Equation	9.46
shows	 that	 a	 large	 diffusion	 coefficient	 of	 the	 semiconductor	 is	 a	 necessary	 condition	 for
high	current	output.	If	the	semiconductor	has	a	small	diffusion	coefficient	(that	is,	a	problem
of	amorphous	silicon),	the	design	of	the	solar	cell	can	be	changed	from	the	p-n	junction	to	the
p-i-n	junction	by	inserting	an	intrinsic	layer	between	the	p-side	and	the	n-side.	In	this	case,	the
built-in	 potential	 is	 extended	 to	 the	 intrinsic	 layer	 and	 the	 depletion	 layer	 thickness	 is
comparable	to	the	diffusion	length	(L).	Then,	the	photogeneration	and	the	recombination	in	a
wider	depletion	region	become	more	important	and	both	JL	and	Jdark	in	Equation	9.46	need	to
be	modified.

9.4 FACTORS	LIMITING	POWER	CONVERSION	OF	P-N	JUNCTION-TYPE	SOLAR
CELLS

In	Section	9.3,	we	learned	about	detailed	mechanisms	of	the	power	conversion	process	such
as	 photogeneration,	 diffusion,	 recombination,	 drift,	 and	 the	 competition	 between	 diffusion
and	drift.	At	this	point,	we	will	ask	“What	is	the	power	conversion	efficiency	of	a	solar	cell?”
As	of	2015,	 the	best	power	conversion	efficiency	(PCE)	is	25.0%	for	a	single	crystalline	Si
solar	 cell	 and	 20.8%	 for	 a	 multicrystalline	 Si	 solar	 cell.	 If	 a	 solar	 cell	 is	 installed	 into	 a
module,	 the	 best	 efficiency	 decreases	 to	∼21%.	 The	 PCE	 of	 most	 commercial	 solar	 cell
modules	is	still	below	20%	after	40	years	of	research.	Note	that	the	theoretical	upper	limit	of
ηconv	 is	∼30%	 for	 the	 silicon	 solar	 cell.	This	means	 that	∼70%	of	 solar	 energy	 cannot	be
converted	to	electricity	even	in	the	best	scenario.	In	Section	9.4,	we	will	study	the	theoretical
limit	of	power	conversion	and	the	energy	loss	mechanism.

9.4.1 THEORETICAL	LIMIT	OF	PCE
In	the	solar	cell,	the	theoretical	limit	of	the	PCE	is	determined	by	the	band	gap	energy	(Eg)	of
the	semiconductor	because	of	two	factors.



The	 first	 limiting	 factor	 is	 that	 the	 semiconductor	 does	 not	 absorb	 all	 of	 the	 incoming
photons,	and	only	part	of	 the	 incoming	photons	are	converted	 to	electrons.	 If	 the	energy	of
incident	 photons	 (E	 =	 hv)	 is	 less	 than	Eg,	 these	 sub-bandgap	 photons	 do	 not	 produce	 any
electron–hole	 pairs.	 Incident	 photons	 transmit	 the	 semiconductor,	 and	 the	 incident	 solar
energy	 is	 not	 converted	 to	 electrical	 energy.	 Therefore,	 if	 the	 Eg	 of	 the	 semiconductor
comprising	 the	 solar	 cell	 becomes	 larger,	 the	 ratio	 of	 produced	 electron–hole	 pairs	 over
incident	 photons	 decreases	 the	 theoretical	 conversion	 efficiency	 (ηconv).	 Hence,	 we	 cannot
select	a	semiconductor	with	high	Eg	for	a	high-performance	solar	cell.

The	 second	 limiting	 factor	 is	 that	one	 supra-bandgap	photon	 (that	 is,	hv	 >	Eg)	 generates
only	one	electron–hole	pair	no	matter	how	large	an	amount	of	energy	a	photon	delivers	to	the
semiconductor.	Even	though	the	incident	photon	energy	(hv)	is	much	larger	than	Eg,	only	one
electron–hole	pair	 is	created,	and	 the	energy	difference	 (hν	–	Eg)	dissipates	as	heat.	This	 is
because	free	electrons	excited	by	light	(called	hot	electrons)	cannot	stay	in	the	middle	of	the
conduction	 band	 for	 a	 long	 time	 before	 producing	 another	 free	 electron	 at	 Ec	 (that	 is	 an
inverse	 process	 of	Auger	 recombination).	 In	 nature,	 hot	 electrons	 return	 to	 the	 conduction
band	 edge	 (Ec)	 very	 quickly	 by	 donating	 their	 surplus	 kinetic	 energy	 to	 lattice	 phonons
(Figure	9.11).	Phonon	 relaxation	of	hot	 electrons	by	phonons	 is	 the	 second	 reason	why	 the
PCE	of	the	solar	cell	is	lower	than	100%.	Since	surplus	energy	of	photons	(hν	–	Eg)	is	wasted
as	heat,	the	energy	loss	of	supra-bandgap	photons	is	called	a	thermalization	loss.	As	Eg	of	the
semiconductor	decreases,	the	thermalization	loss	of	hot	electrons	becomes	more	significant.
Hence,	a	semiconductor	with	low	Eg	cannot	be	chosen	for	a	high-performance	solar	cell.

Based	 on	 the	 balance	 of	 these	 two	 physical	 phenomena	 (i.e.,	 sub-bandgap	 photon
transmittance	 without	 being	 absorbed	 and	 kinetic	 energy	 loss	 of	 hot	 electrons	 as	 heat),
Shockley	and	Queisser	coined	the	concept	of	ultimate	efficiency	(UE).	In	calculating	UE,	it	is
also	 assumed	 that	 (i)	 all	 supra-bandgap	 photons	 are	 absorbed,	 (ii)	 the	 mobility	 of
photogenerated	carriers	is	infinitely	high	(in	other	words,	no	recombination,	leading	to	FF	=
1),	and	(iii)	the	Voc	of	the	solar	cell	is	the	same	as	the	Eg	of	the	semiconductor.

where	QS(Eg)	 is	a	density	of	photons	with	hv	>	Eg	on	 the	Earth’s	surface	(that	 is	 Isc	 for	UE
calculation)	and	PS	is	the	power	of	the	solar	irradiation	on	the	Earth’s	surface.	If	S(E)	 is	 the
density	of	photons	with	energy	E	on	the	Earth’s	surface,	QS(Eg)	and	PS	are	given	by



where	ν	is	a	frequency	of	photons	and	TS	 is	the	sun’s	temperature.	In	Equation	9.49,	 the	Sun
was	treated	as	a	black	body	and	a	number	of	emitted	photons	obeyed	Planck’s	distribution.	If
the	solar	irradiance	at	a	condition	of	air	mass	(AM)	1.5	is	used,	UE	in	Equation	9.47	can	be
plotted	as	follows:	The	largest	UE	in	Figure	9.14	is	∼44	%,	when	Eg	of	the	semiconductor	is
∼1.1	eV.	One	importance	of	UE	calculation	is	that	Planck’s	law	of	black	body	radiation	was
used	to	find	PS.	Before	Shockley	and	Queisser	took	a	thermodynamic	approach,	the	continuity
relation	of	photogenerated	carriers	was	used	to	estimate	the	theoretical	efficiency	of	the	solar
cell.

Although	 UE	 calculation	 based	 on	 the	 band	 gap	 loss	 provides	 reasonable	 theoretical
efficiencies,	it	misses	one	important	fact.	Excited	electrons	and	holes	can	directly	recombine
to	emit	photons,	and	partial	recombination	of	photogenerated	carriers	is	an	origin	of	quasi-
Fermi	 energy	 levels	 (refer	 to	 Figures	 8.29	 and	 9.10).	 From	 a	 thermodynamic	 standpoint,
recombination	 is	 understood	 as	 a	 process	 following	 the	 second	 law	 of	 thermodynamics,
which	predicts	heat	 loss	 (i.e.,	 increase	 in	entropy)	while	work	 is	extracted	 from	 the	 system.
Shockley	 and	 Queisser	 considered	 the	 radiative	 recombination	 effect	 and	 calculated	 the
theoretical	 efficiency	 of	 solar	 cells	 (Equation	 9.50).	 Since	 more	 realistic	 boundaries	 were
added,	the	model	for	Equation	9.50	is	called	Shockley	and	Queisser ’s	detailed	balance	model
(SQ-DB	model).

where	 	 (TS:	 sun’s	 temperature),	 	 (TC:	Earth’s	 temperature),	 and	 f	 is	 a	 factor

accounting	for	the	geometric	effect	of	solar	irradiance	and	carrier	recombination.	In	addition,
u(xg)	shows	energy	gap	losses	(which	are	used	for	UE	calculation);	v(xg,	xc,	f)	is	a	ratio	of	the
operational	voltage	to	the	energy	gap	(which	gives	the	output	voltage	of	the	solar	cell);	m(xg,
xc,	f)	is	the	impedance	matching	factor;	and	ts	is	the	probability	of	radiative	recombination	of
an	 electron–hole	 pair.	 Elaborate	 calculation	 of	 SQ-DB	 is	 out	 of	 the	 range	 of	 this	 book;
however,	it	is	worthwhile	to	find	the	meaning	of	each	term	in	Equation	9.50.	In	u(xg),	we	take
into	account	the	energy	loss	of	supra-bandgap	photons	(E	>	hν)	and	the	transmittance	of	sub-
bandgap	photons	(E	<	hν),	which	results	in	UE	of	the	solar	cell.	m(xg,	xc,	f)	 is	controlled	by
the	resistance	of	 the	external	 load	and	the	I–V	characteristics	of	 the	solar	cell	 (see	Example
9.3);	m(xg,	xc,	f)	can	be	assumed	to	be	1	for	estimating	the	theoretical	efficiency	of	the	solar
cell.	New	concepts	that	ask	for	our	attention	are	f,	v(xg,	xc,	f),	and	ts.



FIGURE	9.14 Ultimate	efficiency	of	the	solar	cell	as	a	function	of	semiconductor	band	gap	(Eg).

Let	us	take	a	look	at	these	concepts	qualitatively.	Note	that	f,	v(xg,	xc,	and	ts	are	 related	 to
the	evolution	of	quasi-equilibrium.	In	Equation	9.47,	UE	is	calculated	as	a	product	of	the	band
gap	and	the	absorbed	photon	density.	Assumptions	rationalizing	Equation	9.47	are	that	(i)	the
Voc	 of	 the	 solar	 cell	 is	 the	 same	 as	 the	 band	 gap	 and	 (ii)	 all	 of	 the	 absorbed	 photons	 are
converted	 to	 photogenerated	 carriers	 that	 are	 collected	 by	 the	 terminals	 of	 the	 solar	 cell.
Though	 they	 are	qualitatively	 reasonable,	UE	calculations	overestimate	 the	 efficiency	 limit.
This	 overestimate	 is	 due	 to	 the	 recombination	 of	 photogenerated	 electron–hole	 pairs.	 As
shown	 in	 Section	 9.3.1,	 photogeneration	 balances	 with	 recombination	 to	 achieve	 a	 quasi-
equilibrium	 state.	 Consequently,	 (i)	 not	 all	 of	 the	 absorbed	 photons	 are	 converted	 to
electricity,	and	(ii)	the	difference	between	the	EFn	of	the	n-side	and	the	EFp	of	the	p-side	is	the
maximum	output	voltage	that	can	be	extracted	from	the	system	(refer	to	Section	9.3.2.3).	This
means	that	Isc	and	Voc	should	be	recalculated	to	obtain	a	more	reliable	theoretical	efficiency
limit.

In	the	SQ-DB	model,	entropy	in	the	second	law	of	thermodynamics	was	used	to	calculate
the	minimum	recombination	rate	of	photogenerated	carriers.	Here,	the	sun	and	a	solar	cell	on
the	Earth’s	 surface	are	considered	as	black	bodies	at	 the	 temperatures	5800	K	and	∼300	K.
respectively.	 Based	 on	 this	 scheme	 of	 black	 bodies,	we	 can	 estimate	 the	minimum	 entropy
increase	 in	 the	 environment	 (i.e.,	 the	 minimum	 electron–hole	 recombination	 by	 radiative
recombination)	 and	 the	 maximum	 work	 that	 the	 system	 can	 pull	 out	 (i.e.,	 the	 maximum
electricity	production	by	solar	cell).	In	the	SQ-DB	model,	it	is	assumed	that	the	recombination
of	electron–hole	pairs	produces	only	photons.	Once	we	know	the	amount	of	the	recombined
electron–hole	pairs,	we	can	find	a	new	theoretical	Isc	 from	the	difference	between	absorbed
photon	numbers	and	recombined	electron–hole	pairs.

Recombination	is	also	important	in	calculating	Voc	because	the	recombination	controls	EFn
and	EFp.	Notice	 that	 a	higher	 recombination	 rate	decreases	Voc	 (=	EFn,	 n-side	 −	EFp,	 p-side)	 by
decreasing	the	carrier	density	at	the	quasi-equilibrium.	So	far,	it	has	explained	why	and	ts	are



required	 to	precisely	 estimate	 the	 theoretical	 efficiency	of	 a	 solar	 cell.	The	 last	 thing	 to	be
mentioned	 about	 the	 SQ-DB	model	 is	 the	 geometric	 factor	 (f),	 which	 allows	 us	 to	 correct
solar	 irradiance.	Note	 that	Voc	 (EFn,	 n-side	 −	EFp,	 p-side)	 is	 not	 constant.	As	 the	 incident	 light
intensity	increases,	Fermi	energy	levels	get	close	to	Ec	and	Ev,	and	Voc	(EFn,	n-side	−	EFp,	p-side)
also	 increases.	 This	 means	 that	 light	 intensity	 matters	 in	 accurately	 calculating	 theoretical
efficiency.	 Further	 details	 on	 the	 light	 intensity	 effect	 appear	 in	 Section	9.2.	 Since	 the	 light
incident	direction	is	not	normal	to	the	surface	of	the	Earth,	the	incident	light	spreads	out	on
the	 solar	 cell,	 and	 the	 light	 intensity	 on	 the	 solar	 cell	 surface	 is	 not	 the	 same	 as	 the	 light
intensity	 in	 extraterrestrial	 space.	 As	 the	 light	 incident	 angle	 deviates	 from	 a	 normal
geometry,	light	intensity	on	the	solar	cell	decreases	and,	thus,	the	theoretical	PCE	decreases.
This	explains	why	the	geometric	factor	(f)	is	added	in	calculating	which	determines	the	ratio
of	the	operational	voltage	to	the	energy	gap.	A	schematic	in	Figure	9.15	shows	the	geometric
effect	of	incident	angle	on	solar	light	intensity.

Figure	9.16	shows	the	theoretical	efficiency	of	a	semiconductor	solar	cell	as	a	function	of
semiconductor	 band	 gap	 (Eg)	 from	 the	 SQ-DB	 model.	 A	 relation	 between	 theoretical
efficiency	and	band	gap	from	the	SQ-DB	model	exhibits	a	parabolic	curve	that	looks	similar
to	 the	 UE	 curve	 in	 Figure	 9.14.	 However,	 in	 Figure	 9.15,	 we	 find	 that	 the	 highest	 energy
conversion	efficiency	(ηconv)	of	the	solar	cell	is	∼34%	and	an	optimum	band	gap	is	∼1.3	V.
The	theoretical	efficiency	is	smaller	than	the	UE	because	a	part	of	the	absorbed	photons	are
reemitted	due	to	the	radiative	recombination	(i.e.,	decrease	in	Isc).	An	increase	in	the	optimum
band	gap	in	the	SE-DB	model	is	due	to	the	fact	that	the	open-circuit	voltage	is	the	quasi-Fermi
energy	level	difference	instead	of	the	semiconductor	band	gap,	which	also	reduces	Voc.	If	the
band	gap	 is	 the	only	 criterion	of	material	 selection	 for	 the	 solar	 cell,	GaAs	 (Eg∼1.4	V)	 is
better	than	silicon	(Eg∼1.1	V).	In	fact,	as	of	2015,	the	best	PCE	of	a	single	crystalline	GaAs
solar	cell	was	∼27.5%,	which	is	higher	than	that	of	a	Si	solar	cell.	However,	GaAs	is	more
expensive	 than	 silicon	 and	 thus	 is	 used	 mainly	 in	 specialized	 applications	 such	 as
extraterrestrial	usage.

FIGURE	9.15 A	schematic	explaining	the	geometric	effect	on	the	intensity	of	the	light	illuminating	a	solar	cell	that	is	placed
on	the	surface	of	the	Earth.



FIGURE	 9.16 The	 theoretical	 efficiency	 of	 a	 semiconductor	 solar	 cell	 as	 a	 function	 of	 semiconductor	 band	 gap	 (Eg)
calculated	from	Shockley	and	Queisser’s	detailed	balance	model.

9.4.2 ADDITIONAL	POWER	LOSS	MECHANISMS	IN	REAL	P-N	JUNCTION-TYPE	SOLAR
CELLS

In	 Section	 9.4.1,	 we	 learned	 the	 theoretical	 PCE	 of	 a	 solar	 cell	 as	 a	 function	 of	 the
semiconductor	band	gap.	However,	as	we	know,	the	PCE	of	real	solar	cells	is	smaller	than	the
theoretical	 efficiency.	 In	 this	 section,	 we	 will	 study	 factors	 (reflectance	 loss,	 surface/bulk
recombination	 loss,	 junction/contact	 voltage	 loss,	 shunt/series	 resistance,	 impedance
mismatch)	that	are	responsible	for	the	difference	between	ideal	and	real	solar	cells.

Reflectance	at	the	surface	of	the	solar	cell	is	the	first	factor	explaining	why	the	power	PCE
is	lowered	in	the	real	solar	cell.	In	the	ideal	solar	cell,	the	surface	reflectance	is	assumed	to	be
zero.	However,	as	shown	in	Equation	9.55,	a	change	in	the	refractive	index	(n)	at	the	interface
causes	part	of	the	incident	light	to	be	reflected;	n	of	silicon	ranges	from	3.5	to	3.9	in	an	IR	and

red	light	regime,	while	n	of	air	is	∼1.	Then,	according	to	Equation	9.55,	 ,

∼33%	of	 the	 incident	power	 is	 reflected	at	 the	air–silicon	 interface,	which,	 in	 turn,	 reduces
the	PCE	of	 the	 solar	 cell	 by	∼33%.	 In	 addition	 to	 the	 air–semiconductor	 interface,	 a	metal
electrode	 in	 the	 front	 surface	 is	 partially	 responsible	 for	 the	 reflectance	 loss.	 Since	 light
cannot	transmit	through	the	metal	electrode,	photons’	incident	upon	the	metal	electrode	cannot
be	 converted	 to	 electron–hole	 pairs,	 and	 the	 reflectance	 loss	 by	 the	 metal	 electrode	 is
proportional	to	the	areal	coverage	of	the	top	metal	electrode.	To	suppress	the	reflectance	loss,
the	refractive	index	of	the	silicon	surface	is	modified	by	coating	an	antireflection	film	or	by
creating	 a	 texture	 with	 a	 sub-micron	 feature	 size	 or	 reducing	 the	 top	 electrode	 area	 (or	 a
combination	thereof).	Details	of	antireflection	techniques	will	be	discussed	in	Section	9.5.

The	second	loss	mechanism	is	recombination	loss	(also	called	collection	loss).	In	addition
to	 the	 direct	 recombination	 that	 is	 thermodynamically	 handled	 in	 the	 SQ-DB	 model,	 the
nonradiative	 recombination	 of	 photogenerated	 carriers	 can	 occur	 at	 the	 surface	 (surface
recombination),	semiconductor–semiconductor	interface,	semiconductor–metal	interface,	and



at	 the	 internal	 structural	 defects	 of	 the	 bulk	 (bulk	 recombination).	 In	 general,	 surface
recombination	is	more	significant	than	bulk	recombination.	This	nonradiative	recombination
depends	 on	 the	 crystalline	 quality,	 the	 doping	 concentration,	 and	 on	 the	 internal	 potential
profile,	 which	 significantly	 influence	 minority	 carrier	 diffusion	 length	 (or	 lifetime).	 To
prevent	 the	bulk	 recombination,	 electron–hole	pairs	must	be	produced	within	one	diffusion
length	 from	 the	 depletion	 region.	 If	 not,	 the	 bulk	 recombination	 loss	 becomes	 high.	 In
recombination	 at	 unpassivated	 surfaces,	 the	 distance	 between	 the	 surface	 and	 the	 junction
matters.	 As	 the	 carrier	 generation	 location	 gets	 closer	 to	 the	 surface,	 the	 probability	 of
surface	 recombination	 exponentially	 increases.	 Note	 that	 the	 front	 surface	 and	 the	 back
surface	of	the	solar	cell	have	a	different	recombination	probability	for	photons	with	different
energy.	Since	the	absorption	coefficient	of	silicon	is	larger	for	blue	light	than	for	red	light,
blue	 light	 is	 absorbed	more	near	 the	 front	 surface	 and	 red	 light	 is	 absorbed	more	near	 the
back	surface.	Consequently,	electron–hole	pairs	from	blue	light	mainly	recombine	at	the	front
surface,	 while	 the	 back	 surface	 suppresses	 the	 collection	 of	 electron–hole	 pairs	 produced
from	 red	 light.	Recombination	 loss	 results	 in	 a	decrease	 in	both	current	 and	voltage	of	 the
solar	cell.	The	effect	of	 the	surface	 recombination	on	electric	current	 is	 shown	 in	 the	 IPCE
curve	 of	 Figure	 9.8.	 Current	 loss	 is	 pronounced	 in	 the	 blue	 region	 for	 the	 front	 surface
recombination	 and	 in	 the	 red	 region	 for	 the	 back	 surface	 recombination.	 In	 addition,	 the
recombination	decreases	the	quasi-Fermi	energy	levels,	thus	there	is	a	loss	of	output	voltage.
To	reduce	the	recombination	of	majority	carriers,	the	defects	on	the	surface	are	passivated	or
the	 semiconductor	 is	 heavily	 doped	 with	 impurities	 to	 lower	 the	 minority	 carrier
concentration.	These	will	be	also	discussed	in	Section	9.5.

The	third	factor	related	to	the	decrease	in	the	efficiency	is	the	large	series	resistance	(RS)
of	the	solar	cell,	which	includes	metal	electrode	resistance,	semiconductor	resistance,	and	the
contact	 resistance	 at	 semiconductor–semiconductor	 interface	or	 at	 the	 semiconductor–metal
interface.	The	main	 impact	of	a	high	series	 resistance	on	 the	 solar	cell	 is	 a	decrease	 in	 fill
factor	 (FF)	 because	 a	 voltage	 drop	 occurring	 at	 the	 series	 resistance	makes	 the	 solar	 cell
deviate	from	the	ideal	diode.	A	change	in	I–V	characteristics	of	the	solar	cell	by	adding	RS	is
given	by

where	 I	 is	 output	 current	 and	V	 is	 voltage	 applied	 between	 two	 terminals	 of	 the	 solar	 cell.
Equation	9.51	shows	that	the	voltage	drop	at	RS	quickly	decreases	output	current	of	the	solar
cell	(I)	near	Voc,	leading	to	reduced	FF.	We	also	find	that	the	effect	of	RS	(i.e.,	decrease	in	FF)
becomes	more	 pronounced	 at	 a	 high	 output	 current	 (or	 a	 large	 light	 intensity).	 If	 a	 series
resistance	 is	 as	 low	 as	 several	Ω,	Voc	 and	 Isc	 do	 not	 change	 and	 FFS	 (FF	 of	 the	 solar	 cell
having	the	series	resistance)	are	expressed	as

If	the	series	resistance	is	too	large,	Isc	can	also	decrease.	An	equivalent	circuit	of	RS	and
I–V	curves	of	the	solar	cell,	including	RS,	is	schematically	explained	in	Figure	9.2.	Variation



of	RS	of	 the	solar	cell	heavily	depends	on	 the	 top	metal	electrode	 resistance	and	 the	metal–
semiconductor	 contact	 resistance.	 Since	 solar	 light	 is	 incident	 from	 the	 front	 surface,	 a
reflective	metal	electrode	cannot	cover	the	full	surface	area.	About	10%	of	the	front	surface	is
a	covered	Ag	electrode	with	a	hierarchical	structure	of	bus	bars	and	fingers.	As	the	surface
coverage	by	the	metal	electrode	increases,	the	series	resistance	of	the	solar	cell	decreases,	but
the	 photon	 absorption	 also	 decreases	 due	 to	 surface	 reflectance.	 Therefore,	 there	 is	 an
optimum	design	of	the	top	electrode	that	keeps	both	series	resistance	and	surface	reflectance
low.	The	contact	resistance	is	also	an	important	source	of	series	resistance.	Work	functions	of
the	metal	and	the	semiconductor	are	different,	and	a	Schottky	barrier	is	easily	formed	at	the
interface.	Too	much	doping	of	impurities	near	the	surface	of	the	semiconductor	decreases	the
contact	resistance;	however,	this,	in	turn,	reduces	the	collection	efficiency	of	carriers	that	are
photogenerated	 in	 the	 heavily	 doped	 region.	 This	 is	 because	 the	 doping	 concentration
approaches	a	solubility	limit	of	the	dopant	and	precipitates	are	formed.	The	precipitates	work
as	 a	 recombination	center	 and	 significantly	decrease	 the	minority	 carrier ’s	 lifetime.	Hence,
the	region	with	precipitates	is	a	so-called	dead	layer	from	the	viewpoint	of	minority	carriers.

The	 fourth	 factor	 related	 to	 a	 decrease	 in	 the	 efficiency	 is	 small	 shunt	 resistance	 (RSH),
which	 is	 connected	 to	 the	 external	 load	 in	 parallel	 to	 an	 equivalent	 circuit.	To	 improve	 the
performance	of	solar	cells,	RSH	in	the	equivalent	circuit	of	Figure	9.2	must	be	high	so	that	no
charge	carriers	go	through	RSH.	Low	RSH	provides	a	bypath	for	photogenerated	carriers	and
is	a	source	of	leakage	current,	which	reduces	the	short	current.	When	current	passes	through
an	edge	or	manufacturing	defects	of	the	bulk	solar	cell	(or	both),	RSH	decreases.	In	thin	film
solar	 cells,	 pinholes	 mostly	 are	 a	 source	 of	 low	 RSH.	 In	 bulk	 solar	 cells,	 electric	 current
passing	 through	 the	 edge	of	 the	devices	 easily	decreases	RSH.	 In	 an	 ideal	 solar	 cell,	RSH	 is
assumed	to	be	 infinitely	 large	and	leakage	current	 is	zero.	I–V	curves	of	 the	solar	cell	with
reasonably	small	RSH	are	given	by

where	 I	 is	 output	 current	 and	V	 is	 voltage	 applied	 between	 two	 terminals	 of	 the	 solar	 cell.
Equation	9.53	shows	that	an	obvious	effect	of	RSH	is	to	decrease	output	current	as	voltage	is
applied	to	the	solar	cell.	We	also	find	in	Equation	9.53	that	RSH	decreases	FF	because	current
going	through	RSH	does	not	contribute	to	the	diode	behavior	of	the	solar	cell.	The	effect	of
RSH	becomes	important	at	low	current	conditions	(i.e.,	small	light	intensity).

Changes	 in	 the	 I–V	 curve	 of	 solar	 cells	 by	 large	 RS	 and	 small	 RSH	 are	 schematically
illustrated	in	Figure	9.17.

9.4.3 FACTORS	INFLUENCING	SOLAR	CELL	OPERATION

In	Sections	9.4.1	and	9.4.2,	we	 learned	how	the	efficiency	of	 the	solar	cell	 is	determined	by
intrinsic	material	 properties	 (e.g.,	 band	 gap,	 refractive	 index)	 and	 extrinsic	 variables	 (e.g.,
carrier	recombination	time,	manufacturing	defects).	In	this	section,	we	will	study	the	effect	of



environment	 (e.g.,	 external	 load,	 temperature,	 light	 intensity,	 light	 incident	 angle)	 on	 the
performance	of	the	solar	cell.

The	first	external	factor	to	consider	for	solar	cell	operation	is	the	external	impedance	that
pulls	out	the	power	from	the	solar	cell.	As	we	learned	in	Section	9.1,	real	output	voltage	and
current	of	 the	solar	cell	 connected	 to	 the	external	 load	are	 smaller	 than	Voc	and	 Isc	 and	 are
controlled	 by	 the	 impedance	 of	 the	 external	 load	 as	 well	 as	 by	 incident	 light	 intensity.	 An
increase	in	the	external	impedance	increases	output	voltage	but	decreases	output	current	of	the
solar	 cell.	Notice	 that	 there	 is	 an	optimal	voltage	 (Vm)	 and	current	 (Im)	 at	which	 the	 output
power	of	the	solar	cell	 is	maximized	(see	Example	9.2).	 If	 the	external	 impedance	 is	higher
than	the	optimum	value,	the	output	power	of	the	solar	cell	decreases	due	to	low	output	current.
If	 the	external	 impedance	 is	 lower	 than	 the	optimum	value,	a	decrease	 in	 the	output	voltage
decreases	the	output	power	of	 the	solar	cell.	The	resistance	maximizing	the	output	power	is

called	characteristic	 resistance	 (RCH),	which	 is	 a	 ratio	 of	 .	Note	 that	RCH	 is	 not	 constant

even	in	the	same	solar	cell	because	I–V	characteristics	of	the	solar	cell	change	as	a	function	of
light	intensity,	temperature,	and	light	incident	angle.	Therefore,	a	variable	resistor	is	located
amid	the	solar	cell,	the	invertor,	and	the	battery,	and	logic	and	control	circuits	are	utilized	to
match	the	resistance	of	the	variable	resistor	with	RCH	at	different	operating	conditions.	This
method	 is	called	maximum	power	point	 tracking	 technology	(MPTT)	and	will	be	discussed
further	in	the	section	on	solar	cell	modules.

FIGURE	9.17 Schematic	illustrations	on	the	effects	of	large	RS	and	small	RSH	on	changes	in	the	I–V	curve	of	solar	cells.

Temperature	 is	 the	second	external	factor	affecting	solar	cell	performance.	The	effect	of
temperature	on	a	solar	cell	is	twofold.	One	is	a	change	in	the	forward	bias	current	of	the	solar
cell	diode	and	the	other	is	a	change	in	the	band	gap	(Eg)	of	the	semiconductor.	An	increase	in
the	forward	bias	current	at	a	higher	temperature	is	due	to	an	increase	in	the	intrinsic	carrier

concentration	(ni)	of	 the	semiconductor.	As	shown	in	an	equation	of	 ,	 an

increase	 in	 temperature	 increases	ni,	 raises	 the	 equilibrium	minority	 carrier	 concentration	
	 in	 the	neutral	 regions,	and	decreases	 the	built-in	potential	 (Vbi)	 at	 the



depletion	region.	By	increasing	temperature,	a	series	of	changes	enhances	the	diffusion	flow
of	the	carriers	at	the	junction	(i.e.,	a	forward	bias	current	of	the	solar	cell	diode),	leading	to	a
decrease	in	output	voltage,	output	current,	Voc,	and	an	upper	limit	of	Voc	(i.e.,	Vbi)	of	the	solar
cell	 (see	 Equations	 9.42	 and	 9.43).	 The	 dependence	 of	 Voc	 on	 temperature	 is	 rewritten	 in
Equation	9.54.	In	a	silicon	solar	cell,	for	example,	the	reduction	rate	of	Voc	is	∼	0.4	%/oC.

In	contrast	 to	a	change	 in	ni,	an	 increase	 in	 the	 temperature	 reduces	Eg	 and	 increases	 the
PCE	of	the	solar	cell.	As	temperature	increases,	the	number	of	photons	that	can	be	absorbed
(hν	>	Eg)	increases	and,	thus,	Isc	also	increases.	In	real	solar	cells,	the	effect	of	ni	dominates
that	of	Eg	and	an	increase	in	temperature	deteriorates	the	PCE	by	reducing	the	output	voltage
of	the	device.

Example	9.5: Change	in	Open-Circuit	Voltage	as	a	Function	of	Temperature

As	 temperature	 increases,	 the	 open-circuit	 voltage	 (Voc)	 of	 the	 solar	 cells	 decreases.	 In	 addition,	 different
semiconductors	comprising	the	solar	cell	show	different	dependence	of	Voc	on	the	temperature.	What	is	the	relation
between	Voc	and	 temperature	 in	Si	 solar	 cells	 and	GaAs	 solar	 cells?	Assume	 that	 the	Voc	of	Si	 solar	 cells	 and
GaAs	solar	cells	is	0.55	V	and	0.9	V,	respectively.

Solution
The	Voc	of	the	solar	cell	is	shown	in	Equations	9.12	and	9.13.

Note	 that	 	 is	 related	 to	 the	 band	 gap	 (Eg),	 due	 to	

.

Then,	 	in	Equation	9.55	can	be	obtained	as	follows:

	 is	 –3	 ×	 10−4	 eV/K	 in	 Si	 and	 −4	 ×	 10−4	 eV/K	 in	 GaAs.	 Therefore,	 	 is	 mainly	 determined	 by	

.

∵	 	(Si),	−1.7	mV/K	(GaAs)

This	indicates	that	temperature	increased	by	one	degree	decreases	Voc	by	2∼4%.

The	third	external	factor	to	consider	is	a	change	in	light	intensity,	which	varies	over	time
of	 the	 day	 and	 location	 of	 the	 solar	 cell.	 Increasing	 light	 intensity	 increases	 the
photogeneration	rate	(gop)	due	to	a	higher	 incident	photon	density,	 leading	to	an	increase	in
photocurrent	(IL).	Note	that	higher	IL	itself	only	increases	the	output	power	of	the	solar	cell.



Since	 there	 is	 a	 linear	 correlation	 between	 Jsc	 and	 light	 intensity	 (in	 other	words,	 incident
power),	increasing	IL	does	not	change	the	theoretical	PCE	of	the	solar	cell.	In	addition	to	IL,
an	increase	in	gop	at	a	higher	light	intensity	pushes	EFn	and	EFp	toward	Ec	and	Ev	and	increases

Voc	 (see	Equations	9.9,	9.10,	and	9.29).	A	 logarithmic	 increase	 in	 	with	 the

light	intensity,	in	turn,	improves	the	theoretical	PCE	of	the	solar	cell.
Overall	 performance	 of	 the	 solar	 cell	 is	 improved	 under	 higher	 light	 intensity.	 This

explains	why	a	concentrator	has	been	used	to	improve	the	performance	of	the	solar	cell.	The
role	 of	 the	 concentrator	 is	 to	 focus	 solar	 light	 by	 an	 optical	 element	 such	 as	 a	 parabolic
mirror	and	increase	the	output	power	and	efficiency	of	the	solar	cell.	A	concentration	factor,
X,	 represents	 an	 increase	 in	 the	 photon	 flux	 density	 by	 the	 concentrator.	 A	 concentration
factor	of	10	means	that	the	solar	cell	produces	power	from	concentrated	light	whose	intensity
is	10	times	larger	than	that	of	unconcentrated	light.	However,	if	the	light	intensity	is	above	a
critical	 number,	 the	 electron–hole	 recombination	 probability	 increases,	 which,	 in	 turn,
reduces	Voc	 and	FF.	The	 recombination	 rate	 is	proportional	 to	 the	carrier	 concentration	 (n)
for	 trapping-assisted	 recombination,	 n2	 for	 radiative	 recombination	 (direct	 electron–hole
recombination),	 and	 n3	 for	 Auger	 recombination.	 As	 the	 photogenerated	 carrier	 density	 is
increased,	 the	 radiative	 recombination	 rate	 and	 Auger	 recombination	 rate	 increase
dramatically.	 When	 all	 effects	 noted	 here	 are	 considered,	 the	 curve	 of	 efficiency	 versus
concentrated	 light	 intensity	 in	Figure	9.18	 is	obtained.	As	 the	 light	 intensity	becomes	 larger
than	the	critical	value,	a	decrease	in	Voc	and	FF	offsets	an	increase	in	Isc,	and	the	PCE	of	the
solar	cell	is	lowered.

FIGURE	9.18 Effect	of	concentrated	light	intensity	on	the	efficiency	of	a	solar	cell	at	a	fixed	temperature	(in	other	words,
solar	irradiance	does	not	increase	temperature).

In	 addition	 to	 changing	 Isc	 and	 Voc,	 the	 light	 intensity	 also	 affects	 the	 relative	 role	 of
parasitic	 resistances	 (e.g.,	 shunt	 resistance	 and	 series	 resistance).	Let	us	 assume	 that	 a	 solar
cell	possesses	both	series	resistance	(RS)	and	shunt	resistance	(RSH).	RSH	is	more	important	at



a	 low	 light	 intensity.	An	 increase	 in	 the	 light	 intensity	 rebounds	 to	 the	 existence	 of	RS	 and
decreases	FF	of	the	solar	cell.

As	we	learned	in	SQ-DB	for	theoretical	PCE	calculation,	the	light	incident	angle	is	also	an
important	 external	 factor	 on	which	 the	 PCE	of	 the	 solar	 cell	 depends.	 If	 the	 surface	 of	 the
solar	 cell	 has	 a	 normal	 to	 light	 incident	 direction,	 the	 illuminated	 area	 on	 the	 solar	 cell	 is
minimized	(i.e.,	the	light	intensity	is	maximized)	and	the	PCE	of	the	solar	cell	is	the	highest.
When	an	angle	between	the	solar	cell	surface	and	the	incident	direction	deviates	from	90°,	the
solar	 cell	 starts	 decreasing	 and	 the	 best	 power	 conversion	 performance	 is	 not	 achieved.
Therefore,	 a	 solar	 cell	 on	 the	 Earth’s	 surface	 must	 be	 tilted	 to	 maximize	 average	 light
intensity	and	power	output.	An	ideal	tilting	angle	for	maximum	PCE	is	related	to	latitude.	As
latitude	 decreases	 (in	 other	 words,	 as	 you	 get	 closer	 to	 the	 Equator),	 the	 angle	 between
incident	 solar	 light	 and	 the	 Earth‘s	 surface	 increases	 and	 becomes	 close	 to	 90o.	 For	 this
reason,	a	solar	cell	installed	in	the	region	of	the	Equator	does	not	need	to	be	tilted	from	the
horizontal	ground	plane.	A	good	rule	of	thumb	for	the	best	performance	is	that	the	solar	cell
panel	should	be	tilted	toward	the	south	in	the	northern	hemisphere	(and	north	in	the	southern
hemisphere),	and	the	tilting	angle	between	the	solar	cell	panel	and	the	horizontal	ground	plane
should	equal	the	latitude	of	the	installation	location.

9.5 DESIGN	OF	HIGH-PERFORMANCE	 P-N	 JUNCTION-TYPE	 SEMICONDUCTOR
SOLAR	CELLS

Difficulties	in	achieving	the	PCE	of	the	solar	cell	close	to	the	theoretical	limit	are	due	to	poor
light	absorption	and	recombination	of	photogenerated	carriers	at	the	surface	and	in	the	bulk.
There	 are	 two	 reasons	 for	 poor	 low	 light	 absorption.	 One	 is	 that	 light	 reflectance	 at	 the
silicon	surface	 is	high.	Most	semiconductors	have	a	high	refractive	 index	(usually	n	 >	 3.0).

Given	that	the	reflectance	of	light	entering	from	air	(or	free	space)	is	 ,	more	than

30%	 of	 incident	 light	 power	 is	 reflected	 at	 the	 surface	 of	 Si	 and	 GaAs	 wafers.	 The	 other
reason	 for	 low	absorption	 is	 that	 silicon	has	 an	 indirect	band	gap,	 and	 the	 light	 absorption
coefficient	of	silicon	is	low.	This	problem	becomes	more	serious	for	red	and	infrared	light
photon	energy,	which	 is	 slightly	higher	 than	 the	band	gap	energy.	The	 low	 light	absorption
coefficient	of	silicon	requires	a	few	100-nm-thick	wafers	for	complete	harvesting	of	the	solar
spectrum.	An	unavoidable	side	effect	of	the	thick	wafer	for	full	solar	spectrum	absorption	is
that	more	carriers	recombine	during	its	travel	toward	the	depletion	region.

9.5.1 LIGHT	MANAGEMENT	FOR	IMPROVED	LIGHT	ABSORPTION

The	 first	 way	 to	 manage	 light	 effectively	 in	 the	 solar	 cell	 is	 to	 put	 together	 multiple
semiconductors	with	different	band	gaps.	The	Shockley–Queisser	 (SQ)	 limit	 shows	 that	 the
maximum	PCE	 of	 single	 junction	 Si	 solar	 cells	 is	 about	 31%	 due	 to	 transmittance	 of	 sub-
bandgap	 photons	 and	 hot	 electron	 energy	 loss	 of	 supra-bandgap	 photons.	 This	 problem	 is
universal	 for	 all	 types	of	 solar	 cells,	 though	detailed	balance	 conditions	 are	different	 from
one	to	another.	The	theoretical	PCE	of	the	solar	cells	can	be	increased	if	the	single	junction
structure	 is	 substituted	with	 the	multiple	 junction	 structure.	To	push	 the	SQ	 limit	 upward,	 a



tandem	structure	that	uses	two	different	band	gap	materials	has	been	proposed.	In	the	tandem
structure,	 the	 lower	band	gap	semiconductor	can	absorb	small	energy	photons	 that	 transmit
the	higher	band	gap	semiconductor.	In	addition,	the	higher	band	gap	semiconductor	reduces
the	energy	loss	of	hot	electron	because	the	difference	between	the	excited	energy	state	of	hot
electrons	and	the	conduction	band	edge	(EC)	decreases.	Since	the	absorption	coefficient	of	the
semiconductor	mostly	is	larger	for	short	wavelength	light	than	for	longer	wavelength	light,
the	semiconductor	with	the	smaller	band	gap	is	placed	close	to	the	front	surface	of	the	solar
cell.	 In	other	words,	 incident	 light	 hits	 the	 smaller	 band	gap	 semiconductor	 first.	When	 the
band	gaps	are	around	1.5	to	1.7	eV	for	the	top	cell	and	0.8	to	0.9	eV	for	the	bottom	cell	in	a
series-connected	double-junction	device,	 the	PCE	 limit	 can	be	extended	more	 than	45%.	As
the	number	of	the	semiconductor	layer	increases,	the	theoretical	PCE	increases.	As	of	2015,
the	best	PCE	of	the	multijunction	solar	cell	obtained	with	a	laboratory	scale	is	46%,	using	the
four	 junction	 structure	of	GaInP/GaAs/GaInPAs/GaInAs.	 It	 is	noted	 that	 such	a	high	PCE	 is
obtained	 under	 concentrated	 solar	 light	 (297×).	 Since	 a	 multijunction	 solar	 cell	 is	 more
expensive	 than	 a	 Si	 solar	 cell,	 the	 multijunction	 solar	 cell	 normally	 is	 operated	 under
concentrated	solar	 light.	 In	 the	design	of	 the	multijunction	solar	cell,	we	must	be	careful	 to
match	electric	current	that	is	produced	from	each	semiconductor	layer.	If	each	layer	generates
very	 different	 electric	 current	 under	 light,	 carrier	 recombination	 becomes	 serious	 at	 the
junction	between	light	absorbing	semiconductors.	Figure	9.19	shows	a	schematic	illustration
and	an	I–V	curve	of	the	multijunction	solar	cell.

FIGURE	9.19 Schematic	 illustration	of	 the	multijunction	solar	cell	 (a)	and	a	summary	of	 its	 I–V	 characteristics	 (b).	 (From
Dimorth,	F.,	et	al.,	Prog.	Photovolt:	Res.	Appl.,	22,	277–282,	2014.	With	Permission.)



Surface	texturing,	antireflective	coating,	and	front	contact	size	reduction	(i.e.,	redesign	of
the	metal	electrode	on	the	front	surface)	are	the	most	representative	ways	to	enhance	the	light
absorption	of	silicon	wafers.	All	of	them	suppress	reflectance	at	the	front	surface	of	silicon,
due	 to	 the	 refractive	 index	 mismatch,	 and	 they	 increase	 the	 density	 of	 photons	 that	 enter
silicon.	 In	 addition	 to	 lowering	 reflectance,	 the	 surface	 texturing	 compensates	 for	 the
weakness	of	the	low	absorption	coefficient	of	silicon	by	elongating	an	optical	path.

Roughness	of	 the	 surface	 is	 an	 important	 factor	 that	 controls	 the	diffuse	 reflectance	 and
scattering	of	light,	which	we	discussed	in	the	section	on	optical	properties.	A	smooth	surface

exhibits	 very	 high	 specular	 reflectance,	 which	 is	 estimated	 using	 .	 As	 the

surface	 roughness	 increases,	 diffuse	 reflectance	 occurs	 on	 random	 surface	 features	 and
reflectance	 decreases.	 When	 the	 surface	 has	 a	 textured	 structure,	 multiple	 and	 ordered
reflectance	by	tilted	surface	features	dramatically	reduce	the	surface	reflectance.	A	change	in
reflectance	is	shown	in	Figure	9.20	with	schematics	explaining	light	paths.

A	 textured	 structure	 is	 formed	 on	 a	 Si	 surface	 using	 chemical	 etching	 and
photolithography.	Anisotropic	etching	of	a	single	crystal	Si	leaves	(111)	planes	on	the	surface
that	 exhibit	 a	 pyramid	 shape	 pattern	 or	 an	 inverted	 pyramid	 shape	 pattern.	Grooved	 planes
with	an	angle	of	54.74°	from	an	original	(100)	plane	surface	help	incident	light	to	be	reflected
at	least	twice	before	light	departs	the	solar	cell.	In	addition,	the	oblique	incident	angle	on	(111)
planes	 increases	 the	optical	 path	 for	Si.	This	 effect	 is	 equivalent	 to	 increasing	 the	 effective
wafer	thickness,	leading	to	increased	absorbance	and	decreased	transmittance.

In	addition	 to	 the	surface	 texturing,	 the	semiconductor	surface	 is	coated	with	a	dielectric
film	with	 the	 refractive	 index	 (∼2)	 between	 Si	 and	 air.	 TiO2,	 Ta2O5,	 SiO2,	 and	 Si3N4	 are
widely	used	dielectrics	for	the	antireflection	(AR)	coating.	Since	a	difference	in	the	refractive
index	decreases,	the	reflectance	is	reduced	on	the	surface	with	the	AR	coating.	It	is	noted	that
the	absorption	coefficient	of	the	semiconductor	and	the	refractive	index	of	the	coating	layer
vary	as	a	function	of	light	wavelength.



FIGURE	 9.20 (a)	 A	 schematic	 on	 the	 reflectance	 of	 surfaces	 with	 different	 roughness	 features;	 (b)	 reflectance	 versus
wavelength	for	silicon	with	different	roughness	features.	(From	Angermann	H.,	et	al.,	Cent.	Eur.	J.	Phys.	7,	363–370,	2009.
With	Permission.)

Therefore,	it	is	necessary	to	consider	the	spectral	variation	of	the	solar	cell	performance
and	maximize	the	AR	coating	effect	for	low	quantum	efficiency	wavelength	when	AR	coating
is	 designed.	 The	 AR	 layer	 usually	 is	 coated	 near	 the	 end	 of	 the	 solar	 cell	 manufacturing
process.	Both	the	optically	thin	layer	(≤	several	hundreds	of	nanometers)	and	optically	thick
layers	 (∼several	 micrometers)	 are	 used	 as	 coating	 layers.	 If	 the	 wafer	 surface	 is	 flat	 and
smooth,	the	thin	layer	thickness	is	around	one-quarter	wavelength	of	a	targeted	light	to	arouse
destructive	 interference	between	 incoming	 light	and	reflected	 light.	A	 thickness	of	a	quarter
wavelength	means	that	a	phase	difference	between	the	incident	light	and	reflected	light	is	180o
at	 the	 surface	 of	 the	 coating	 layer.	 Hence,	 two	 waves	 cancel	 out,	 resulting	 in	 destructive
interference.	A	schematic	of	the	solar	cell	with	surface	texturing	and	antireflection	coating	is
shown	in	Figure	9.21.

Another	way	to	increase	the	light	absorption	is	to	decrease	the	metal	electrode	area	on	the
front	 surface.	 As	 discussed	 in	 Section	 9.4.2,	 however,	 there	 is	 a	 trade-off	 between	 series
resistance	(RS)	and	reflectance.	As	the	metal	electrode	area	decreases	(a	decrease	in	the	width
of	 bus	 bars	 and	 fingers	 or	 an	 increase	 in	 the	 distance	 between	 bus	 bars	 and	 fingers),
reflectance	by	the	metal	electrode	increases	but	RS	decreases.	Therefore,	 there	 is	a	balanced
metal	electrode	structure	optimizing	RS	and	reflectance.	To	decrease	both	RS	and	reflectance,
the	metal	electrode	design	needs	to	be	changed.	In	some	high-performance	Si	solar	cells,	the
metal	electrode	is	buried	inside	the	Si	so	that	shading	by	the	metal	electrode	is	reduced.	The



buried	 metal	 electrode	 on	 the	 front	 surface	 is	 shown	 in	 Figure	 9.22.	 Grooves	 for	 metal
electrode	filling	can	be	manufactured	using	a	laser	process	or	mechanical	machining.	In	this
buried	 contact	 design,	 grooves	 are	 filled	 with	 the	 contact	 metals;	 nickel,	 copper,	 and	 then
silver,	 are	 deposited	 using	 electroless	 plating.	 The	manufacturing	 technique	 for	 the	 buried
layer	 is	 mostly	 expensive,	 while	 the	 buried	 electrode	 can	 effectively	 suppress	 surface
reflectance.

FIGURE	 9.21 A	 simplified	 cross-section	 of	 a	 commercial	 single	 crystalline	 (monocrystalline)	 silicon	 solar	 cell.	 (From
Saga,	T.,	NPG	Asia	Mater.,	2,	96–102,	2010.	With	Permission.)

FIGURE	9.22 Buried-contact	cell	structure	of	silicon	solar	cells	developed	by	BP	Solar.	(From	Saga,	T.,	NPG	Asia	Mater.,
2,	96–102,	2010.	With	Permission.)

The	last	way	introduced	in	this	section	as	a	method	to	enhance	light	absorption	is	to	form
metal	 contacts	 for	 both	 holes	 and	 electrons	 only	 at	 the	 back	 surface	 of	 a	Si	 solar	 cell	 (see
Figure	 9.23).	 This	 structure	 is	 called	 an	 integrated	 backside	 contact	 (IBC)	 solar	 cell.	 One
advantage	of	 this	 structure	 is	 to	maximize	 the	 solar	 absorption	 area	 by	 removing	 the	 front
electrode	and	minimize	series	resistance	by	reducing	the	distance	between	metal	contacts.	In
addition,	 a	 lightly	 doped	 front	 surface	 decreases	 the	 dead	 layer	 effect,	 and	 the	 carrier
recombination	and	SiO2	passivation	layers	are	used	to	reduce	losses	at	both	the	front	and	back
surfaces.	 The	 IBC	 design	 needs	 the	 modeling	 of	 carrier	 transport	 and	 the	 high	 quality	 Si
wafer	with	high	carrier	mobility	to	carefully	control	recombination	loss.



FIGURE	9.23 A	schematic	illustration	of	an	integrated	back	contact	(IBC)	solar	cell.	(From	Eglash,	S.,	Laser	Focus	World,
39–41,	2009.	With	Permission.)

9.5.2 ENHANCED	COLLECTION	OF	PHOTOGENERATED	CARRIERS

In	Section	9.5.1,	we	 learned	how	 to	 improve	 the	 light	absorption	 in	 the	semiconductor.	The
next	 important	 question	 is	 how	 to	 enhance	 the	 collection	 of	 electron–hole	 pairs	 produced
from	 absorbed	 photons.	Undesired	 recombination	 of	 photogenerated	 carriers	 is	 one	 of	 the
major	 factors	 lowering	 the	 PCE	 of	 the	 solar	 cell.	 As	 we	 learned	 in	 the	 SQ-DB	 model,
thermodynamics	 determine	 the	 radiative	 recombination	 probability,	 which	 is	 already	 taken
into	account	in	the	theoretical	PCE	calculation.	A	type	of	recombination	that	we	can	control	is
the	 nonradiative	 recombination	 occurring	 at	 the	wafer	 surface	 and	 at	 the	 interface	 between
layers.	In	particular,	dangling	bonds	on	the	surface	are	defects	that	trap	carriers	and	facilitate
the	 surface	 recombination.	 Though	 the	 nonradiative	 recombination	 also	 takes	 place	 in	 the
bulk	of	the	Si	wafer,	the	bulk	recombination	is	not	as	significant	as	the	surface	recombination
in	single	crystalline	Si	and	polycrystalline	Si	with	high	crystallinity.	Therefore,	suppression
of	the	surface	recombination	is	the	major	content	of	this	section.	However,	in	Si	thin	film	or
in	amorphous	Si,	 the	minority	carrier	diffusion	 length	 is	 shorter	 than	 the	absorption	 length
(∼200–500	μm)	and	bulk	recombination	cannot	be	ignored.	We	will	discuss	how	to	handle	the
problem	of	short	diffusion	length	at	the	end	of	this	section.

To	prevent	the	surface	recombination,	a	dielectric	film	such	as	a	SiO2	layer	is	formed	on
the	surface	of	Si	by	chemical	vapor	deposition	or	oxidation	methods.	Once	the	thin	dielectric
layer	is	formed,	the	surface	recombination	velocity	decreases,	thereby	preventing	the	loss	of
photogenerated	 carriers.	 This	 technique	 is	 called	 surface	 passivation.	 The	 dielectric	 layer
decreases	 the	surface	 recombination	velocity	via	 two	mechanisms.	One	 is	a	chemical	effect
that	removes	the	dangling	bonds	on	the	Si	surface.	Since	the	oxide	molecules	are	chemically
attached	to	the	dangling	bonds,	the	trapping	of	carriers	at	the	surface	defects	does	not	occur	in
the	passivated	Si	surface.	Because	the	interface	between	Si	and	SiO2	is	less	defective,	the	total
number	of	recombination	centers	of	the	surface	passivated	Si	is	much	smaller	than	that	of	the
unpassivated	 Si.	 The	 other	 is	 a	 physical	 effect.	 Since	 the	 surface	 dielectric	 layer	 stores	 the



charge	 under	 the	 output	 voltage	 of	 the	 solar	 cell,	 an	 electric	 field	 is	 established	 in	 the
dielectric	 layer.	Then,	one	 type	of	carrier	 is	 repelled	from	the	surface	and	 the	electric	 field
application	direction	determines	whether	an	electron	or	hole	moves	away	from	the	dielectric
layer.	A	large	disparity	between	electron	concentration	and	hole	concentration	decreases	the
number	of	charge	carriers	available	for	recombination,	which	suppresses	the	recombination
events	occurring	near	the	interface	of	the	Si–dielectric	layer.

We	discussed	a	similar	effect	in	the	section	on	the	metal	oxide	semiconductor	field-effect
transistor	(MOSFET).	In	MOSFET,	the	external	electric	field	is	applied	to	the	oxide	dielectric
layer	 to	 deplete	 one	 type	 of	 carrier	 and	 to	 form	 a	 channel	 for	minority	 carrier	 diffusion.
These	chemical	and	physical	effects	of	the	passivation	layer	increase	the	collection	efficiency
of	photogenerated	carriers	at	the	front	and	back	surface	of	the	semiconductor	solar	cell.

Another	way	to	suppress	recombination	is	to	exploit	conduction	(valence)	band	bending	in
a	heavily	doped	surface.	If	the	back	surface	is	highly	doped	to	improve	the	response	to	long
wavelength	 light,	 this	 effect	 is	 called	 back	 surface	 field	 (BSF).	 The	 BSF	 region	 in	 lightly
doped	 p-type	Si	 is	 formed	 on	 the	 back	 surface	 of	 a	 Si	wafer	 by	 firing	 a	 screen-printed	Al
layer.	Then,	part	of	the	Al	is	incorporated	into	the	Si	while	most	of	the	aluminum	layer	turns
to	the	Al	back	contact.	A	cross-sectional	structure,	after	firing	the	screen-printed	Al	layer,	is
shown	in	Figure	9.24.	In	a	p-p+	 interface	of	 the	BSF	region,	 the	band	bending	promotes	 the
extraction	of	carriers	toward	the	back	contact	and	increases	the	carrier	collection	efficiency.
The	 heavily	 doped	 region	 also	 has	 high	 electric	 conductivity	 and	 allows	 carriers	 to	 travel
through	a	tunneling	behavior,	even	though	there	is	a	Schottky	barrier	at	the	interface	between
the	heavily	doped	region	and	the	metal	back	contact.



FIGURE	 9.24 (a)	 Cross-section	 of	 a	 single	 crystalline	 Si	 solar	 cell	 with	 a	 back	 surface	 field	 effect.	 (b)	 Energy	 band
diagram	of	a	p+-p-n+	type	junction	showing	the	effect	of	the	surface.	(From	Singh,	G.,	et	al.,	RSC	Adv.,	4,	4225–4229,	2014.
With	Permission.)

Although	the	heavily	doped	region	has	positive	impacts	on	the	carrier	collection,	too	much
doping	 can	 create	 a	 dead	 layer	 effect	 that	 originates	 from	 dopant	 precipitation	 and	 carrier
trapping/collision	at	the	activated	(i.e.,	electrically	charged)	dopant	site.	To	reduce	the	adverse
effect	of	heavy	doping,	the	interface	area	between	the	metal	contact	and	the	heavily	doped	Si
region	is	increased.	This	is	the	case	of	the	buried	electrode,	shown	in	Figure	9.22.	Since	 the
metal	contact–Si	interface	area	is	increased,	shallower	donor	impurity	doping	(i.e.,	a	smaller
barrier	 height	 at	 p-p+	 junction)	 is	 enough	 to	 collect	 photogenerated	 carriers	 at	 the	 metal
contact.	In	addition,	moderate	impurity	doping	in	the	subsurface	region	reduces	the	dead	layer
effect	and	suppresses	the	carrier	recombination.	This,	in	turn,	prevents	degradation	of	open-
circuit	voltage	and	improves	the	short	wavelength	response	of	the	solar	cell.



FIGURE	9.25 A	schematic	of	an	SHJ	solar	cell	on	an	n-type	wafer	and	its	band	diagram.	(Structure	is	not	drawn	to	scale.)
(From	Wolf,	S.	D.,	et	al.,	Green.,	2,	7–24,	2012.	With	Permission.)

Similar	 to	 the	 dangling	 bonds	 of	 the	 Si	 surface,	 the	 highly	 recombination-active	 metal
contacts	with	Si	work	as	a	recombination	center	and	decrease	the	carrier	collection	efficiency.
One	 way	 to	 avoid	 the	 problem	 of	 highly	 recombinative	 metal	 contact	 is	 to	 insert	 a	 few
nanometer	thick	layer	of	the	semiconductor	(mainly	hydrogenated	amorphous	Si,	a-Si:H)	and
displace	 highly	 recombination-active	 contacts	 from	 the	 Si	 surface.	 The	 solar	 cell	 with	 the
structure	of	Figure	9.25	is	called	a	silicon	heterojunction	solar	cell	(SHJ);	a-Si:H	layer	of	SHJ
passivates	 the	 interface	 between	 metal	 contacts	 and	 crystalline	 Si.	 Also,	 the	 function	 of
conducting	electrode	can	be	awarded	to	a-Si:H	layer	by	doping	donor	impurities	or	acceptor
impurities.	From	the	viewpoint	of	 light	absorption,	a-Si:H	has	a	wider	band	gap	and	a-Si:H
does	not	 limit	 the	 light	absorption	ability	of	crystalline	Si.	This	means	 that	a-Si:H	plays	 the
role	of	a	window.	Though	the	fabrication	process	of	SHJ	is	costly	due	to	additional	thin	film
deposition	steps,	the	SHS	structure	allows	for	solar	cells	with	energy	conversion	efficiencies
above	20%	at	the	industrial-production	scale.

So	far,	we	have	discussed	how	to	decrease	the	front	and	back	surface	recombination	in	a
crystalline	Si	solar	cell	where	the	minority	carrier	diffusion	length	is	comparable	to	or	larger
than	 the	wafer	 thickness.	However,	 in	Si	 thin	 films,	 the	minority	 carrier	 diffusion	 length	 is
short,	 and	 the	 bulk	 recombination	 cannot	 be	 ignored.	 Though	 the	 best	 solution	 to	 the	 bulk
recombination	problem	is	to	improve	the	crystalline	quality	and	elongate	the	diffusion	length,
there	 is	 a	 limitation	 to	 increasing	 the	 crystalline	 quality	 of	 the	 thin	 films.	 In	 this	 case,	 an
intrinsic	Si	 layer	 is	 inserted	 between	 the	 p-side	 and	 the	 n-side	 to	make	 p-i-n	 junction	 solar
cells.	An	advantage	of	p-i-n	junction	over	p-n	junction	is	that	the	depletion	region	is	extended
to	the	intrinsic	layer,	as	shown	in	Figure	9.26.	Note	 that	 the	 inserted	 intrinsic	 layer	does	not
change	 the	 height	 of	 the	 built-in	 potential.	 In	 the	 p-i-n	 junction,	 the	 drift	 in	 the	 depletion
region	 compensates	 for	 the	 small	 minority	 carrier	 diffusion	 length,	 and	 carriers	 that	 are
photogenerated	in	the	elongated	depletion	region	can	travel	longer	with	the	aid	of	the	drift.

One	more	way	to	improve	the	carrier	transport	behavior	of	the	solar	cell	is	to	replace	a	p-
type	wafer	with	an	n-type	wafer.	This	 is	 still	 in	 the	 research	and	development	 stage	but	has
attracted	 considerable	 amount	 of	 interest	 from	 industry.	 P-type	Si	wafers	 have	 been	widely



used	because	the	minority	carrier	mobility	is	higher	in	p-type	Si	than	in	n-type	Si.	However,
boron	 impurities	 in	 p-type	 Si	 with	 a	 traceable	 amount	 of	 oxygen	 impurities	 form	 boron–
oxygen	 complexes	 under	 illumination.	 Since	 boron–oxygen	 complexes	 are	 strong
recombination	centers,	the	PCE	of	the	solar	cell	degrades	1	to	3%	in	the	initial	period	of	solar
cell	operation.	This	 is	called	 light-induced	degradation	 (LID).	 In	 the	 solar	cells	using	an	n-
type	Si	wafer,	LID	is	not	observed.

In	addition,	since	a	p-type	dopant	(boron)	diffuses	faster	than	an	n-type	dopant	(phosphor)
at	 high	 temperature,	 the	 precise	 control	 of	 the	 doping	 profile	 during	 a	 thermal	 annealing
process	is	more	difficult	for	p-type	Si.	This	problem	gets	worsened	due	to	the	base	impurities
present	in	Si.	Metallic	impurities	inevitably	added	to	Si	mainly	work	as	n-type	donors,	which
means	that	higher	amounts	of	p-type	impurities	are	required	in	p-type	Si	than	in	n-type	Si	for
high	electric	conductivity.	Several	problems	of	p-type	dopants	require	stricter	quality	control
for	p-type	Si	wafers	than	for	n-type	Si	wafers	to	fabricate	high	efficiency	solar	cells	(PCE	>
20%).	This,	in	turn,	increases	the	production	cost	of	the	solar	cells.	To	address	the	problem	of
p-type	Si	wafers,	several	companies	have	tested	a	potential	n-type	Si	wafer	for	high	efficiency
solar	cells	and	some	of	them	have	shown	n-type	Si	base	solar	cells	with	PCE	>	20%.

FIGURE	 9.26 Comparison	 of	 p-n	 junction	 (top)	 and	 p-i-n	 junction	 (bottom),	 showing	 the	 effect	 of	 the	 i-region	 on	 the
extended	depletion	region.

9.6 EMERGING	 SOLAR	 CELLS	 NOT	 USING	 P-N	 JUNCTION	 OF	 INORGANIC
SEMICONDUCTORS

In	addition	to	Si	solar	cells,	there	are	several	emerging	solar	cells	that	are	not	based	on	the
semiconductor	wafer.	Among	promising	solar	solutions	with	great	potential	for	solar	energy
harvesting	 are	 TiO2	 nanoparticle-based	 DSSCs.	 DSSCs	 offer	 significant	 economic	 and
environmental	 advantages	 over	 conventional	 photovoltaic	 devices	 because	 they	 can	 be
manufactured	 relatively	 inexpensively	 and	 in	 an	 energy-efficient	 and	 environment-friendly
manner.	The	typical	structure	of	DSSCs	using	a	liquid	electrolyte	is	shown	in	Figure	9.27.	The
DSSC	is	created	by	coating	nanoparticles	comprising	a	wide	band	gap	material	(such	as	TiO2)



on	 transparent	 conducting	 oxide	 (TCO)	 electrodes.	 This	 is	 followed	 by	 dipping	 the
nanoparticles	and	TCO	pairs	in	a	solution	containing	small	organic	dye	molecules.	When	the
DSSC	 is	 exposed	 to	 solar	 light,	 an	 incident	 photon	 creates	 a	 bound	 electron–hole	 pair
(exciton)	 in	 the	 organic	 dye.	 This	 electron–hole	 pair	 dissociates	 at	 the	 organic–inorganic
interface	and	electrons	then	flow	into	the	TiO2	nanoparticle	photoelectrode	and	the	TCO	film.
The	 full	 potential	 of	 DSSCs	 has	 not	 yet	 been	 realized	 due	 to	 unresolved	 limitations	 in
absorption	of	solar	spectrum	and	transport	of	photogenerated	carriers.	In	fact,	the	efficiency
of	current	DSSCs	has	plateaued	at	11–12%,	which	is	well	below	their	theoretical	limit	of	33%.
The	current	yield	at	a	given	wavelength	for	DSSCs	can	be	expressed	as:

where	light	harvesting	efficiency	(LHE)	is	a	fraction	of	the	incident	photons	absorbed	by	the
dye,	µinj	 is	 the	quantum	yield	 for	charge	 injection,	and	ηe	 is	 the	efficiency	of	collecting	 the
injected	charge	at	the	back	contact.

In	 conventional	 designs,	 one	 of	 the	 limiting	 factors	 contributing	 to	 low	 conversion
efficiency	of	DSSCs	is	long-term	stability	due	to	their	liquid	electrolyte	component.	If	sealing
of	 the	device	 is	not	perfect,	 the	 liquid	electrolyte	gradually	evaporates	away	and	 impurities
such	as	water	and	oxygen	molecules	permeate	into	the	cell.	Therefore,	the	assembly	of	DSSCs
containing	 the	 liquid	 electrolyte	 requires	 a	 critical	 sealing	 technique	 to	 reduce	 solvent
leakage/vaporization,	 which	 increases	 the	 difficulty	 in	 the	 manufacturing	 process	 and
decreases	 the	durability	of	 the	device.	 In	order	 to	 improve	 the	 stability	of	DSSCs,	different
types	of	electrolytes	have	been	extensively	studied	to	supersede	the	liquid-type	electrolyte.	A
solid	 electrolyte	 is	 an	 ideal	 form	 for	 commercialization	 of	DSSCs	 since	 this	 addresses	 the
problem	of	conventional	liquid	electrolytes,	such	as	leakage	and	evaporation.	Therefore,	the
compatibility	of	p-type	 inorganic	 semiconductors	and	organic	hole	conductors	with	DSSCs
has	 been	 widely	 investigated.	 In	 1996,	 Matsumoto	 et	 al.	 introduced	 the	 polymer	 solid
electrolyte,	oligoethylene	glycol	methacrylate	 for	SDSSCs.	Since	 then,	many	different	solid
electrolytes	including	pyrrole,	epichlormer-16,	polyaniline	(PANI),	2,2’,7,7’-tetranis	(N,N-di-
p-methoxyphenyl-amine)	 9,9’-spirobifluorene	 (Spiro-OMeTAD),	 poly(3-hexylthiophene
(P3HT),	 and	 poly(3,4-ethylenedioxythiophene)	 (PEDOT)	 based	 (PEDOT-PSS,	 PEDOT/X)
were	examined	to	develop	SDSSCs.	At	present,	Spiro-OMeTAD	is	the	most	commonly	used
organic	 hole	 conductor	 for	 SDSSCs.	 This	 solid	 electrolyte	 has	 a	 small	 molecular	 size
(around	2	nm),	high	solubility	in	organic	media,	and	an	amorphous	structure,	which	make	it
suitable	 for	 being	 impregnated	 into	 the	mesopores	 of	 the	 thick	 film.	 In	 addition,	 the	 redox
potential	of	Spiro-OMeTAD	is	more	positive	than	that	of	an	 	couple,	which	is	beneficial
in	increasing	open-circuit	voltage	(Voc)	of	SDSSCs.



FIGURE	9.27 A	schematic	on	the	structure	and	operating	principle	of	dye-sensitized	solar	cells	(DSSCs).	(From	Lee	et	al.,
Materials	Science	and	Engineering:	B,	176,	1142–1160,	2011.	With	Permission.)

Although	 the	 solid	 state	 electrolyte	 increases	 the	 stability	 and	 reliability	 of	 DSSCs,	 the
solid	electrolyte	has	two	serious	problems.	One	of	them	is	the	low	charge	carrier	mobility.	In
Spiro-OMeTAD,	 the	 hole	 mobility	 is	 only	 10−4	 cm2/Vs,	 which	 is	 much	 smaller	 than	 the
charge	 carrier	 diffusivity	 of	 the	 liquid	 electrolyte.	This	 increases	 the	probability	 of	 carrier
recombination	 during	 the	 transport	 process	 and	 reduces	 the	 photocurrent	 density.	 Though
certain	p-type	organic	semiconductors	such	as	PEDOT/PSS	have	better	electrical	conductivity
(10−3	∼	500	S/cm),	the	size	of	PEDOT/PSS	in	a	secondary	or	tertiary	structure	is	too	large	to
pass	 through	 the	mesopores	 of	 TiO2	 nanoparticle	 films.	 The	 other	 question	 regarding	 the
solid	state	electrolyte	is	how	to	fill	the	pores	inside	the	mesoporous	photoanode.	While	Spiro-
OMeTAD	dissolved	in	the	organic	media	has	a	better	pore-filling	capability	than	other	solid
electrolytes,	it	 is	difficult	to	fully	fill	 the	pores	of	the	thick	photoelectrode	even	with	Spiro-
OMeTAD.	When	 the	Spiro-OMeTAD	solution	 is	 spin-coated	on	a	2.5-μm-thick	photoanode,
∼35	%	of	pores	inside	the	mesoporous	film	are	still	empty.	This	partial	filling	of	the	pores	is
caused	by	the	small	pore	size	of	the	mesoporous	films.

The	unfilled	portion	of	the	mesoporous	photoelectrode	and	the	low	carrier	mobility	of	the
solid	 electrolyte	 are	 the	 source	 for	 electron–hole	 recombination	 and	 parasitic	 current	 in
SDSSCs	 where	 the	 charge	 transport	 is	 controlled	 via	 a	 trap-limited	 diffusion.	 Since
photoexcited	electrons	and	holes	in	the	dye	do	not	diffuse	fast,	they	recombine	at	the	interface
of	 solid	 electrolyte–TiO2	 or	 solid	 electrolyte–dye	 (or	 both)	 before	 reaching	 the	 counter
electrode.	The	poor	extraction	of	carriers	in	SDSSCs	prevents	the	implementation	of	the	very



thick	photoelectrode	(≥	10	μm)	that	is	used	in	the	liquid-electrolyte-based	DSSCs	to	make	up
with	 weak	 light	 absorption.	 Because	 of	 short	 carrier	 diffusion	 length,	 the	 optimum
photoelectrode	 thickness	 of	 SDSSCs	 is	∼2	 μm,	 and	 the	 best	 efficiency	 of	 SDSSCs	 is	 still
lower	than	that	of	the	liquid-electrolyte-based	DSSCs	(∼12	%).

As	 summarized	here,	 the	PCE	of	 traditional	DSSCs	 is	 far	off	 the	 theoretical	value	 (∼20
%),	even	after	extensive	 research	 for	 the	past	 few	decades.	The	breakthrough	of	 solar	cells
using	the	device	physics	of	DSSCs	came	about	very	recently.	A	series	of	studies	have	proved
that	organolead	trihalide	perovskite,	(CH3NH3)PbX3	(X;	halogen	ions	such	as	I−	and	Br−)	can
be	 an	 excellent	 light	 absorber	 with	 a	 very	 long	 carrier	 diffusion	 length	 and	 therefore	 is
suitable	for	sensitizing	the	mesoporous	photoanode	of	the	solar	cells.	Since	its	potential	was
shown	 in	 2012,	 this	 inorganic–organic	 hybrid	 halide	 material	 has	 increased	 the	 PCE	 of
DSSCs	more	 than	 two	 times	 (from	∼9	 to	∼20%).	A	CH3NH3PbI3	 semiconductor	 has	 high
light	 absorption	 coefficient	 (approximately	105	cm−1),	 long	 absorption	wavelength	 edge	 (>
800	 nm),	 and	 unique	 electrical	 properties.	 Also,	 the	 band	 gap,	 absorption	 coefficient,	 and
electron	diffusion	length	of	the	halide	perovskite	can	be	tuned	either	by	changing	the	organic
cation	group,	or	metal	atom,	and	halide	ion.

In	the	organic–inorganic	halide	perovskite	[(CH3NH3)AX3],	the	A-site	of	the	perovskite	is
occupied	 by	 an	 organic	 cation,	which	 is	 enclosed	by	 twelve	 nearest	X	 (halide)	 anions.	The
prerequisite	for	a	closed	packed	perovskite	structure	is	that	the	organic	cation	must	fit	in	the
hole	formed	by	the	eight	adjacent	octahedra	connected	through	the	shared	X	corners	as	shown
in	Figure	9.28.	The	size	of	the	organic	cation	and	metal	ion	(M)	is	an	important	parameter	to
modulate	the	optical	and	electronic	properties	of	perovskite	materials.	Any	sort	of	distortion
will	 affect	 the	 physical	 properties	 of	 perovskite	 materials,	 such	 as	 electronic,	 optical,
magnetic,	 and	 electric	 properties.	 Though	 there	 are	 many	 kinds	 of	 halide	 perovskites,
perovskites	 containing	 metal	 halides	 in	 the	 fourth	 main	 group	 (4A,	 including	 Ge2+,	 Sn2+,
Pb2+)	 of	 a	 periodic	 table	 have	 attracted	 more	 interest	 due	 to	 their	 good	 optoelectronic
properties	and	potential	for	low-temperature	device	fabrication.

FIGURE	9.28 Crystal	structure	of	halide	perovskite	(AMX3:	A-organic	group,	M-divalent	metal	ion,	X-halide	ions).	(From
Gao,	P.,	Energy	Environ.	Sci.,	7,	2448,	2014;	Mitzi,	D.B.,	J.	Chem.	Soc.,	Dalton	Trans.,	1–12,	2001.	With	Permission.)

A	 typical	 organic–inorganic	 perovskite	 solar	 cell	 is	 composed	 of	 a	 mesoporous	 oxide
semiconductor	 for	 the	 electron	 transport	 layer,	 an	 organic	 hole	 transport	 layer	 (HTL),	 a



perovskite-based	 absorber,	 a	 metal	 electrode,	 and	 a	 TCO.	 Usually,	 TiO2	 is	 chosen	 as	 the
electron	 transport	material	because	of	 its	superior	optical	and	photoelectronic	properties	as
well	as	its	chemical	stability.

Figure	9.29	 shows	 the	 schematic	 structure	 and	energy	diagram	of	perovskite	 solar	 cells.
The	operating	principle	of	a	perovskite	solar	cell	is	similar	to	that	of	SDSSCs.	First,	organic–
inorganic	halide	perovskite	 (CH3NH3PbX3)	 absorbs	 incident	 photon	 flux	 that	 exit	 from	 the
highest	occupied	molecular	orbital	(HOMO)	level	to	the	lowest	unoccupied	molecular	orbital
(LUMO)	level.	Second,	the	exited	electron–hole	pairs	undergo	rapid	charge	separation	at	the
perovskite–TiO2	 interface	or	hole	transport	material	(Spiro-OMeTAD).	Energy	levels	in	the
TiO2–CH3NH3PbI3–Spiro-OMeTAD	 junction	 are	 well	 matched	 for	 charge	 separation,	 as
shown	Figure	9.29.	Third,	 electrons	 and	 holes	 are	 injected	 into	 the	 electron	 transport	TiO2
film	and	hole	transport	layer,	respectively.	Fourth,	the	injected	electron	in	the	conduction	band
of	TiO2	is	transported	through	the	surface	toward	the	TCO	(FTO)	and	the	injected	hole	in	the
HOMO	 level	 of	 Spiro-OMeTAD	 is	 transported	 toward	 the	 metal	 electrode.	 Consequently,
electrons	and	holes	reach	metal	terminals	that	are	connected	to	the	external	load	via	wiring.



FIGURE	 9.29 (a)	 Device	 structure	 of	 SDSSCs	 and	 (b)	 energy	 levels	 of	 the	 TiO2/CH3NH3PbI3/spiro-MeOTAD,
demonstrating	the	band	alignment	for	high	power	conversion	efficiency	over	15%.	(From	Park	et	al.,	J.	Phys.	Chem.	Lett.,	15,
2423–2429,	2013.	With	Permission.)

PROBLEMS

9.1 There	 are	 multiple	 ways	 to	 harness	 solar	 energy.	 Please	 pick	 out	 three	 different
technologies	for	solar	energy	harvesting	and	explain	their	operating	principles.

9.2 The	 junction	 between	 p-type	 and	 n-type	 materials	 is	 used	 to	 collect	 photogenerated
charge	carriers.
a.		Please	explain	how	a	built-in	potential	is	developed	at	the	junction	of	p-type	and	n-

type	Si	semiconductors.
b.		When	external	electric	voltage	is	applied	to	a	p-n	junction,	the	effect	of	the	applied

voltage	 on	 the	 electric	 current	 can	 be	 estimated	 by	 considering	 only	 a	 diffusion



component.	Please	explain	why	the	effect	of	applied	voltage	on	a	drift	component	is
negligible	in	either	a	qualitative	or	quantitative	way.

9.3 A	bulk	heterojunction	(BHJ)	structure	is	crucial	for	high	efficiency	organic	solar	cells.
Please	summarize	the	benefit	of	a	BHJ	over	a	normal	donor/acceptor	bilayer	structure
organic	solar	cell.

9.4 One	of	 the	methods	 to	evaluate	 the	performance	of	 solar	 cells	 is	 to	measure	electric
current	as	a	function	of	external	electric	voltage.
a.	 	 Draw	 I	 –	 V	 curves	 of	 the	 solar	 cell	 under	 dark	 and	 illuminated	 conditions	 with

underlying	principles.
b.		Point	out	important	parameters	in	the	I–V	curve	of	the	solar	cell	that	is	exposed	to

solar	 light.	Also,	 show	how	 these	 parameters	 are	 influenced	 by	 the	 change	 in	 the
illuminating	light	intensity.

9.5 Describe	what	shunt	and	series	resistances	 in	solar	cells	are	and	how	they	change	the
performance	of	ideal	solar	cells.

9.6 A	 buried-contact	 cell	 structure	 and	 an	 integrated	 back	 contact	 structure	 significantly
increase	 the	performance	of	Si	 solar	cells.	Please	explain	 the	pros	and	cons	of	 these
two	structures	over	a	traditional	solar	cell	design.

9.7 The	 right	plot	 is	 the	 I–V	 curve	of	 the	 solar	 cells	measured	 in	 a	dark	condition	when
forward	bias	is	applied.	Though	n	=	1	 in	an	ideal	diode,	n	often	deviates	 from	1	and
gets	close	to	2,	as	shown	in	the	low	voltage	regime.	Please	explain	one	reason	for	this
non-ideal	behavior.

9.8 Since	 you	 have	 used	 your	 solar	 cells	 in	 a	 very	 harsh	 environment	 for	 a	 long	 time,
metal	electrodes	on	the	front	side	of	your	solar	cells	are	partially	oxidized.	Show	how
the	I–V	curve	of	your	solar	cell	has	changed	over	time	due	to	the	degradation	of	metal
electrode.	Which	property	(voltage	or	current)	of	your	solar	cell	is	mainly	influenced?

9.9 Semiconducting	Si	is	widely	used	as	the	main	component	of	commercial	solar	cells.
a.	 	What	 is	 the	major	 reason	 limiting	 the	 theoretical	 PCE	 of	 Si-based	 solar	 cells	 to

slightly	higher	than	30%?
b.	 	The	 refractive	 index	of	Si	 is	much	 larger	 than	 that	of	air.	 Is	 this	a	problem	when



fabricating	 a	 high	 efficiency	 solar	 cell?	 If	 so,	 explain	 why	 a	 difference	 in	 the
refractive	index	matters	and	demonstrate	how	this	problem	can	be	circumvented.

9.10 How	 does	 an	 increase	 in	 temperature	 change	 the	 energy	 conversion	 efficiency	 of
silicon	solar	cells?	Please	explain	this	change	qualitatively.

9.11 To	 improve	 the	 energy	 conversion	 efficiency	 of	 Si	 solar	 cells,	 a	 rear	 side	 of	 Si	 is
coated	with	a	thin	SiO2	layer.	What	is	the	advantage	of	this	heaving	doping?

9.12 Traditionally,	the	solar	cell	industry	has	used	p-type	Si	wafers	to	produce	Si	solar	cells,
but	now	there	are	ongoing	efforts	to	develop	a	process	using	an	n-type	Si.	What	are	the
pros	and	cons	of	p-	and	n-type	Si	substrates	in	the	solar	cell	industry?
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10	Ferroelectrics,	Piezoelectrics,	and
Pyroelectrics

KEY	TOPICS

Ferroelectric	materials
Origin	of	ferroelectricity
Ferroelectric	hysteresis	loop
Properties	and	applications	of	ferroelectrics
Electrostriction
Piezoelectric	materials
Direct	and	converse	piezoelectric	effects	and	applications
Properties	and	applications	of	soft	and	hard	piezoelectrics
Strain-tuned	ferroelectrics
Lead-free	piezoelectrics
Pyroelectric	materials	and	applications

10.1 FERROELECTRIC	MATERIALS

10.1.1 FERROELECTRICITY	IN	BARIUM	TITANATE

Ferroelectrics	are	materials	that	possess	a	macroscopic	spontaneous	polarization	that	can	be
reoriented	 through	 the	 application	 of	 an	 external	 electric	 field	 (Schlom	 et	 al.	 2007).
Polarization	 in	 ferroelectric	 materials	 can	 exist	 in	 the	 absence	 of	 an	 electric	 field	 under
certain	 ranges	 of	 temperature	 and	 pressure.	 This	 is	 the	 biggest	 difference	 between
ferroelectric	 materials	 and	 dielectric	 materials.	 In	 dielectric	 materials,	 polarization	 is	 also
generated	 by	 applying	 an	 electric	 field.	 However,	 the	 polarization	 of	 dielectric	 materials
disappears	 when	 the	 electric	 field	 is	 not	 applied.	 Ferroelectric	 materials	 have	 crystal
structures	 that	 lack	 inversion	 symmetry.	 This	 broken	 inversion	 symmetry	 is	 a	 source	 of
permanent	polarization	that	is	observed	in	ferroelectrics.

We	can	summarize	the	origin	of	ferroelectricity	in	tetragonal	barium	titanate	(BaTiO3),	an
archetypal	ferroelectric,	as	follows.

The	temperature	at	which	the	transformation	occurs	from	a	nonpolar,	paraelectric	phase	to
a	polar,	 ferroelectric	phase	 is	known	as	 the	Curie	 temperature	 (Tc).	At	 a	 given	 temperature
higher	than	the	Curie	temperature,	materials	may	exhibit	a	cubic	structure.	For	BaTiO3,	 this
temperature	 is	∼120°C.	 In	 this	 cubic	 phase,	 also	 called	 the	paraelectric	phase,	 the	 titanium
(Ti4+)	 ion	appears	 to	be	exactly	at	 the	center	of	 the	cube.	 In	 reality,	of	course,	 ions	are	not
stationary.	The	titanium	ion,	for	example,	vibrates	very	rapidly	around	several	equivalent	off-
center	 positions.	 Each	 of	 these	 off-center	 configurations	 has	 a	 net	 dipole	 moment,	 which
rotates	very	rapidly	in	space.	The	result	is	that	the	time-averaged	position	of	the	titanium	ion
in	 the	 cubic,	 paraelectric	 phase	 appears	 to	 be	 at	 the	 center,	 and	 this	 higher-temperature



polymorph	 of	 BaTiO3	 has	 no	 net	 dipole	 moment.	 The	 cubic	 or	 paraelectric	 phase	 of	 the
structure	is	described	as	centrosymmetric	and	nonpolar.

In	 the	 case	 of	 BaTiO3,	 the	 paraelectric	 phase	 is	 cubic,	 and	 the	 ferroelectric	 phase	 is
tetragonal	(Figure	10.1).	As	the	temperature	is	lowered,	a	phase	transformation	occurs	at	T	=
Tc,	in	which	the	nonpolar,	paraelectric	phase	transforms	into	a	polar,	ferroelectric	phase	at	the
Curie	 temperature.	The	tetragonal	structure	develops	when	the	titanium	ions	are	 locked	into
any	of	these	six	variants	(Figure	10.2).

FIGURE	10.1 Schematic	representation	of	the	ionic	arrangements	in	ferroelectric	tetragonal	barium	titanate	(BaTiO3).	(From
Askeland,	D.	and	Fulay	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

FIGURE	10.2 Six	variants	of	 the	positions	 in	 the	 tetragonal	phase	of	barium	 titanate	 (BaTiO3)	 leading	 to	 six	 spontaneous
polarization	states	and	three	spontaneous	strain	states.	(From	Mehling,	V.,	et	al.,	J.	Mech.	Phys.	Solids.,	55,	2106–2141,	2007.
With	permission.)

Other	 ions,	such	as	Ba2+	and	O2−,	are	also	displaced	during	 the	 transformation	from	the
cubic	to	the	tetragonal	phase	in	BaTiO3.	The	actual	displacement	of	ions	is	very	small—only
a	few	picometers	(pm),	shown	for	BaTiO3	in	Figure	10.3.	Recall	that	1	pm	=	10−12	m	=	0.01	Å.
As	the	titanium	(Ti4+)	and	barium	(Ba2+)	ions	in	one	unit	cell	move	in	one	of	the	possible	off-
center	directions	(e.g.,	 titanium	ions	moving	up	by	11	pm	and	barium	ions	moving	up	by	6



pm,	as	shown	in	Figure	10.3),	the	titanium	and	barium	ions	in	the	unit	cells	above	the	unit	cell
shown	in	Figure	10.4	will	also	be	pushed	up.

These	 unit	 cells,	 with	 the	 asymmetric	 positions	 of	 titanium	 ions,	 create	 a	 net	 dipole
moment	in	the	tetragonal	structure	of	BaTiO3,	which	can	be	calculated	using	an	equation	of	μ
=	qd	×	x	as	readers	already	studied	in	Chapter	7	(Mehling	et	al.	2007).

Other	 materials,	 such	 as	 lead	 zirconium	 titanate	 (PZT),	 also	 show	 a	 development	 of
ferroelectric	 polarization.	 At	 higher	 temperatures,	 the	 dipole	 moments	 created	 in	 a
ferroelectric	structure	become	randomized,	and	the	overall	ferroelectric	polarization	begins
to	 decrease.	 The	 ionic	 arrangements	 for	 the	 tetragonal	 ferroelectric	 and	 cubic	 paraelectric
forms	of	PZT	are	shown	in	Figure	10.4.

Both	BaTiO3	 and	PZT	have	 crystal	 structures	 other	 than	 the	 tetragonal	 form	 that	 exhibit
ferroelectric	 behavior.	 Note	 that,	 for	 these	 materials,	 the	 ferroelectric-to-paraelectric
transition	is	not	always	from	the	tetragonal	to	the	cubic	structure.

FIGURE	 10.3 Actual	 picometer	 displacements	 of	 ions,	 leading	 to	 ferroelectric	 polarization	 in	 barium	 titanate	 (BaTiO3).
(From	Moulson,	A.J.	and	Herbert	J.M.,	Electroceramics:	Materials,	Properties,	and	Applications,	Wiley,	New	York,	2003.
With	permission.)



FIGURE	10.4 Ionic	arrangements	in	the	paraelectric	and	ferroelectric	forms	of	lead	zirconium	titanate	(PZT).	(Adapted	from
Morgan	 Technical	 Ceramics,	 Guide	 to	 Piezoelectric	 and	 Dielectric	 Ceramics.	 Available	 at
http://www.morganelectroceramics.com/pzbook.html.)

10.1.2 FERROELECTRIC	DOMAINS

The	cooperative	displacement	of	the	ions	of	several	unit	cells	occurs	during	the	formation	of
tetragonal	BaTiO3	from	its	cubic	phase.	This	leads	to	the	spontaneous	formation	of	a	region
consisting	of	several	unit	cells,	with	all	 the	unit	cells’	dipole	moments	 lined	up	 in	 the	same
direction.	 This	 region	 of	 a	 ferroelectric	 material,	 in	 which	 the	 polarization	 is	 in	 a	 given
direction,	is	known	as	the	ferroelectric	domain	or	a	Weiss	domain.

Ferroelectrics	 are	 clearly	different	 from	other	polar	materials	 that	 have	orientational	 or
dipolar	 polarizations	 (e.g.,	 water).	 In	 a	 ferroelectric	 material,	 there	 are	 no	 built-in	 or
permanent	dipole	molecules	to	start	with.	Instead,	a	spontaneous	polarization	occurs	in	these
materials	 as	 the	 atoms	or	 ions	 self-assemble	 in	 an	arrangement	 that	 causes	 the	unit	 cells	 to
develop	a	net	dipole	moment.

The	process	 that	causes	 the	existence	of	a	polar	 region	or	a	 ferroelectric	domain	 in	one
part	of	a	material	cannot	continue	indefinitely	because	the	process	will	gradually	increase	the
free	energy	of	the	system	from	the	standpoint	of	electric	and	mechanical	energy.	Alignment
of	the	permanent	dipoles	increases	the	electrostatic	energy	of	the	system	in	comparison	with
the	randomly	distributed	state.	In	addition,	the	aligned	dipoles	result	in	a	change	in	the	shape
of	 the	 ferroelectric	 materials	 and	 increases	 the	 strain	 energy	 (Figure	 10.2).	 Therefore,
ferroelectric	materials	 cannot	 be	 composed	 of	 a	 single	 large	 ferroelectric	 domain	 for	 the
purpose	 of	 energy	 minimization.	 The	 growth	 of	 a	 ferroelectric	 domain	 during	 the	 phase
transition	 from	 the	 paraelectric	 state	 to	 the	 ferroelectric	 state	 stops	 when	 the	 domain	 size
reaches	a	certain	value.	This	means	that	ferroelectric	materials	normally	consist	of	many	fine
ferroelectric	 domains	 ranging	 in	 size	 from	∼100	 nm	 to	∼1	 mm.	 If	 the	 unit	 cell	 of	 the
ferroelectrics	has	the	tetragonal	symmetry,	the	polarizations	in	the	neighboring	domains	may
be	at	an	angle	of	90°	or	180°	in	relation	to	one	another	to	decrease	the	electrostatic	or	strain
energy.	The	electric	energy	of	 the	dielectric	polarization	in	one	domain	is	compensated	for
by	 another	 domain	 next	 to	 it,	 in	 which	 the	 polarization	 is	 in	 the	 opposite	 direction.	 If	 the
polarization	 directions	 of	 two	 domains	 have	 a	 180°	 difference,	 the	 electrostatic	 energy	 is
decreased.	 In	 addition,	 when	 the	 angle	 between	 the	 polarization	 directions	 of	 ferroelectric
domains	is	90°,	a	change	in	the	shape	and	strain	energy	of	the	ferroelectric	materials	can	be
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minimized	in	comparison	with	the	single	domain	ferroelectrics.	Thus,	a	ferroelectric	material
comprises	 many	 polar	 regions	 (called	 ferroelectric	 domains),	 in	 which	 each	 region	 has
polarization	 in	 a	 certain	 direction	 to	 suppress	 an	 increase	 in	 the	 electrostatic	 and	 strain
energy.	This	is	shown	schematically	in	Figure	10.5.	Domain	walls	(or	domain	boundaries)	in
ferroelectrics	are	very	thin	boundaries	(just	a	few	angstroms)	that	separate	domains	polarized
in	 different	 directions.	When	 the	 polarization	 directions	 of	 two	 domains	 sharing	 the	 same
domain	wall	have	a	180o	difference	for	the	electrostatic	energy	reduction	or	a	90o	difference
for	the	strain	energy	reduction,	the	domains	are	called	180o	or	90o	domains,	respectively.

A	 scanning	 electron	 microscope	 (SEM)	 image	 of	 the	 ferroelectric	 domains	 in	 the
tetragonal	form	of	PZT	is	shown	in	Figure	10.6.	The	contrast	among	 the	domains	has	been
obtained	by	carefully	etching	the	sample	with	chemicals.

FIGURE	10.5 Schematic	representation	of	 the	randomly	arranged	ferroelectric	domains	 in	an	unpoled	ferroelectric.	 (From
Mehling,	V.,	et	al.,	J.	Mech.	Phys.	Solids.,	55,	2106–2141,	2007.	With	permission.)

Unless	we	apply	a	substantial	electric	field,	the	polarizations	associated	with	the	different
regions	 cancel	 each	 other	 out,	 and	 the	 ferroelectric	material	 has	 no	 net	 polarization.	Thus,
when	the	domains	are	randomized	and	no	substantial	electric	field	has	ever	been	applied	to	a
ferroelectric	material,	the	net	dielectric	polarization	is	zero.	When	an	electric	field	is	applied
to	a	ferroelectric	material,	its	domains	begin	to	align	with	the	electric	field,	and	the	material
develops	a	net	polarization.	This	is	similar	to	the	alignment	of	permanent	dipoles	in	a	polar
material.	It	is	shown	in	Figure	10.7,	in	which	the	electric	field	is	relatively	lower	for	the	top
part	and	higher	for	the	bottom	part.



FIGURE	 10.6 A	 scanning	 electron	 microscope	 (SEM)	 image	 of	 the	 microstructure	 of	 a	 lead	 zirconium	 titanate	 (PZT)
ceramic	modified	using	strontium	(Sr).	Sets	of	parallel	 lines	within	grains	show	the	ferroelectric	domain.	(Courtesy	of	Dr.	Raj
Singh	and	I.	Dutta,	University	of	Cincinnati).



FIGURE	10.7 Schematic	image	of	the	domain	growth	in	a	ferroelectric	material	with	(a)	a	low	electric	field	and	(b)	a	higher
electric	field.	(From	Hench,	L.L.	and	West	J.K.,	Principles	of	Electronic	Ceramics,	Wiley,	New	York,	1990.	With	permission.)

The	 application	 of	 an	 electric	 field	 helps	 to	 align	 the	 domains	 or	 polar	 regions.	 This
development	of	polarization	in	a	ferroelectric	material	is	nonlinear.	This	is	a	very	important
distinction	 between	 a	 linear	 dielectric	 material,	 such	 as	 silica	 (SiO2),	 alumina	 (Al2O3),
titanium	oxide	(TiO2),	or	polyethylene,	which	shows	only	nonferroelectric	polarization,	and	a
nonlinear	 dielectric	 material	 such	 as	 the	 tetragonal	 form	 of	 BaTiO3.	 Thus,	 Equation	 10.1,
which	 we	 have	 shown	 to	 be	 applicable	 to	 linear	 dielectrics,	 cannot	 be	 used	 to	 describe
polarization	as	a	function	of	the	electric	field	in	ferroelectric	materials.

As	 will	 become	 clear	 in	 Section	 10.1.3,	 the	 relationship	 polarization	 develops	 in	 a
ferroelectric	material	is	not	linear.	Ferroelectric	materials	that	have	never	been	exposed	to	an
electric	field	are	said	to	be	in	a	virgin	or	unpoled	state.

10.1.3 DEPENDENCE	OF	THE	DIELECTRIC	CONSTANT	OF	FERROELECTRICS	ON

TEMPERATURE	AND	COMPOSITION



When	 an	 electric	 field	 is	 applied,	 domains	 begin	 to	 undergo	 alignment.	 This	 leads	 to	 the
development	of	 considerable	 ferroelectric	polarization,	which	 causes	 ferroelectrics	 such	 as
BaTiO3	to	have	a	relatively	large	dielectric	constant	(Figure	10.8).	As	we	continue	to	increase
the	magnitude	of	the	electric	field	applied	to	a	ferroelectric	material,	an	increasing	number	of
domains	become	aligned.	However,	similar	to	the	law	of	diminishing	returns,	the	additional
increase	in	electric	field	does	not	produce	much	additional	dielectric	polarization.	This	means
that	 at	 higher	 electric	 fields,	 the	 dielectric	 constant	 (k)	 of	 ferroelectrics	 decreases.	 This	 is
another	 important	 distinction	 between	 regular	 dielectric	 materials,	 also	 known	 as	 linear
dielectrics,	and	nonlinear	ferroelectric	materials.

FIGURE	10.8 Dielectric	constant	of	polycrystalline	barium	titanate	(BaTiO3)	as	a	function	of	the	temperature	and	average
grain	 size.	 (From	Moulson,	 A.J.	 and	Herbert	 J.M.,	Electroceramics:	Materials,	 Properties,	 and	 Applications,	 Wiley,	 New
York,	2003.	With	permission.)

As	we	saw	in	Figure	10.8	and	in	Chapter	7,	the	measured	or	apparent	dielectric	constant	of
ferroelectrics	 and	 other	 dielectrics	 is	 a	 microstructure-sensitive	 property.	 The	 dielectric
constant	also	strongly	depends	on	 the	 temperature.	As	 the	 temperature	 increases	beyond	Tc,
that	is,	if	there	is	a	switch	from	the	ferroelectric	phase	to	the	paraelectric	phase,	the	dielectric
constant	decreases.	Above	Tc,	in	the	paraelectric	state,	the	dielectric	susceptibility	(1/χe	=	1/(εr
−1))	changes	linearly	with	temperature.	This	behavior	is	known	as	the	Curie–Weiss	law.	This
variation	in	the	dielectric	constant	of	the	paraelectric	phase	is	written	as	follows:



where	 T0	 is	 equal	 to	 the	 Curie	 temperature	 (Tc)	 if	 the	 phase	 transformation	 from	 the
ferroelectric	 to	 the	 paraelectric	 phase	 is	 of	 the	 second	 order.	 A	 second-order	 phase
transformation	means	 that	 the	volume,	 energy,	 and	 structure	 change	 continuously	 as	we	go
from	the	paraelectric	phase	 to	 the	ferroelectric	phase.	For	BaTiO3,	 the	 transformation	 is	of
the	second	order.	If	this	phase	transition	is	of	the	first	order,	then	T0	<	Tc.	The	constant	C	 is
known	 as	 the	 Curie–Weiss	 coefficient	 or	 the	 Curie	 constant.	 The	 first	 term,	 εo,	 is	 the
temperature-independent	part	of	ε.	It	is	related	to	the	polarization	of	ions.	Near	T0	or	Tc,	 the
second	term	dominates,	and	the	first	 term	can	be	ignored	(Xu	1991).	Thus,	 the	Curie–Weiss
law	is	sometimes	also	written	as

In	Chapter	11,	we	will	learn	that	essentially	the	same	type	of	behavior	is	seen	for	magnetic
materials.

An	example	of	Curie–Weiss	behavior	in	a	material	that	is	a	solid	solution	of	BaTiO3	and
strontium	titanate	 (SrTiO3)	 is	 shown	 in	Figure	10.9.	Note	 that	 the	Curie	 temperature	of	 this
material	 is	∼	+10°C.	Although	 the	data	 for	dielectric	constants	are	 shown	 for	 temperatures
below	Tc,	the	Curie–Weiss	law	does	not	apply	to	the	region	below	T	=	Tc.	Note	that,	even	in	a
paraelectric	 state,	 the	dielectric	 constant	of	materials	 is	very	high	compared	 to	other	 linear
dielectrics	such	as	Al2O3	and	SiO2.	This	property	is	very	important	for	applications	such	as
multilayer	capacitors.



FIGURE	10.9 Curie–Weiss	behavior	in	barium	titanate–strontium	titanate	(BaTiO3−SrTiO3)	ceramic	with	T0	=	Tc	∼	+10°C.
(From	Hench,	L.L.	and	West	J.K.,	Principles	of	Electronic	Ceramics,	Wiley,	New	York,	1990.	With	permission.)

Lowering	the	Curie	temperature	of	a	ferroelectric	material	is	useful	for	the	applications	of
such	dielectrics	in	capacitors.	It	is	common	to	add	Curie-point	shifters	to	BaTiO3.	As	we	can
see	in	Figure	10.9,	the	addition	of	SrTiO3	to	BaTiO3	causes	an	overall	lowering	of	the	Curie
temperature.	Consequently,	this	dielectric	formulation	has	a	relatively	high	dielectric	constant
at	and	around	room	temperature	(∼27°C,	or	300	K),	which	offers	high	volumetric	efficiency.
At	the	same	time,	the	material	is	paraelectric	and	thus	is	not	piezoelectric	(Section	10.11).	This
means	that	a	capacitor	made	from	such	a	material	will	not	produce	any	spurious	voltages.	We
can	form	solid	solutions	of	BaTiO3	with	lead	titanate	(PT,	PbTiO3)	and,	in	this	case,	the	Curie
temperature	 shifts	 to	 temperatures	 higher	 than	 Tc	 ∼120°C	 (for	 BaTiO3).	 Similarly,
compounds	such	as	barium	zirconate	(BaZrO3)	can	form	solid	solutions	with	BaTiO3,	which
can	 help	 suppress	 the	 Curie	 temperature.	 Such	Curie-point	 suppressors	 can	 also	 be	 useful
because	they	help	to	develop	temperature-stable	materials	with	a	high	dielectric	constant.	The
dielectric	constant	of	such	materials	will	not	vary	significantly	with	temperature.	This	ability
to	form	solid	solutions	allows	the	development	of	different	formulations	of	capacitors.

The	 Electronic	 Industries	 Alliance	 in	 the	 Unites	 States	 has	 developed	 a	 scheme	 for	 the
classification	 of	 different	 dielectrics	 based	 on	 their	 temperature	 stability.	 For	 example,	 an
X7R	dielectric	means	 that,	 in	 the	 temperature	 range	of	−55°C	to	+125°C,	 the	capacitance	of
the	capacitor	will	be	within	±15%	relative	to	its	value	at	25°C.	A	Z5U	dielectric	formulation
means	 that,	 in	 the	 temperature	 range	 +10°C	 to	 +85°C,	 the	 capacitance	 can	 change	 between
+22%	and	−56%	relative	to	its	value	at	25°C.



In	 some	 instances,	we	 can	 create	 a	 composition	 and	 a	 nanostructure	 so	 that	 the	 resultant
material	 shows	 a	 very	 high	 apparent	 dielectric	 constant,	 with	 a	 broad	 Curie	 peak.	 The
dielectric	constant	of	such	a	material	significantly	depends	on	the	frequency	of	measurements.
Such	materials	are	known	as	relaxor	ferroelectrics.	The	broadening	of	the	Curie	temperature
occurring	 in	 these	 materials	 can	 be	 attributed	 to	 the	 disorder	 of	 the	 ions	 at	 different
crystallographic	 sites	 in	 the	 crystal	 structures	 and	 to	 the	 nanoscale	 fluctuations	 in	 the
compositions.	These	lead	to	nanoscale	polar	regions	that	have,	in	effect,	a	Curie	temperature
of	 their	 own.	 Collectively,	 the	 ferroelectric	 to	 paraelectric	 transition	 becomes	 diffused
(Figures	10.10	and	10.11).

FIGURE	10.10 (a)	Dielectric	constant	and	(b)	tan	δ	for	strontium-bismuth-barium	titanate	(BaTiO3)	ceramics.	(From	Chen,
W.,	et	al.,	Solid	State	Commun.,	141,	84–88,	2007.	With	permission.)

Relaxor	ferroelectric	materials	 include	ceramics	such	as	 lead	magnesium	niobate	(PMN)
that	can	be	formulated	in	combination	with	other	ferroelectrics	such	as	PbTiO3	and	are	useful
in	 actuator	 applications	 because	 of	 their	 high	 electrostriction	 coefficients.	 The	 so-called
coupling	coefficient	of	these	materials	(see	Section	10.16)	is	also	better	than	PZT.	Many	novel
relaxor	 ferroelectric	 compositions	 in	 the	 form	 of	 both	 single-crystal	 and	 polycrystalline
materials	 have	 been	 made	 recently.	 The	 acoustic	 impedance	 of	 relaxor	 materials	 is	 better
matched	to	human	tissue	than	it	is	to	PZT	(Harvey	et	al.	2002).	In	principle,	these	materials	are
better	suited	for	applications	such	as	ultrasound	imaging	(see	Section	10.11).



FIGURE	10.11 Dielectric	properties	as	a	 function	of	 the	 frequency	of	 lead	magnesium	niobate	ceramics.	 (From	Moulson,
A.J.	and	Herbert	J.M.,	Electroceramics:	Materials,	Properties,	and	Applications,	Wiley,	New	York,	2003.	With	permission.)

As	 an	 example,	 the	 dielectric	 constant	 (real	 part)	 and	 tan	 δ,	 a	measure	 of	 the	 dielectric
losses,	are	shown	for	strontium-bismuth-barium	titanate	(SBBT)	ceramics	in	Figure	10.10.

Because	of	compositional	fluctuations	occurring	at	the	nanoscale,	relaxor	materials	exhibit
a	diffuse	phase	transition	and	show	a	Curie	range	rather	than	a	specific	Curie	temperature.	A
modified	Curie–Weiss	law	expression	is	used	to	describe	the	variations	in	dielectric	constants
of	these	materials	above	the	Curie	temperature	range.

The	real	part	 	for	the	dielectric	constant	and	the	imaginary	part	 	for	PMN	ceramics
is	 shown	 in	 Figure	 10.11.	 Note	 the	 multipliers	 on	 the	 y-axis.	 The	 values	 of	 the	 dielectric
constant	range	up	to	20,000.

10.2 RELATIONSHIP	 OF	 FERROELECTRICS	 AND	 PIEZOELECTRICS	 TO
CRYSTAL	SYMMETRY

In	a	ferroelectric	material,	dielectric	polarization	appears	spontaneously.	This	appearance	of
spontaneous	 dielectric	 polarization	 also	 causes	 a	 strain	 to	 develop	 in	 the	 ferroelectric
material.	For	 the	 six	polarization	direction	variations	 shown	 in	Figure	10.2,	 there	 are	 three
spontaneous	 strain	 states:	 one	 in	 the	 c	 direction	 and	 two	 in	 the	a	 direction.	A	piezoelectric
material	 develops	 a	 voltage	 when	 subjected	 to	 stress.	 A	 prefix	 piezo	 derived	 from	 Greek
word,	piezein,	means	pressure.

All	ferroelectric	materials	are	also	piezoelectric.	However,	not	all	piezoelectric	materials
are	ferroelectric.	For	example,	zinc	oxide	(ZnO),	gallium	arsenide	(GaAs),	and	quartz	(SiO2)
are	piezoelectrics,	but	they	are	not	ferroelectrics.

The	 seven	 crystal	 systems	 are	 triclinic,	 monoclinic,	 orthorhombic,	 tetragonal,	 trigonal,
hexagonal,	and	cubic,	and	lead	to	32	crystallographic	point	groups	(Gupta	and	Ballato	2007).
Of	these,	21	point	groups	have	no	center	of	symmetry	(Figure	10.12).	Of	the	21	point	groups
without	a	center	of	symmetry,	only	20	are	piezoelectric.	Among	the	20	point	groups	that	show
piezoelectricity,	10	point	groups	are	polar	or	pyroelectric.	A	pyroelectric	 is	 a	material	 that



shows	 a	 flow	 of	 charge	 to	 and	 from	 its	 surface	 consequent	 to	 a	 temperature	 change	 (see
Section	10.20).

Thus,	a	ferroelectric	material	is	also	a	pyroelectric;	however,	the	converse	is	not	true;	that
is,	a	pyroelectric	material	is	not	necessarily	a	ferroelectric	(e.g.,	ZnO	and	cadmium	selenide
[CdSe]).	Ferroelectrics	are	pyroelectric,	piezoelectric,	and	lack	inversion	symmetry.



FIGURE	10.12 Crystal	classes,	point	groups,	and	ferroelectrics.

Another	definition	of	ferroelectrics	is	that	they	are	pyroelectric	materials	whose	direction
of	 polarization	 can	 be	 reversed	 by	 a	 sufficiently	 strong	 electric	 field	 (Figure	 10.12).
Ferroelectric	materials	 are	 also	 characterized	by	 the	presence	of	 a	Curie	 temperature	 (or	 a
Curie	temperature	range	for	relaxor	ferroelectrics),	above	which	they	become	paraelectric.



We	will	 discuss	 piezoelectric	 and	 pyroelectric	 materials	 in	 detail	 in	 Sections	 10.12	 and
10.20.

10.3 ELECTROSTRICTION

Every	 material,	 including	 liquids	 and	 amorphous	 materials	 such	 as	 glass,	 undergoes
polarization	when	subjected	to	an	electric	field	(E).	This	 involves	 the	movement	of	electron
clouds,	 ions,	 and	 so	 on.	 Such	 movements	 associated	 with	 the	 polarization	 processes	 also
cause	the	development	of	a	small	strain	in	the	material.	Electrostriction	is	a	phenomenon	that
occurs	 in	all	materials	 in	which	 the	application	of	an	electric	 field	 induces	an	elastic	strain.
This	 strain	 (ε)	 is	 proportional	 to	 the	 square	 of	 the	 electric	 field	 (E;	 Figure	 10.13).	 The
development	 of	 strain	 in	 piezoelectrics	 that	 are	 also	 ferroelectric	 is	 quite	 different	 (Figure
10.26).

FIGURE	10.13 Electrostriction	strain	development	with	the	application	of	an	electric	field.

Electrostriction	produces	a	strain	that	is	independent	of	the	applied	field’s	sign.	The	strain
that	develops	due	to	ferroelectric	polarization	(Figure	10.2)	is	different	from	electrostriction
in	 important	 ways.	 First,	 the	 strain	 produced	 because	 of	 ferroelectric	 polarization	 is
proportional	to	the	electric	field	(E).	Second,	typically,	it	is	much	larger	than	that	produced	by
electrostriction.	 Third,	 the	 strain	 produced	 by	 ferroelectric	 polarization	 is	 strongly
temperature-dependent,	 especially	 as	 the	material	 transitions	 from	 the	 paraelectric	 phase	 to
the	ferroelectric	phase.	In	comparison,	the	strain	produced	by	electrostriction	does	not	show
significant	 temperature	dependence.	Finally,	because	every	material	undergoes	some	sort	of
polarization,	all	materials	show	electrostriction.

In	 piezoelectric	 materials,	 the	 total	 strain	 developed	 will	 be	 the	 result	 of	 both	 the
piezoelectric	 effects	 and	 electrostriction	 (Section	 10.7).	 Electrostriction-induced	 strain
contributes	 significantly	 to	 the	 high	 dielectric	 constant	 of	 ferroelectrics	 near	 their	 Curie
temperature.

If	Qij	 is	 the	 electrostriction	 coefficient	 for	 a	 material	 with	 remnant	 polarization	 Pr	 and
dielectric	constant	εr,	the	piezoelectric	coefficient	dij	is	given	by	the	expression



Consequently,	 relaxor	ferroelectrics	such	as	 lead	magnesium	niobate-lead	titanate	(PMN-
PT)	exhibit	very	high	strains	for	a	given	level	of	applied	electric	field	and	are	widely	used	in
electromechanical	 actuators.	 Many	 relaxor	 ferroelectrics,	 such	 as	 PMN-PT,	 have	 a	 high
electrostriction	 coefficient	 because	of	 their	 crystal	 structures	 and	 chemical	makeup.	This	 is
why	 they	 have	 very	 large	 piezoelectric	 coefficients.	 Even	 if	 we	 do	 not	 make	 use	 of	 the
electrostriction	effect	as	such,	the	consequence	of	this	effect	is	embedded	in	the	piezoelectric
coefficients	of	many	materials.

In	some	compositions	of	PZT,	such	as	those	near	the	morphotropic	phase	boundary	(MPB;
Section	 10.14),	 the	 total	 piezoelectric	 effect	 strain	 development	 plays	 a	 major	 role.
Electrostriction	 brings	 in	 a	 relatively	 smaller	 fraction	 of	 the	 total	 strain.	 Certain	 other
materials,	 such	 as	 some	 lead	 lanthanum	 zirconium	 titanate	 compositions,	 show	 very	 high
levels	 of	 polarization	 at	 high	 electric	 fields,	 and	 for	 these,	 the	 electrostriction	 strain	 is	 a
major	fraction	of	the	total	strain	developed.

10.4 FERROELECTRIC	HYSTERESIS	LOOP

The	dielectric	constant	(εr	or	k′)	of	ferroelectric	materials	is	dependent	on	the	strength	of	the
electric	 field	 (E)	 applied.	 When	 the	 electric	 fields	 applied	 are	 relatively	 high,	 the	 entire
material	 can	become	a	 single-domain	 structure.	 If	 this	 stage	 is	 reached,	 the	material	 cannot
generate	any	more	ferroelectric	polarization;	the	polarization	is	said	to	be	saturated,	that	is,
either	all	domains	are	aligned	or	there	is	one	large	domain.	This	state	of	maximum	possible
ferroelectric	 polarization	 is	 known	 as	 the	 saturation	 polarization	 (Ps).	 The	 only	 small
increase	that	is	possible	beyond	Ps	is	due	to	the	continued	ionic	and	electronic	polarization	of
the	atoms	or	ions	that	make	up	a	given	ferroelectric	material.

A	ferroelectric	material	in	which	a	substantial	fraction	of	ferroelectric	domains	is	aligned
with	 the	 applied	 electric	 field	 due	 to	 exposure	 to	 a	 level	 of	 electric	 field	 is	 called	 a	poled
ferroelectric.	The	process	of	applying	an	electric	field	in	order	to	align	a	substantial	fraction
of	 domains	 is	 known	 as	 poling.	 A	 schematic	 representation	 of	 the	 domain	 reorientation
occurring	during	poling	 is	 shown	 in	Figure	10.14.	 In	Figure	10.14,	 for	 the	 sake	 of	 clarity,
each	 grain	 is	 shown	 to	 have	 only	 one	 ferroelectric	 domain.	 In	 most	 cases,	 grains	 have
multiple	domains	(Figure	10.14).	Moreover,	the	material	does	not	have	to	be	polycrystalline.

The	level	of	electrical	field	needed	for	poling	a	ferroelectric	material	depends	on	the	field
that	is	needed	to	move	the	domain	walls.	In	practice,	the	poling	process	often	is	conducted	in
an	insulating	oil	bath	maintained	at	a	high	temperature	but	below	Tc.	The	higher	temperature
makes	it	possible	to	carry	out	poling	at	 lower	electrical	fields	because	of	 increased	domain
wall	 mobility.	 The	 insulating	 oil	 bath	 prevents	 any	 arcing	 that	 may	 occur	 among	 the
electrodes	applied	on	the	material	being	poled.

Higher	 temperatures	help	 in	 the	alignment	of	 the	domains	during	poling.	However,	 if	an
already-poled	 piezoelectric	 is	 again	 exposed	 to	 high	 temperatures,	 it	 can	 also	 depole.
Depoling	 means	 that	 the	 domains	 undergo	 randomization,	 which	 can	 cause	 the	 net
piezoelectric	 effect	 to	 diminish	 or	 disappear.	 A	 general	 rule	 of	 thumb	 for	 utilizing
piezoelectrics	is	that	they	can	be	safely	used	up	to	a	temperature	of	½	Tc	without	significant
degradation	of	the	piezoelectric	activity.	Another	factor	to	consider	is	whether	there	are	any



potential	 changes	 in	 the	 crystal	 structure,	 even	 though	 the	 material	 will	 not	 become
paraelectric	 (Figure	 10.35a).	 Depoling	 is	 also	 caused	 by	 stress	 encountered	 during
applications	because	applied	stress	can	cause	domain	switching.

FIGURE	 10.14 Schematic	 figure	 of	 the	 alignment	 of	 the	 domains	 poling	 process	 for	 a	 polycrystalline	 material.	 (From
Buchanan,	R.C.,	Ceramic	Materials	for	Electronics,	Marcel	Dekker,	New	York,	2004.	With	permission.)

Even	at	room	temperature,	in	time,	domains	in	a	freshly	poled	piezoelectric	undergo	some
level	 of	 randomization	 after	 the	 poling	 electric	 field	 has	 been	 removed.	 This	 process	 is
known	as	aging,	and	it	causes	a	decrease	in	the	piezoelectric	properties.	The	effects	of	aging
on	 dielectric	 properties	 are	 usually	 logarithmic	with	 respect	 to	 time	 and	 are	 accelerated	 at
higher	temperatures.

The	dielectric	constant	(εr)	of	ferroelectrics	will	be	very	high	at	small	electric	fields	and
will	 continue	 to	 decrease	 as	 the	 electric	 field	 increases.	 If	 the	 applied	 field	 is	 too	 high,
ferroelectric	materials	will	 exhibit	an	electrical	breakdown.	When	 the	electric	 field	 is	 taken
off,	not	all	of	the	domains	will	return	to	their	original	random	states	of	polarization	(Figure
10.14).	 As	 a	 result,	 the	 ferroelectric	material	 shows	 remnant	 polarization	 (Pr).	 We	 need	 to
apply	a	magnitude	equivalent	in	the	opposite	direction	to	what	is	known	as	the	coercive	 field
(Ec)	 in	order	 to	bring	 the	polarization	back	 to	 zero	by	 again	 randomizing	all	 the	domains.
This	behavior,	involving	development	of	polarization	in	a	ferroelectric	material,	is	captured
in	 what	 is	 described	 as	 a	 ferroelectric	 hysteresis	 loop.	 This	 trace	 of	 polarization	 (P)	 or



displacement	(D)	as	a	function	of	the	electric	field	is	known	as	the	polarization–electric	field
(P–E)	or	dielectric	displacement–electric	field	(D–E)	hysteresis	loop	(Figure	10.15).

There	is	a	difference	between	the	P–E	and	D–E	loops.	In	a	P–E	loop,	after	all	the	domains
are	aligned	(that	is,	when	P	=	Ps),	the	trace	describing	P–E	will	become	flat.

Recall	 that	 dielectric	 displacement	 (D)	 and	 polarization	 (P)	 have	 the	 following
relationship:

The	 ferroelectric	 polarization	 (P)	 that	 is	 typically	 induced	 in	 ferroelectric	 materials	 is
significantly	larger	than	ε0E,	and	therefore	D	≅	P.	Thus,	the	difference	between	a	D–E	and	P–
E	loop	may	not	appear	very	large.	However,	it	is	important	to	note	the	fundamental	difference
between	a	P–E	loop	and	a	D–E	loop.	A	P–E	loop	will	show	leveling	out	of	P	as	the	electric
field	causes	nearly	complete	domain	alignment.	In	a	D–E	loop,	the	value	of	D	will	continue	to
increase	with	increasing	E,	even	after	domain	alignment	is	complete.

FIGURE	10.15 Typical	dielectric	displacement	(D)–electric	field	(E)	hysteresis	loop	for	an	unpoled	ferroelectric	material.
(From	Xu,	Y.,	Ferroelectric	Materials	and	Their	Applications,	North	Holland,	Amsterdam,	1991.	With	permission.)

10.4.1 TRACE	OF	THE	HYSTERESIS	LOOP

We	will	now	follow	the	 trace	of	 the	hysteresis	 loop	shown	in	Figure	10.15.	For	an	unpoled
sample,	 the	 ferroelectric	 domains	 at	 first	 are	 randomly	 aligned.	 The	 starting	 point	 is	 the
origin	 (O),	 where	 there	 is	 neither	 an	 applied	 electric	 field	 nor	 the	 development	 of	 net
polarization	or	displacement.	As	an	electric	field	is	applied,	a	very	small	part	of	the	hysteresis
loop	initially	exhibits	a	polarization	that	is	linear	with	the	applied	electric	field.	In	this	region,
between	Points	O	and	A,	 the	 ferroelectric	material	 essentially	behaves	 similarly	 to	 a	 linear



dielectric	 because	 the	 applied	 electric	 field	 (E)	 is	 too	 small	 to	 cause	 any	 changes	 in	 the
orientation	of	randomly	arranged	ferroelectric	domains	(Figure	10.14).

As	 we	 increase	 the	 applied	 field,	 the	 ferroelectric	 domains	 begin	 to	 realign.	 The
realignment	of	 ferroelectric	domains	between	Points	A	and	B	results	 in	 the	development	of
relatively	large	polarization.	Thus,	the	dielectric	constant	of	ferroelectrics	is	relatively	large
in	 this	 region.	 As	 we	 can	 see	 from	 Figure	 10.15,	 the	 development	 of	 this	 polarization	 is
nonlinear.

As	we	 reach	Point	B,	almost	all	 the	domains	are	aligned	 (Figure	10.14,	 high	 field).	Any
additional	 increase	 in	 the	 electric	 field	 will	 cause	 only	 a	 slight	 increase	 in	 polarization
because	 of	 continued	 increases	 in	 the	 electronic	 and	 ionic	 polarization	 mechanisms.	 The
polarization	value	corresponding	to	Point	B	is	known	as	the	saturation	polarization	(Ps).	This
is	 the	 maximum	 polarization	 that	 can	 be	 expected	 from	 the	 alignment	 of	 domains	 in	 a
ferroelectric	material,	ignoring	the	small	levels	of	electronic	and	ionic	polarizations	that	can
continue	 to	 occur	 at	 high	 electric	 fields.	 The	Ps	 value	 depends	 on	 the	 composition	 of	 the
ferroelectric	 material;	 however,	 in	 contrast	 to	 the	 coercive	 field	 (Ec),	 Ps	 is	 not	 a
microstructure-sensitive	property.

Note	 that	 the	 slope	 of	 the	 region	 between	 Points	 B	 and	 C	 is	 rather	 small.	 Thus,	 the
dielectric	 constant	 of	 a	 ferroelectric	 at	 high	 electric	 fields	 is	 again	 rather	 small.	A	 another
point	 that	needs	 to	be	emphasized	 is	 that	 the	dielectric	constant	 (k	or	εr)	of	 ferroelectrics	 is
strongly	dependent	on	the	magnitude	of	the	electric	field	applied.	This	is	not	true	for	so-called
linear	dielectrics,	such	as	alumina,	silica,	and	polyethylene.	If	we	continue	to	increase	the	field
indefinitely,	the	ferroelectric	material	eventually	will	experience	dielectric	breakdown.

Let	us	assume	that	we	reverse	the	direction	of	the	applied	field	after	reaching	Point	C.	This
state,	in	which	all	domains	are	forced	into	alignment	with	the	field,	is	a	high-energy	state	for
the	material.	 The	 natural	 tendency	 for	 the	material	 will	 be	 to	 lower	 its	 internal	 energy	 by
reverting	 to	 the	 random	 arrangement	 of	 domains.	 As	 the	magnitude	 of	 the	 field	 decreases
while	going	from	Point	C	toward	Point	B	and	on	toward	Point	D,	some	domains	are	able	to
switch	their	polarization	directions	and	others	are	not.	Thus,	as	we	decrease	the	magnitude	of
the	applied	field,	 the	overall	polarization	(or	dielectric	displacement)	decreases.	However,	a
fraction	of	the	domains	continues	to	remain	aligned	(Figure	10.14)	with	 the	direction	of	 the
field	applied	(O	→	A	→	B	→	C).	This	causes	the	ferroelectric	material	to	develop	a	remnant
polarization	(Pr),	shown	at	Point	D	in	Figure	10.15.	Please	do	not	confuse	this	with	the	symbol
used	for	dielectric	displacement.

To	remove	this	remnant	polarization	(Pr)	from	the	ferroelectric	material,	we	must	apply	an
electric	 field	 in	a	direction	opposite	 to	 the	original	direction.	The	 region	between	Points	D
and	 F	 (Figure	 10.15)	 shows	 this	 effect.	 At	 Point	 F,	 we	 reach	 a	 randomized	 domain
configuration	with	no	net	polarization	 left	 in	 the	ferroelectric	material.	The	electric	 field	at
Point	 F	 is	 known	 as	 the	 coercive	 field	 (Ec),	 which	 can	 be	 defined	 as	 the	 field	 required	 to
coerce	or	force	all	the	domains	back	to	a	random	configuration,	causing	zero	net	polarization
in	a	material	that	was	subjected	to	an	electric	field.

As	 the	magnitude	 of	 the	 field	 (applied	 in	 a	 reverse	 direction)	 increases	 from	Point	 F	 to
Point	G,	the	domains	realign	with	the	new	direction.	At	Point	G,	all	the	domains	are	aligned
with	the	new	(i.e.,	reversed)	field	direction	(similar	to	Point	C).	As	the	magnitude	of	the	field



is	decreased,	some	domains	start	to	become	randomized.	We	reach	Point	H,	where	the	applied
field	is	reduced	to	zero.	However,	similar	to	Point	D,	some	domains	remain	aligned,	causing
a	remnant	polarization	(Pr).	The	polarizations	that	remain	at	Points	D	and	H	are	essentially	of
the	same	magnitude	but	in	opposite	directions	and	are	designated	as	+Pr	and	−Pr,	respectively.
The	polarization	that	remains	at	Point	H	can	be	reduced	to	zero	by	again	applying	a	field	in
the	reverse	direction	until	we	reach	a	point	that	corresponds	to	the	coercive	field	Ec.

One	 of	 the	most	widely	 used	 piezoelectric	 polymers	 is	 polyvinylidene	 fluoride	 (PVDF).
Figure	10.16	shows	a	D–E	hysteresis	loop	for	a	poled	PVDF	film	with	a	25-μm	thickness.	In
practice,	 such	 ferroelectric	 hysteresis	 loops	 are	 recorded	 using	 the	 Sawyer–Tower	 circuit.
Automated	instruments	are	currently	available	for	the	measurement	of	hysteresis	loops.	Note
that	 because	 the	 PVDF	 sample	 has	 been	 poled,	 this	 loop	 does	 not	 have	 the	 initial	 region
expected	 for	 an	 unpoled	 or	 virgin	 material	 (Figure	 10.15).	 This	 means	 that	 even	 at	 zero
electric	field,	the	film	already	has	a	built-in	dielectric	polarization.

Ferroelectric	 thin	 films	of	materials,	 such	 as	PZT,	 barium	 strontium	 titanate,	 and	PVDF,
have	 been	 investigated	 for	 a	 number	 of	 applications,	 which	 include	 nonvolatile	 random-
access	 memories,	 pyroelectric	 detector	 and	 imaging	 arrays,	 and	 microelectromechanical
sensors	 and	 actuators.	 An	 example	 of	 a	 ferroelectric	 hysteresis	 loop	 for	 a	 PZT	 thin	 film
doped	with	manganese	(Mn)	and	antimony	(Sb)	is	shown	in	Figure	10.17.

The	remnant	polarization	for	 this	manganese-	and	antimony-doped	PZT	film	is	about	15
μC/cm2	(Figure	10.17).	The	saturation	polarization	(Ps)	 is	about	34	μC/cm2.	Note	that	 the	x-
axis	data	are	shown	in	voltage	and	not	as	an	electric	field.	The	coercive	voltage	is	∼3.0	V,	and
the	coercive	field	based	on	the	thickness	of	the	thin	film	is	70	kV/cm	(see	Problem	10.1).

As	mentioned	before,	 the	saturation	polarization	(Ps)	 is	dependent	on	the	composition	of
the	 ferroelectric	 material.	 For	 example,	 the	 polarization–voltage	 hysteresis	 loops	 for
different	 compositions	 of	 Pb(ZrxTi1−x)O3	 (PZT),	 with	 x	 =	 0.2,	 0.5,	 and	 0.7,	 are	 shown	 in
Figure	10.18.

As	 shown	 in	 Figure	 10.19,	 the	 coercive	 field	 associated	 with	 5-μm-thin	 films	 of	 PZT
prepared	using	a	sol-gel	process	changes	considerably	with	changes	in	the	Zr/(Zr	+	Ti)	ratio.
From	 these	 data,	 we	 can	 see	 that	 the	 coercive	 field	 of	 PZT	 decreases	 with	 increasing
zirconium	concentrations.

Even	for	the	same	composition	of	a	material,	the	coercive	field	(Ec)	can	be	made	to	change
significantly	with	microstructure	because	different	microstructural	features,	such	as	grain	size
and	 point	 defects,	 affect	 the	 mobility	 of	 domain	 walls.	 These	 composition-	 and
microstructure-related	effects	are	used	 to	engineer	 the	so-called	soft	and	hard	categories	of
piezoelectrics	(Table	10.3).



FIGURE	 10.16 Hysteresis	 loop	 for	 a	 polyvinylidene	 fluoride	 film.	 (From	 Kepler,	 R.G.,	 In	 Ferroelectric	 Polymers:
Chemistry,	Physics,	and	Applications,	Marcel	Dekker	Inc.,	New	York,	1995.	With	permission.)

FIGURE	10.17 Hysteresis	loop	for	manganese-	and	antimony-doped	zirconium	titanate	(PZT)	thin	films.	(From	Ignatiev,	A.,
et	al.,	Mater.	Sci.	Eng.	B.,	56(2),	191–194,	1998.	With	permission.)



FIGURE	10.18 Composition	dependence	of	ferroelectric	properties	on	ferroelectric	hysteresis	loops.	(From	Osone,	S.,	et	al.,
Thin	Solid	Films,	516,	4325–4329,	2008.	With	permission.)

FIGURE	10.19 Coercive	field	of	sol–gel–derived	zirconium	titanate	(PZT)	films	as	a	function	of	the	Zr/(Zr+	Ti)	ratio.	(From
Osone,	S.,	et	al.,	Thin	Solid	Films,	516,	4325–4329,	2008.	With	permission.)

In	general,	the	saturation	polarization	(Ps),	which	is	the	maximum	polarization	that	can	be
obtained	from	a	given	composition	of	a	ferroelectric	material,	is	not	a	strong	microstructure-
dependent	quantity.	However,	the	coercive	field	(Ec)	is	very	much	a	microstructure-sensitive
property.	We	will	 see	 similar	 trends	 in	 ferromagnetic	 and	 ferrimagnetic	materials	 (Chapter
11).



The	appearance	of	the	ferroelectric	loop	and	the	associated	values	undergo	changes	with
temperature	 and	 especially	 depend	 on	 the	 particular	 crystal	 structure	 of	 the	 phases.	 For
example,	 for	BaTiO3,	 one	 of	 the	 phase	 transformations	 is	 that	 of	 a	 ferroelectric	 tetragonal
structure	changing	to	the	paraelectric	cubic	structure	at	∼Tc	=	120°C	(Figure	10.20).

The	 corresponding	 changes	 in	 the	 polymorphic	 forms	 of	 BaTiO3	 are	 shown	 in	 Figure
10.21.	BaTiO3	 also	 shows	 a	hexagonal	 polymorph,	which	 is	 not	 shown	 in	Figure	 10.21.	At
temperatures	 above	 Tc	∼	 120°C,	 BaTiO3	 is	 cubic	 and	 undergoes	 a	 transformation	 to	 the
tetragonal	 phase	 as	 the	 temperature	 decreases	 to	 less	 than	 120°C.	 The	 crystal	 structure	 of
BaTiO3	then	changes	from	tetragonal	to	orthorhombic	at	∼0°C.	At	an	even	lower	temperature
(−90°C),	the	crystal	structure	changes	to	a	rhombohedral	form	(Figure	10.21).

FIGURE	10.20 Qualitative	 appearance	of	D–E	 loops	 for	 barium	 titanate	 (BaTiO3).	 (Adapted	 from	Hench,	 L.L.	 and	West
J.K.,	Principles	of	Electronic	Ceramics,	Wiley,	New	York,	1990.)



FIGURE	10.21 Polymorphs	of	barium	titanate	(BaTiO3)	as	they	change	with	temperature.	(From	Hench,	L.L.	and	West	J.K.,
Principles	of	Electronic	Ceramics,	Wiley,	New	York,	1990.	With	permission.)

FIGURE	10.22 Changes	in	the	hysteresis	loops	for	strontium-barium-bismuth	titanate	(SBBT)	ceramics.	(From	Chen,	W.,	et
al.,	Solid	State	Commun.,	141,	84–88,	2007.	With	permission.)



We	 will	 also	 see	 similar	 changes	 in	 the	 ferroelectric	 hysteresis	 loop	 for	 relaxor
ferroelectrics.	For	example,	the	changes	in	the	hysteresis	loops	for	SBBT	ceramics	at	−45°C,
−75°C,	 and	−95°C	 are	 shown	 in	 Figure	10.22.	As	 the	 temperature	 decreases,	 the	 nanopolar
domains	become	stable,	and	the	remnant	polarization	increases	substantially.

10.5 PIEZOELECTRICITY

10.5.1 ORIGIN	OF	THE	PIEZOELECTRIC	EFFECT	IN	FERROELECTRICS

The	 piezoelectric	 effect	 is	 present	 in	 all	 ferroelectrics;	 however,	 it	 is	 not	 limited	 only	 to
ferroelectrics.	Materials	 such	 as	ZnO	 and	SiO2	 also	 exhibit	 piezoelectricity	 (Figure	 10.12).
We	begin	by	discussing	how	piezoelectricity	occurs	in	ferroelectric	materials.

A	poled	piezoelectric	ferroelectric	material	has	a	net	polarization	(Pr),	which	is	caused	by
the	 alignment	 of	 the	 randomly	 aligned	 domains	 in	 the	 ferroelectric	material	 by	 the	 poling
process.	 When	 a	 poling	 voltage	 is	 applied	 to	 a	 piezoelectric	 material	 such	 as	 PZT,	 the
positively	 charged	 titanium	 and	 zirconium	 ions	 in	 the	 asymmetric	 crystal	 structure	 are
attracted	toward	the	negative	end	of	the	poling	field	(Figure	10.23).

When	the	surfaces	of	a	poled	piezoelectric	are	connected	using	a	wire,	no	current	will	flow
because	there	is	no	free	charge	on	the	surfaces.	However,	when	a	poled	piezoelectric	material
is	 subjected	 to	 a	 compressive	 stress,	 the	 dipole	 moment—and	 hence,	 polarization—will
change.	 Polarization	 is	 the	 bound	 charge	 density;	 as	 it	 decreases,	 free	 charge	 density
increases.	 If	 excess	 free	 charge	 is	 generated	 on	 the	 surface,	 that	 charge	 will	 flow	 into	 an
external	circuit	and	create	a	transient	current	(Figure	10.24).

If	we	 deliberately	 do	 not	 allow	 a	 current	 to	 flow	by	maintaining	 an	open	 circuit,	 then	 a
voltage	with	the	same	polarity	as	that	used	in	the	poling	process	is	developed	(Figure	10.24b).
As	soon	as	the	wires	are	connected,	a	current	flows	as	shown	in	Figure	10.24a.

Note	that	for	PZT	and	other	materials	with	the	same	basic	crystal	structure,	essentially	the
same	effect	is	obtained	if	a	tensile	stress	is	applied	in	a	direction	perpendicular	to	the	poling
direction.

Thus,	 the	application	of	either	a	compressive	stress	along	the	polarization	direction	or	a
tensile	 stress	 perpendicular	 to	 the	 polarization	 direction	 generates	 a	 voltage	with	 the	 same
polarity	as	the	poling	voltage.

FIGURE	10.23 Poling	and	development	of	polarization	in	a	piezoelectric	material.



FIGURE	10.24 With	the	application	of	a	compressive	stress	to	a	poled	piezoelectric	along	the	poling	axis	or	a	tensile	stress
in	a	direction	perpendicular	to	the	polar	axis,	(a)	conventional	current	flows	in	a	closed	circuit	as	shown.	(b)	In	an	open	circuit,
a	voltage	with	the	same	polarity	as	the	poling	voltage	develops.

FIGURE	 10.25 Schematic	 representation	 of	 the	 direct	 and	 converse	 piezoelectric	 effects.	 (With	 kind	 permission	 from
Moheimani,	 S.O.R.	 and	 Fleming	 A.J.,	 Piezoelectric	 Transducers	 for	 Vibration	 Control	 and	 Damping,	 Springer
Science+Business	Media,	2006.)

If	 a	 tensile	 stress	 is	 applied	 along	 the	 poling	 direction,	 these	 effects	 are	 reversed.	 This
means	 that	 the	 current	 in	 the	 closed	 circuit	 flows	 in	 an	 opposite	 direction.	 If	 the	 circuit	 is
open,	 then	a	voltage	with	polarity	opposite	 to	 that	of	 the	poling	voltage	 is	set	up	across	 the
piezoelectric.	 Thus,	 for	 materials	 such	 as	 BaTiO3	 and	 PZT,	 a	 tensile	 stress	 along—or	 a
compressive	 stress	 perpendicular	 to—the	 poling	 direction	will	 cause	 the	 development	 of	 a
voltage	with	polarity	opposite	to	that	of	the	poling	voltage.	These	effects	are	summarized	in
Figure	10.25.

If	 we	 do	 not	 connect	 the	 piezoelectric	 surfaces	 through	 an	 external	 conductor,	 the	 free
charges	generated	on	 the	 surfaces	of	 the	poled	piezoelectric	 eventually	will	 leak	 inside	 the
high	(but	finite)-resistivity	material.	If	we	bring	the	wires	of	the	external	conductor	within	2	to
3	mm	of	each	other	but	not	close	to	the	circuit,	we	will	see	an	electrical	arc!	This	is	because
the	voltage	created	across	the	electrode	gap	is	very	high	(a	few	thousand	volts).	This	process



builds	an	electric	field	that	causes	the	electrical	breakdown	of	air,	thus	creating	an	arc.	This	is
the	principle	by	which	piezoelectric	spark	igniters	work.

10.6 DIRECT	AND	CONVERSE	PIEZOELECTRIC	EFFECTS

In	 the	 direct	 piezoelectric	 effect,	 when	 a	 poled	 piezoelectric	 material	 is	 subjected	 to	 a
compressive	or	 tensile	stress,	a	net	charge	develops	on	 the	surfaces	of	 the	material	 (Figure
10.25).	This	creates	a	voltage	across	the	dielectric	material.	The	direct	piezoelectric	effect	is
also	known	as	the	generator	effect	because	its	action	generates	a	voltage	or	electrical	charge.

The	 converse	 piezoelectric	 effect	 refers	 to	 the	 development	 of	 a	 strain	when	 an	 electric
field	 is	applied	 to	a	poled	piezoelectric	 (Figure	10.25).	The	 converse	piezoelectric	 effect	 is
also	known	as	the	motor	effect	because	the	application	of	a	voltage	creates	motion.

When	 we	 apply	 an	 electric	 field	 in	 the	 direction	 of	 poling	 (that	 is,	 the	 bottom	 surface
connected	to	the	positive	terminal	to	a	cylinder	of	a	poled	piezoelectric	such	as	PZT),	then	the
positively	 charged	 titanium	and	zirconium	 ions	will	move	 toward	 the	 top	 surface,	which	 is
connected	to	the	negative	terminal.	This	process	will	cause	an	extension	of	the	cylinder.	If	we
change	 the	 polarity,	 that	 is,	 apply	 a	 voltage	 opposite	 to	 the	 poling	 voltage	 and	 connect	 the
positive	electrode	to	the	top	surface,	then	the	positively	charged	titanium	and	zirconium	ions
in	 the	 unit	 cells	 of	 poled	 PZT	 will	 move	 away	 from	 the	 top	 surface.	 This	 will	 cause	 the
cylinder	to	become	shorter	in	length	(Figure	10.25).

10.7 PIEZOELECTRIC	BEHAVIOR	OF	FERROELECTRICS

All	 ferroelectric	materials	 also	 show	piezoelectric	behavior.	 However,	 not	 all	 piezoelectric
materials	 are	 necessarily	 ferroelectrics.	One	 common	 example	 of	 this	 is	 the	 quartz	 (SiO2)
crystal,	which	is	piezoelectric	but	not	ferroelectric.

Ferroelectric	 materials	 show	 a	 piezoelectric	 effect.	 However,	 for	 this	 effect	 to	 be
measurable	and	useful,	polycrystalline	ceramics	must	be	poled.	In	a	polycrystalline	ceramic,
grains	 are	 randomly	 oriented,	 and	 there	 are	 ferroelectric	 domains	 within	 each	 grain.	 If	 a
ceramic	with	a	randomized	domain	structure	is	subjected	to	stress,	no	measurable	strain—or
piezoelectric	effect—will	be	developed.	This	 is	because	 the	 strains	developed	 in	each	grain
will	cancel	each	other	out.	Therefore,	for	a	net	piezoelectric	effect	to	be	observed	and	to	be
useful,	we	must	align	a	majority	of	 the	domains	 in	a	given	direction.	This	 is	accomplished
using	 the	 poling	 process.	 As	 discussed	 in	 Section	 10.4,	 poling	 usually	 is	 carried	 out	 by
heating	 the	 piezoelectric	material	 to	 a	 higher	 temperature	 (not	 necessarily	 above	 the	Curie
temperature)	 in	 an	oil	 bath	 and	 then	 applying	 an	 electric	 field	 for	 a	 few	minutes.	Poling	 is
necessary	 in	 order	 for	 a	 piezoelectric	 ceramic	 to	 be	 useful	 for	 technological	 applications.
Domain	switching	 is	a	complicated	process.	 It	 is	 similar	 to	 the	manner	 in	which	nucleation
and	growth	processes	lead	to	phase	transformations	in	materials.

A	poled	piezoelectric	material	that	is	either	a	single	crystal	or	polycrystalline	develops	a
voltage	when	subjected	to	stress.	It	also	develops	a	strain	when	subjected	to	an	electric	field.
The	development	of	strain	in	a	poled	piezoelectric	is	described	in	what	is	known	as	a	butterfly
loop	(Figure	10.26a).	The	corresponding	P–E	loop	is	shown	in	Figure	10.26b.



In	 Figure	 10.18,	 the	 ferroelectric	 hysteresis	 loops	 are	 shown	 for	 Pb(ZrxTi1−x)O3	 (PZT)
with	x	=	0.2,	0.5,	and	0.7	(Osone	et	al.	2008).	The	corresponding	butterfly	loops	showing	the
longitudinal	strain	that	develops	as	a	function	of	the	electric	field	via	the	piezoelectric	effect
are	shown	in	Figure	10.27.

FIGURE	10.26 Relationship	between	 (a)	 the	butterfly	 loop	and	 (b)	 the	P-E	 loop	 showing	 the	development	 of	 strain	 as	 a
function	of	the	electric	field.	(From	Cross,	E.,	Nature,	432,	24–25,	2004.	With	permission.)

FIGURE	 10.27 Longitudinal	 strain–electric	 field	 butterfly	 loops	 for	 Pb(ZrxTi1−x)O3	 (PZT),	 with	 x	 +	 0.2,	 0.5,	 and	 0.7.
(From	Osone,	S.,	et	al.,	Thin	Solid	Films,	516,	4325–4329,	2010.	With	permission.)

10.8 PIEZOELECTRIC	COEFFICIENTS



The	 direct	 and	 indirect	 effects	 in	 piezoelectric	 materials	 are	 commonly	 described	 using
piezoelectric	coefficients.	These	coefficients	are	also	used	to	compare	different	piezoelectric
materials	with	one	another.

The	converse	piezoelectric	effect	 is	commonly	described	by	 the	piezoelectric	coefficient
(d).	Remember,	d	stands	for	displacement.	The	piezoelectric	coefficient	(d)	is	defined	in	two
ways.	One	 is	 a	 ratio	 of	 the	mechanical	 strain	 (x)	 developed	 in	 a	 piezoelectric	material	 per
electric	 field	 (E)	 applied.	Mechanical	 strain	 (x)	means	mechanical	 displacement	 at	 constant
stress	(X)	and	temperature	(T).	The	other	is	a	ratio	of	the	electric	displacement	(D)	per	applied
mechanical	stress	(X)	at	constant	electric	field	(E)	and	temperature	(T).	Electric	displacement
(D)	 means	 the	 short–circuit	 charge	 density	 stored	 on	 the	 surface	 of	 the	 dielectrics	 under
electric	field,	which	readers	learned	in	Sections	7.3	and	8.1.	 If	x	 is	 the	strain	developed	 in	a
piezoelectric	 material	 after	 the	 application	 of	 an	 electric	 field	 E	 and	 D	 is	 the	 electric
displacement,	then	the	piezoelectric	coefficient	(d)	is	defined	by	the	following	equation:

The	SI	unit	of	 the	coefficient	d	 is	m/V	 if	 calculated	 as	 strain	developed	per	unit	 electric
field.	 The	 unit	 can	 also	 be	 coulombs	 per	 newton	 (C/N),	 which	 is	 the	 reason	 why	 d	 is
sometimes	called	the	piezoelectric	charge	constant.

The	 generator	 effect	 or	 direct	 piezoelectric	 effect	 is	 defined	 by	 the	 g	 coefficient.
Remember,	g	 stands	 for	generator.	The	piezoelectric	g	 coefficient	 is	 defined	 as	 the	 electric
field	 (E)	 generated	 by	 the	 application	 of	 unit	mechanical	 stress	 (X),	 which	 is	 given	 by	 the
following	equation:

The	piezoelectric	g	coefficient	 is	also	known	as	 the	piezoelectric	voltage	constant	and	 is
equal	 to	 the	strain	 (x)	 induced	per	unit	of	dielectric	displacement	 (D)	applied.	The	unit	of	g
coefficient	will	be	V	·	m/N	if	expressed	as	the	electric	field	generated	per	unit	stress	or	m2/C
if	described	as	the	strain	induced	per	dielectric	displacement	applied.

We	have	not	derived	Equations	10.4	and	10.5.	However,	the	rationale	for	these	equations	is
as	follows.

We	can	induce	the	development	of	strain	(x)	in	a	dielectric	material	by	using	a	mechanical
stress	(X),	such	as	one	that	is	tensile	or	compressive.	The	strain	that	is	produced	depends	on
the	 Young’s	 modulus	 of	 the	 material.	 The	 stiffer	 the	 material,	 that	 is,	 the	 higher	 Young’s
modulus,	the	lesser	the	strain	(x)	produced	for	a	given	level	of	stress	(X).	When	using	a	scalar
quantity,	the	inverse	of	Young’s	modulus	is	compliance.	Assume	that	the	strain	(x)	produced
in	a	material	will	be	proportional	to	its	compliance	(S)	and	level	of	stress	(X).

In	 a	 piezoelectric	material,	 the	 strain	 (x)	 can	 also	 be	 produced	 by	 the	 application	 of	 an
electric	field	(E)	via	the	converse	piezoelectric	effect.	Furthermore,	the	electrostriction	effect
also	 causes	 strain	 (Section	 10.3).	 We	 assume	 that	 the	 strain	 produced	 by	 the	 converse
piezoelectric	effect	is	much	greater	than	that	produced	by	electrostriction.

Thus,	we	can	consider	the	development	of	strain	(x)	as	a	function	of	the	stress	(X)	and	the
electric	field	(E).	If	we	want	to	consider	only	the	effect	of	stress	(X)	on	strain,	then	we	must



hold	the	electric	field	(E)	constant.	We	show	the	compliance	under	a	constant	electric	field	as
sE.	Similarly,	if	we	want	to	express	only	the	effect	of	electric	field	on	the	developing	strain,
then	we	must	hold	the	stress	X	constant	(this	is	the	other	variable	that	can	also	produce	strain).
This	 is	why,	 in	 the	 definition	 of	 piezoelectric	 coefficient	d,	we	 specified	 that	X	 is	 constant
(Equation	10.4).

Therefore,	 the	 development	 of	 strain	 x	 in	 ferroelectric	 materials	 can	 be	 written	 as	 a
function	of	the	two	causes:	stress	(X)	and	electric	field	(E):

Because	ferroelectric	materials	are	nonlinear	dielectrics,	and	in	some	materials,	the	stress–
strain	relationship	may	also	be	nonlinear,	a	more	appropriate	way	to	express	the	relationship
may	be	to	consider	the	change	in	strain	(δx)	as	follows:

Note	that	 the	piezoelectric	d	coefficient	 is	also	defined	as	 the	dielectric	displacement	 (D)
per	unit	stress	(X;	Equation	10.4).	Dielectric	displacement	(D)	is	also	induced	when	we	apply
an	 electric	 field	 (E).	 The	 extent	 of	 the	 dielectric	 displacement	 depends	 on	 the	 dielectric
constant	 or	 permittivity	 (ε)	 of	 the	material.	 Thus,	we	 can	write	 an	 equation	 that	 relates	 the
dielectric	displacement	(D)	as	a	function	of	the	applied	electric	field	and	stress	level	(X).	We
must	hold	the	stress	constant	when	we	consider	the	effect	of	electric	field	(E)	on	the	dielectric
displacement	 (D).	 Therefore,	 we	 use	 the	 permittivity	 value	 at	 constant	 stress	 (εX).	 In	 most
measurements	 of	 the	 dielectric	 constant,	 the	 sample	 is	 not	 clamped	 or	 constrained.	 This
allows	the	sample	to	expand	or	contract;	thus,	the	strain	varies	but	the	stress	(X)	is	constant.

As	 seen	 in	 the	 definition	 of	d	 (Equation	10.4),	 the	 value	 of	 the	 electric	 field	 (E)	 is	 held
constant.	Thus,	the	effect	of	the	developing	dielectric	displacement	(D)	due	to	two	causes,	(1)
electric	field	and	(2)	stress,	can	be	written	as:

Considering	that	ferroelectrics	are	nonlinear	dielectrics,	we	should	write	Equation	10.8	as

Using	similar	arguments,	we	can	write	equations	for	the	direct	effect,	that	is,	application	of
stress,	causing	the	generation	of	an	electric	field	as	follows:

Considering	 that	 the	g	 coefficient	 is	 also	 expressed	 as	 the	 strain	 produced	 per	 dielectric
displacement	applied	(Equation	10.5),	we	get

We	rewrite	Equations	10.10	and	10.11,	respectively,	as	follows:

In	addition	to	the	definitions	of	the	d	and	g	coefficients,	we	also	define	another	coefficient,
e,	as



One	way	 to	understand	 the	meaning	of	 this	e	coefficient	 is	 that	 it	describes	 the	dielectric
displacement	caused	by	the	creation	of	strain.

Similarly,	the	h	coefficient	is	defined	as

Section	10.9	describes	the	coefficients	d	and	g	under	hydrostatic	stress	conditions,	denoted
as	dh	and	gh.	In	these,	 the	subscript	h	stands	for	hydrostatic	and	should	not	be	confused	with
the	coefficient	h	defined	in	Equation	10.15.

10.9 TENSOR	NATURE	OF	PIEZOELECTRIC	COEFFICIENTS

10.9.1 CONVENTIONS	FOR	DIRECTIONS

The	 piezoelectric	 and	 pyroelectric	 coefficients	 (Section	 10.20)	 are	 more	 accurately
represented	 as	 tensors	 as	 are	 the	 dielectric	 constant,	 compliance,	 and	 Young’s	 modulus.
However,	 in	 this	 book,	we	 treat	 them	 as	 scalars.	 It	 is	 important	 to	 recognize	 that,	 in	many
applications,	 the	 effects	 developed	 (e.g.,	 development	 of	 strain)	 are	 in	 a	 different	 direction
than	 the	 cause	 (e.g.,	 the	 stress	 applied).	 For	 example,	 when	we	 stretch	 a	material	 along	 its
length,	its	width	also	changes.	The	extent	of	this	effect	is	given	by	Poisson’s	ratio	(v).	Thus,
although	 the	 stress	 is	 applied	 along	 one	 direction,	 its	 effect	 is	 felt	 in	 the	 directions
perpendicular	to	it.	Similar	effects	must	also	be	accounted	for	in	piezoelectrics.	The	notation
shown	in	Figure	10.28	generally	is	used	for	directions	of	piezoelectrics.

According	 to	 this	 convention,	 the	 tensile	 or	 compressive	 forces	 are	 applied	 along
Directions	1,	2,	and	3,	also	designated	as	the	x-,	y-,	and	z-axes.	Planes	designated	as	4,	5,	and	6
are	 for	 the	 shear	 stresses.	 Direction	 3	 is	 considered	 the	 poling	 direction.	 This	 means	 the
electrodes	 used	 in	 the	 poling	 process	 have	 been	 applied	 to	 the	 piezoelectric	 on	 the	 faces
perpendicular	to	Direction	3.

10.9.2 GENERAL	NOTATION	FOR	PIEZOELECTRIC	COEFFICIENTS

If	 we	 apply	 a	 stress	 to	 the	 piezoelectric	 in	 a	 direction	 j,	 the	 expression	 for	 dielectric
displacement	(D)	induced	in	the	direction	i	generally	would	be	written	as	follows:

This	 is	 almost	 the	 same	equation	 as	Equation	10.8;	 the	 only	 difference	 is	 that	 the	 tensor
nature	of	the	piezoelectric	coefficients	and	dielectric	constant	is	now	stated	explicitly.

Similarly,	we	can	write	an	expression	for	the	strain	developed	in	a	piezoelectric	as



Essentially,	this	is	another	form	of	Equation	10.6.	The	piezoelectric	coefficient	is	dij.	In	this
symbol,	the	first	subscript	(i)	shows	the	applied	electrical	field	that	causes	a	mechanical	strain
in	the	direction	j.	Equation	10.16	also	describes	the	effect	of	the	stress	Xj	applied	in	direction	j,
causing	a	strain	in	the	direction	j.	In	Equation	10.17,	 	is	the	compliance	of	the	piezoelectric
material	under	zero	electric	field.	This	is	also	known	as	compliance	under	a	closed-circuit	or
short-circuit	condition.

FIGURE	10.28 Notation	for	designating	the	directions	for	piezoelectrics;	Direction	3	(z-axis)	is	taken	as	the	poling	direction.
(From	Buchanan,	R.C.,	Ceramic	Materials	for	Electronics,	Marcel	Dekker,	New	York,	2004.	With	permission.)

The	value	of	compliance	when	the	dielectric	displacement	(D)	is	constant	is	shown	as	
and	 is	 known	 as	 compliance	 under	 the	 open	 circuit	 condition.	 Note	 that	 the	 values	 of
compliance	under	a	short	circuit	and	an	open	circuit	are	very	different.	This	 leads	us	 to	 the
definition	of	a	coefficient	 that	can	 link	 the	functioning	of	a	piezoelectric	as	a	 transducer.	A
transducer	 is	 a	 device	 that	 can	 convert	 one	 form	 of	 energy	 into	 another.	 For	 example,	 a
piezoelectric	material	can	convert	mechanical	energy	into	electrical	energy	and	vice	versa.

Reduced	notation	 is	 one	 in	which	both	 stress	 and	 strain	 are	 treated	 as	 first-rank	 tensors,
instead	of	second-rank	ones:	the	first	subscript	indicates	the	electrical	direction	and	the	second
subscript	indicates	the	mechanical	direction.

If	 we	 apply	 an	 electric	 field	 to	 a	 piezoelectric	material	 in	 Direction	 3	 and	measure	 the
strain	in	Direction	1,	the	corresponding	converse	piezoelectric	coefficient	is	indicated	as	d31.
Similarly,	the	coefficient	d33	will	indicate	the	strain	developed	in	Direction	3	when	an	electric
field	is	applied	in	that	direction	(i.e.,	along	the	poling	axis;	Figure	10.28).	If	we	apply	a	field
(E)	 in	Direction	 1,	 that	 is,	 perpendicular	 to	 the	 poling	 direction,	 this	will	 cause	 a	 shearing
strain	 on	 the	 plane	 shown	 as	 5	 (Figure	 10.28)	 and	 given	 by	 the	 d15	 coefficient.	 To	 use
piezoelectrics	 in	 this	 particular	 shear	 mode,	 the	 original	 electrodes	 used	 for	 poling	 in
Direction	 3	 must	 be	 removed,	 and	 new	 electrodes	 need	 to	 be	 applied	 in	 a	 direction
perpendicular	to	Direction	1.

We	can	subject	piezoelectrics	 to	hydrostatic	stress.	 In	 this	case,	we	use	a	subscript	h	with
the	coefficients.	The	coefficient	dh	is	related	to	the	d33	and	d31	coefficients	by	the	following
equation:



10.9.3 SIGNS	OF	PIEZOELECTRIC	COEFFICIENTS

The	d33	 values	 for	most	 commercially	 used	 PZT	 ceramics	 are	 in	 the	 range	 of	 200	 to	 550
pm/V.	The	d31	values	for	PZT	are	negative	and	range	from	about	−180	to	−220	pm/V.	The	d31
values	 for	 PZT	 ceramics	 and	 BaTiO3	 and	 relaxor	 ferroelectrics,	 such	 as	 lead	 magnesium
niobate-lead	titanate	(PMN-PT),	are	also	negative.	However,	the	d33	values	for	these	materials
are	 positive.	 This	 means	 that,	 when	 an	 external	 voltage	 is	 applied	 to	 drive	 a	 piezoelectric
cylinder,	which	has	been	poled	previously	in	Direction	3,	in	the	direction	of	polarization,	the
cylinder	expands	in	length,	that	is,	d33	is	positive	(Figure	10.25).	When	the	cylinder	expands,
the	strain	in	the	direction	perpendicular	to	the	longitudinal	axis	is	negative,	or	d31	is	negative.

In	other	piezoelectrics,	 such	as	PVDF,	 the	mechanisms	of	piezoelectric	polarizations	are
different.	As	 a	 result,	 the	d31	 for	 PVDF	 is	 positive,	 and	 the	d33	 coefficients	 for	 PVDF	 are
negative.	This	means	that	the	application	of	an	electric	field	in	the	direction	of	poling	(usually
the	thickness	direction)	will	cause	the	length	of	a	PVDF	sample	to	increase.

10.10 RELATIONSHIP	BETWEEN	PIEZOELECTRIC	COEFFICIENTS

We	will	 now	 show	 that	 the	piezoelectric	 coefficient	d,	which	defines	 the	 strain	 induced	per
unit	of	electric	field	applied	or	dielectric	displacement	per	unit	stress	(Equation	10.4),	and	the
g	 coefficient,	 which	 provides	 a	 measure	 of	 the	 electric	 field	 produced	 per	 unit	 stress
(Equation	10.5),	are	related	such	that	d/g	=	εX.

From	Equation	10.4,	the	d	coefficient	is	the	strain	developed	by	a	unit	change	in	the	applied
electric	 field.	Both	 the	 stress	 (X)	and	 temperature	 (T),	which	 can	 also	 cause	 strain,	 are	held
constant.	From	Equation	10.4,	we	get

One	 definition	 of	 the	 g	 coefficient	 is	 that	 it	 describes	 the	 generator	 effect,	 which	 is	 the
electric	field	(E)	developed	per	unit	stress	(X)	or	the	strain	(x)	developed	per	unit	of	dielectric
displacement	 (D)	 applied.	 Again,	 because	 strain	 can	 be	 developed	 in	 a	 material	 by	 the
application	of	either	stress	(X)	or	a	change	in	temperature	(expansion	or	contraction),	we	hold
these	constant.	Therefore,	from	Equation	10.5,	the	following	equation	is	obtained:

Dividing	Equation	10.19	by	Equation	10.20,	we	get



Recall	that	the	right-hand	side	of	Equation	10.21	is	the	definition	of	dielectric	permittivity
(ε).	Dielectric	permittivity	is	the	increase	in	the	dielectric	displacement	(D)	with	an	increase	in
the	electric	field	(E)	applied.	Because	the	application	of	stress	or	a	change	in	the	temperature
can	also	cause	a	 change	 in	 the	dipole	moment	 and,	 consequently,	 a	 change	 in	 the	dielectric
displacement,	these	parameters—stress	(X)	and	temperature	(T)—must	be	held	constant.	This
point	was	not	emphasized	previously	in	this	chapter.

Therefore,	from	Equation	10.21,	we	get

We	could	write	a	similar	equation	showing	 the	 tensor	nature	explicitly.	For	example,	 the
ratio	of	dij	and	gij	will	be	written	as	follows:

This	can	be	rewritten	as

or	as

Applying	this	for	d31	and	g31,	we	get

TABLE	10.1
Relationships	between	Piezoelectric	Coefficients

d	Coefficients e	Coefficients
g

Coefficients h	Coefficients

or



These	are	essentially	the	same	as	Equation	10.22.
Similarly,	it	can	be	shown	that	the	following	relationships	exist	among	other	piezoelectric

coefficients.

In	Table	10.1,	a	summary	of	the	relationships	among	different	piezoelectric	coefficients	is
listed.

Recall	 that	 in	 the	coefficients	 listed	 in	Table	10.1,	e	 relates	 the	dielectric	displacement	D
induced	 per	 unit	 of	 strain	 or	 stress	 generated	 per	 unit	 of	 electric	 field.	 The	 coefficient	 h
represents	 the	electric	 field	generated	per	unit	 strain	applied	or	 stress	generated	per	unit	of
dielectric	displacement.	The	term	h	used	here	should	not	be	confused	with	the	subscript	h	that
is	 sometimes	 used	 to	 describe	 piezoelectric	 coefficients	 such	 as	 d	 or	 h	 under	 hydrostatic
stress	 (Equation	10.18).	Also	note	 the	difference	between	εX,	 the	permittivity	under	constant
stress,	and	εx,	 the	permittivity	under	constant	 strain.	To	maintain	constant	 strain,	 the	 sample
must	 be	 clamped.	 Compliance	 is	 designated	 by	 s	 and	 stiffness	 by	 c.	 The	 terms	 E	 and	 D
represent	 the	 electric	 field	 and	 the	 dielectric	 displacement,	 respectively.	 In	 addition,	 the
permittivity	is	shown	as	a	scalar	quantity	in	these	equations;	that	is,	we	have	written	ε3	instead
of	ε33.	Finally,	note	the	difference	between	the	uses	of	permittivity	(ε)	and	dielectric	constant
(εr).	The	following	examples	illustrate	the	use	of	piezoelectric	coefficients.

Example	10.1: Meaning	of	the	Piezoelectric	Coefficients	D33	and	G15

What	is	the	meaning	of	(a)	d33	and	(b)	g15?	What	are	their	units?

Solution
1.	 The	coefficient	d33	is	one	of	the	piezoelectric	charge	constants.	It	is	defined	as

induced	polarization	 (SI	 unit:	C/m2)	 in	Direction	 3	 per	 unit	 applied	 stress	 (SI
unit:	 N/m2)	 also	 applied	 in	 Direction	 3.	 This	 expresses	 the	 direct	 or	 the
generator	piezoelectric	effect	(Figure	10.25).

The	unit	for	the	d	coefficient	is	coulomb	per	newton	(typically	written	as	pico-coulomb	per	newton
[pC/N]).
Another	 way	 to	 express	 the	 piezoelectric	 d33	 coefficient	 is	 as	 the	 strain	 induced	 in	 Direction	 3

(poling	direction)	by	a	field	applied	in	Direction	3.

Because	 strain	 has	 no	 dimensions,	 another	 possible	 unit	 for	 the	 d	 coefficient	 is	 meters	 per	 volt,
usually	written	as	picometers	per	volt	(pm/V).



2.	 Recall	that	the	first	subscript	is	the	electrical	direction,	and	the	second	subscript
is	the	mechanical	direction.	Thus,	g15	is	defined	as	the	induced	electric	field	in
Direction	1	per	unit	shear	stress	on	Plane	5,	that	is,	around	Direction	2	(Figure
10.28).

The	SI	unit	for	g15	would	then	be	Vm/N.
Alternatively,	g15	is	defined	as	the	shear	strain	induced	around	Direction	2	(i.e.,	Plane	5)	per	unit

of	dielectric	displacement	applied	in	Direction	1	(Figure	10.28).	The	SI	unit	would	be	m2/C.

The	SI	unit	will	be	m2/C.

Example	10.2: Relationship	Between	Piezoelectrics	and	Other	Coefficients

Show	that	 ,	that	is,	prove	Equation	10.22.

Solution
To	describe	the	relationship	between	d33	and	g33,	we	start	with	Equation	10.23.
Therefore,

The	right-hand	side	of	this	equation	is	the	dielectric	displacement	created	in	Direction	3	per	unit	of	electric	field
applied	in	Direction	3.	This	is	ε3,	and	we	have	assumed	constant	stress	(X).	Thus,	Equation	10.28	is	valid.
Note	that	lower	dielectric	constants	lead	to	higher	values	of	g.	For	example,	the	polymer	PVDF	has	a	relatively

lower	 value	 of	 the	d33	 coefficient,	∼−30	 pC/N	 (note	 the	 negative	 sign),	 compared	 to	 that	 of	 PZT,	with	d31	∼
200–400	 pC/N.	 As	 stated	 before,	 the	 coefficient	 d	 describes	 the	 converse	 piezoelectric	 effect	 (i.e.,	 the	 strain
developed	when	a	voltage	is	applied).	However,	the	dielectric	constant	of	PVDF	is	low	(εr	∼	10)	compared	to	that
of	PZT	(εr	∼	1000–2800).	Therefore,	the	piezoelectric	voltage	constant	g	of	PVDF	is	still	comparable	to	that	of
PZT.	The	coefficient	d	is	important	in	applications	where	the	strain	developed	in	piezoelectrics	causes	a	useful	action
or	event.
When	 a	 sinusoidal	 voltage	 is	 applied	 to	 a	 piezoelectric	 disk,	 for	 example,	 the	 back-and-forth	 expansion	 and

contraction	 of	 this	 disk	 (Figure	 10.25)	 can	 lead	 to	 the	 generation	 of	 ultrasonic	waves.	 For	 this	 application	 as	 an
ultrasonic	generator,	we	need	materials	with	a	high	d	 value.	We	would	prefer	 to	have	 a	material	with	 a	higher	g
coefficient	 in	 applications	where	we	 need	 to	 have	 a	 higher	 voltage	 generated	when	 the	material	 undergoes	 even
very	small	levels	of	stress.	For	ultrasound	detection,	we	would	prefer	to	use	materials	with	a	higher	g	coefficient.
In	many	real-life	applications	that	involve	piezoelectric	materials,	we	need	both	ultrasound	generation	and	detection
capabilities.	In	such	cases,	we	use	the	product	d	×	g	as	a	figure	of	merit.	In	some	applications,	such	as	in	underwater
sound	detectors	(sonars	or	hydrophones),	piezoelectric	materials	are	exposed	to	a	hydrostatic	pressure,	that	is,	they
are	subjected	to	stress	from	all	directions.	In	this	case,	the	hydrostatic	piezoelectric	coefficients	are	designated	as
dh	and	gh;	thus,	the	product	dh	×	gh	is	the	important	figure	of	merit.
Piezoelectric	composites	that	make	use	of	materials	such	as	PZT	and	PVDF	have	been	developed	for	many	such

applications	 (see	 Section	 10.19).	 In	 other	 applications	 (e.g.,	 pyroelectric	 detectors;	 Section	 10.20),	 piezoelectric
voltage	generation	actually	is	undesirable.	For	these	applications,	it	is	possible	to	take	advantage	of	the	difference



between	 the	 signs	 of	 the	 d	 coefficients	 and	 create	 composites	 in	 which	 the	 piezoelectric	 effect	 is	 substantially
reduced.	This	causes	the	detector	to	respond	more	to	changes	in	temperature	and	less	to	vibration	or	shock.

Example	10.3: Calculations	for	Evaluating	the	Direct	and	Converse	Effects	in	Lead	Zirconium	Titanate

A	poled	PZT	type	I	piezoelectric	ceramic	disk	(length	l0	=	2	mm	and	poled	in	Direction	3)	of	a	certain	composition
has	d33	=	2	89	pC/N,	and	its	dielectric	constant	is	1300.

1.	 What	is	the	value	of	the	piezoelectric	voltage	constant	or	the	g33	coefficient?
2.	 What	 is	 the	voltage	applied	across	 the	 thickness	of	 this	material	 if	 the	electric

field	(E)	is	250	kV/m?
3.	 How	much	strain	(X)	will	this	voltage	generate	along	Direction	3?
4.	 What	will	be	the	increase	in	length,	in	micrometers?

Solution
1.	 For	 the	 PZT	 ceramic	 sample	 here,	 the	 d33	 coefficient	 is	 289	 pC/N,	 and	 the

dielectric	constant	under	constant	stress	 	 is	1300.	Recall	 that	 the	dielectric
constant	is	the	ratio	of	the	permittivity	of	a	material	to	that	of	a	vacuum,	that	is,

Therefore,	in	this	case,

Thus	we	get	(Equation	10.28)

Therefore,	we	get

2.	 Because	 the	 initial	 length	 of	 the	material	 is	 2	mm,	 the	 voltage	 applied	 to	 the
material	would	be

3.	 The	strain	generated	in	Direction	3	by	applying	an	electric	field	of	250	kV/m	in
the	same	direction	will	be	given	by

4.	 Now,	from	the	definition	of	strain,	that	is,	×	=	Δl/l0,	the	change	in	the	dimension
will	be	given	by



Δ l	=	(2	mm	×	1000	μm/mm)(7.225	×	10−5)	=	0.145	μm

Thus,	 applying	 a	 voltage	 of	 5000	 V	 to	 this	 cylinder	 of	 height	 2	 mm	 will	 cause	 an
elongation	of	0.145	μm.

10.11 APPLICATIONS	OF	PIEZOELECTRICS

Properties	 of	 some	 piezoelectric	 materials	 are	 summarized	 in	 Table	 10.2.	 Various
applications	 of	 piezoelectrics	 are	 summarized	 in	 Figure	 10.29.	We	 will	 now	 discuss	 some
devices	based	on	piezoelectrics.

10.12 DEVICES	BASED	ON	PIEZOELECTRICS

10.12.1 EXPANDER	PLATE

The	 following	 example	 helps	 to	 illustrate	 the	meaning	 of	 some	 of	 the	 equations	 related	 to
piezoelectric	coefficients.	Consider	a	piezoelectric	plate	of	thickness	(t)	and	area	(A)	made	up
of	electrodes	with	length	l	and	width	w	(Figure	10.30).

When	 a	 voltage	 is	 applied	 along	 the	 thickness	 (t;	 also	 known	 as	 Direction	 3),	 a	 strain
develops	along	the	length	(described	as	Direction	1).	The	corresponding	piezoelectric	voltage
constant	(g),	which	can	be	described	as	the	strain	(x)	induced	per	unit	dielectric	displacement
(D)	applied,	will	be	written	as

We	can	write	Equation	10.34	as	follows:



TABLE	10.2
Approximate	 Ranges	 for	 the	 Piezoelectric	 Coefficients	 and	 Other	 Relevant	 Properties	 of	 Some	 Single-crystal
Piezoelectric	Materials

In	Equation	10.35,	the	numerator	is	simply	the	strain	in	Direction	1—that	is,	the	change	in
length	(Δl)	of	the	plate	along	Direction	1	per	unit	length	(l).	The	denominator	is	the	dielectric
displacement	(D)	applied,	which	is	the	charge	Q	divided	by	the	area	A.	Considering	that,	for
this	structure,	Q	=	V	×	C,	and	A	=	l	×	w,	we	get



FIGURE	10.29 Applications	of	the	direct	(generator)	and	converse	(motor)	piezoelectric	effects.



FIGURE	10.30 Piezoelectric	 plate	 geometry.	 The	 plate	 is	 poled	 in	 the	 thickness	 (t)	 direction.	 Stress	 is	 applied	 along	 the
length	direction.	 (Adapted	 from	Morgan	Technical	Ceramics,	Guide	 to	Piezoelectric	and	Dielectric	Ceramics.	 Available	 at
http://www.morganelectroceramics.com/pzbook.html.)

Recall	that	for	a	parallel-plate	capacitor,	the	capacitance	C	is	given	by

In	 this	case,	we	assume	 that	 the	capacitor	structure	 (that	 is,	 the	piezoelectrics	coated	with
metal	electrodes)	is	free	and	not	clamped.	This	means	that	the	stress	X	to	which	the	capacitor
is	subjected	is	constant.	Therefore,	the	dielectric	constant	(εr)	or	dielectric	permittivity	(ε)	that
we	use	is	under	constant	stress	X.	Furthermore,	the	direction	of	the	applied	electric	field	and
the	poling	direction	are	the	same—Direction	3.	Thus,	the	correct	value	of	permittivity	to	be
used	will	be	 .

Substituting	the	expression	for	C	from	Equation	10.37	into	Equation	10.36,	we	get

or

Rewriting

Note	that	in	Equations	10.37	and	10.38,	we	denote	the	dielectric	constant	using	the	symbol
εr	and	not	k.	This	is	because	the	symbol	k2	stands	for	the	coupling	efficiency	of	a	piezoelectric
(Section	10.16).

http://www.morganelectroceramics.com/pzbook.html


We	can	write	the	strain	developed	in	a	piezoelectric	along	its	thickness	(Direction	3)	when
a	voltage	is	applied	in	Direction	1	as	follows:

We	 can	 similarly	write	 an	 expression	 for	 the	 piezoelectric	 charge	 coefficient	d31	 as	 the
ratio	 of	 strain	 developed	 in	 Direction	 1	 (length)	 when	 a	 voltage	 is	 applied	 in	 Direction	 3
(thickness).

or

This	is	the	same	as	Equation	10.39.
A	 note	 of	 caution:	 These	 equations,	 for	 a	 change	 in	 length,	 are	 applicable	 only	 under

nonresonant	conditions.	Every	physical	body	or	structure,	such	as	the	plate	considered	here,
has	 natural	 mechanical	 resonant	 frequencies.	 If	 a	 piezoelectric	 material	 is	 excited	 at	 these
resonant	 frequencies,	 the	 changes	 in	 dimensions	 we	 will	 get	 will	 be	 larger	 than	 those
predicted	 by	 Equations	 10.42	 and	 10.39.	 In	 other	 words,	 these	 equations	 are	 applicable	 to
frequencies	of	excitation	well	below	the	resonant	frequencies.

Both	Equations	10.42	and	10.39	describe	the	change	in	the	length	(Δl)	of	a	dielectric	plate.
By	equating	these,	we	get

Therefore,

or

This	 is	 the	 relationship	between	 the	g	 and	d	 coefficients,	 previously	 shown	 in	Equations
10.23	and	10.27.

In	 Example	 10.4,	 we	 will	 show	 how	 to	 interpret	 the	 meaning	 of	 piezoelectric	 and
mechanical	 coefficients	 and	 to	 calculate	 the	 magnitude	 of	 strain	 developed	 in	 a	 poled



piezoelectric	subjected	to	voltage.

Example	10.4: Piezoelectric	Micropositioners

The	 small	 change	 in	 dimensions	 we	 can	 obtain	 by	 applying	 a	 voltage	 to	 a	 piezoelectric	 can	 be	 used	 to	 make
devices	known	as	micropositioners.	A	poled	PZT	ceramic	plate,	50	mm	long,	5	mm	wide,	and	2	mm	thick,	is	used
as	a	micropositioner	device.	Assume	that	the	dielectric	constant	 	is	1200	and	g31	=	10.5	×	10

−3	V·m/N.

1.	 What	will	be	the	value	of	d31?
2.	 What	will	 be	 the	 change	 in	 the	 length	 of	 this	 plate	 if	 a	 potential	 of	 100	V	 is

applied	across	its	thickness?
Solution
1.	 We	start	with	the	relationship	between	d31	and	g31	from	Equation	10.26.

Therefore,

FIGURE	10.31 Typical	 converse	 piezoelectric	 effect	 in	PZT	 ceramics.	 (From	Pilgrim,	S.,	Piezoelectric
Materials:	 A	 Unheralded	 Component,	 11th	 ed.,	 FabTech.	 Available	 at
http://www.fabtech.org/white_papers/_a/piezoelectric_materials_an_unheralded_component.	 With
permission.)

Note	the	conversion	of	the	dielectric	constant	to	dielectric	permittivity	using	the	permittivity	of	free
space	(ε0	=	10.85	×	10

−12	F/m).

Thus,	d31	=	139.9	×	10
−12	m/V.

2.	 The	change	in	the	dimension	of	this	plate	along	its	length	can	be	calculated	by
the	expression

http://www.fabtech.org/white_papers/_a/piezoelectric_materials_an_unheralded_component


Thus,	by	 applying	a	voltage	of	100	V,	we	get	 an	 increase	of	 about	348	nm	 in	 the	 length	of	 the
plate.	 Such	 changes	 in	 the	 dimensions	 of	 piezoelectrics	 are	 used	 in	 micropositioning	 and
nanopositioning	devices.	The	relative	strain	developed	in	a	piezoelectric	PZT	is	shown	in	Figure	10.31
as	a	function	of	the	electric	field	applied.

10.13 TECHNOLOGICALLY	IMPORTANT	PIEZOELECTRICS

Properties	 of	 single	 crystals	 of	 some	 commonly	 encountered	 piezoelectric	 materials	 are
listed	in	Tables	10.2	and	10.3.	Although	many	piezoelectric	materials	have	been	investigated,
only	a	handful	of	these	are	useful	in	commercial	applications	related	to	actuators,	ultrasonic
generators,	ultrasound	imaging,	and	vibration	control	and	dampening	(Figure	10.29).	We	will
discuss	 a	 few	 of	 these	 materials	 here,	 such	 as	 PZT,	 the	 most	 widely	 used	 piezoelectric
ceramic.

Another	 technologically	 important	 material	 is	 PVDF,	 which	 is	 different	 because	 it	 is	 a
polymer	and	is	therefore	quite	flexible.	Another	class	of	technologically	important	materials
is	the	group	that	contains	relaxor	ferroelectrics,	such	as	lead	magnesium	niobate-lead	titanate
(PMN-PT).	 These	materials,	 in	 both	 single-crystal	 and	 polycrystalline	 forms,	 have	 become
particularly	attractive	because	of	their	very	high	piezoelectric	coefficients	(d33	∼	2000	pm/N)
and	electromechanical	coupling	coefficients	(k33	∼	0.9).

One	of	 the	 limitations	of	piezoelectrics	 is	 that	 they	can	depole	when	 they	are	exposed	 to
temperatures	approaching	the	Curie	temperature.	This	means	that	the	domains	aligned	during
poling	will	become	randomized,	and	the	resulting	material	will	have	either	a	very	weak	or	no
piezoelectric	 response.	 In	general,	 piezoelectrics	 cannot	be	used	at	 temperatures	 above	half
the	value	of	their	Tc.	This	is	the	main	reason	why	BaTiO3,	with	a	Curie	temperature	of	120°C,
is	 not	 used	 widely	 as	 a	 piezoelectric	 material.	 Other	 factors	 that	 must	 be	 considered	 are
changes	 in	 the	 crystal	 structure	 and	 the	 lowering	 of	 dielectric	 constants.	 The	 dielectric
constants	 (εr)	 and	 the	 d33	 coefficients	 at	 room	 temperature	 for	 different	 piezoelectric
ceramics	are	shown	in	Figures	10.32	and	10.33.



TABLE	10.3
Piezoelectric	Properties	of	Poled	Polycrystalline	Barium	Titanate	and	Different	Grades	of	PZT

There	is	a	need	for	piezoelectrics	that	can	function	at	high	temperatures.	In	Section	10.18,
we	will	 briefly	 discuss	 the	 latest	 developments	 related	 to	 strain-tuned	 piezoelectrics,	which
represent	a	new	step	in	the	development	of	piezoelectric	devices	that	could	function	at	higher
temperatures.	Another	 area	of	 concern	 in	 the	 field	of	piezoelectrics	 is	 the	presence	of	 lead



(Pb)	 in	 most	 commercially	 useful	 piezoelectrics.	 There	 is	 considerable	 interest	 in	 the
development	of	lead-free	piezoelectrics	that	are	environmentally	friendly	(Figures	10.32	and
10.33).

10.14 LEAD	ZIRCONIUM	TITANATE

PZT	 and	 PZT-based	 ceramics	 are	 the	 most	 widely	 used	 piezoelectric	 materials.	 These
materials	 are	 popular	 because	 of	 their	 relatively	 large	 piezoelectric,	 electromechanical
coupling	 coefficients,	 and	 relatively	 high	 Curie	 temperatures	 (Table	 10.3).	 Table	 10.3	 also
contains	data	for	BaTiO3	for	comparison	purposes.	Note	that	these	are	approximate	ranges	of
the	values	of	piezoelectric	coefficients	and	other	properties,	and	have	been	provided	to	give	a
general	 idea.	 They	 should	 not	 be	 relied	 on	 for	 engineering	 design.	 The	 exact	 values	 will
depend	on	many	factors,	 including	microstructure,	processing,	exact	chemical	composition,
temperature,	and	the	state	and	magnitude	of	any	stresses	present.

FIGURE	10.32 Room-temperature	(300	K)	values	of	dielectric	constants	as	functions	of	the	Curie	temperature	for	zirconium
titanate	(PZT)	materials	and	novel	lead-free	piezoelectrics.	(From	Shrout,	T.S.	and	Zhang	S.J.,	J.	Electroceram.,	19,	111–124,
2007.	With	permission.)



FIGURE	10.33 Room-temperature	(300	K)	values	of	the	piezoelectric	coefficient	d33	(in	pC/N)	as	a	function	of	the	Curie
temperature	 for	 zirconium	 titanate	 (PZT)	materials	 and	 novel	 lead-free	 piezoelectrics.	 (From	Shrout,	 T.S.	 and	Zhang	S.J.,	 J.
Electroceram.,	19,	111–124,	2007.	With	permission.)

For	PZT	ceramics,	 the	maximum	strain	develops	at	x	∼0.5,	which	 is	a	composition	near
the	so-called	morphotropic	boundary	(MPB;	Figure	10.34).	The	MPB	defines	 the	change	 in
the	 crystal	 structure	 of	 a	 ferroelectric	 material	 along	 with	 changes	 in	 its	 composition.
Important	piezoelectric	properties	of	ferroelectric	materials,	such	as	the	strain	developed	for
a	given	level	of	electric	field,	are	maximized	when	compositions	near	the	MPB	are	used.

In	 PZT	 at	 room	 temperature,	 zirconium-rich	 compositions	 have	 a	 rhombohedral	 crystal
structure	(Figure	10.35a).	Titanium-rich	compositions	exhibit	a	tetragonal	structure.	At	room
temperature	and	at	the	mole	fraction	of	zirconium	0.53	(i.e.,	titanium	mole	fraction	of	x	=	0.47
in	PbZr1−xTixO3),	the	crystal	structure	changes	from	rhombohedral	to	tetragonal.	The	change
in	crystal	structure	traditionally	has	been	used	to	define	and	describe	the	MPB	(Figure	10.35).

FIGURE	 10.34 Phase	 diagram	 for	 the	 PbZrO3–PbTiO3	 system	 showing	 the	 different	 ferroelectric	 phases	 and	 the
morphotropic	phase	boundary.	(From	Cross,	E.,	Nature,	432,	24–25,	2004.	With	permission.)



FIGURE	 10.35 (a)	 Crystal	 structures	 for	 zirconium	 titanate	 (PZT),	 their	 dielectric	 constants,	 and	 (b)	 the	 changes	 in
piezoelectric	 properties	 with	 composition.	 (Adapted	 from	 Moulson,	 A.J.	 and	 Herbert	 J.M.,	 Electroceramics:	 Materials,
Properties,	and	Applications,	Wiley,	New	York,	2003.	With	permission.)

It	 was	 previously	 believed	 that	 such	 MPB	 compositions	 led	 to	 maximum	 piezoelectric
properties	 (e.g.,	 piezoelectric	 coupling	 coefficients)	 and	 that	 the	 polarization	 vector	 could
switch	 its	 orientation	 in	 the	 different	 variants	 of	 the	 tetragonal	 and	 rhombohedral	 phases.
However,	it	has	been	suggested	recently	that	the	MPB	is	not	a	boundary	but	rather	a	phase	with
monoclinic	symmetry	(Ahart	et	al.	2008),	and	that	there	is	actually	a	new	monoclinic	(and	not
a	mixture	 of	 nanotwin	 domains	 in	 the	 tetragonal	 and	 rhombohedral	 phases).	 This	 phase	 is
intermediate	and	between	the	tetragonal	and	rhombohedral	PZT	phases.

Research	on	essentially	pure	PbTiO3	has	shown	changes	in	its	crystal	structure	caused	by
increasing	pressure	 (Figure	10.36).	Because	 the	 original	 concept	 of	 the	MPB	was	 linked	 to
changes	in	its	chemical	composition,	we	would	have	expected	that	an	MPB	could	not	exist	in	a
pure	compound	such	as	PbTiO3.	However,	the	tetragonal	form	of	PbTiO3	(shown	as	the	space
group	P4mm)	changes	 to	 the	monoclinic	phase	 (between	11	and	12	GPa;	 shown	as	Mc	 and
MA)	 with	 increasing	 pressure.	 Above	 16	 GPa,	 PbTiO3	 changes	 to	 a	 rhombohedral	 crystal
structure	(shown	as	the	R3m	space	group).

Recent	 research	 suggests	 that	 the	 classic	 MPB	 seen	 in	 the	 PZT	 system	 is	 the	 result	 of
chemical	pressure	that	builds	in	PbTiO3	as	the	titanium	ions	are	substituted	by	zirconium	ions.
This	is	similar	to	the	development	of	strain-tuned	ferroelectrics	(see	Section	10.18.1).

One	 of	 the	 concerns	 in	 the	 use	 of	 PZT	materials	 is	 that	 they	 contain	 lead.	A	 significant
amount	of	recent	research	has	been	directed	toward	development	of	lead-free	piezoelectrics
(see	Section	10.18.2).

10.14.1 PIEZOELECTRIC	POLYMERS



FIGURE	10.36 Changes	in	the	crystal	structure	with	increasing	pressure	in	PT.	(From	Ahart,	M.,	et	al.,	Nature,	451,	545–
549,	2010.	With	permission.)

TABLE	10.4
Monomers	or	Repeat	Units	of	Some	Piezoelectric	Polymers

Polymer
Repeat
Unit Polymer Repeat	Unit

Polyvinylidene	fluoride
[CH2–
CF2]n

Nylon-7 [—NH—(CH2)6—CO—]n

Polytrifluoro	ethylene
[CHF–
CF2]n

Nylon-9 [—NH—(CH2)8—CO—]n

Polytetrafluoro	ethylene,	also	known
as	Teflon

[CF2–
CF2]n

Nylon-
11

[—NH—(CH2)11—CO—]n

	 	 Nylon-
5,7

[—NH—(CH2)5—NH—CO—
(CH2)5—CO—]n

Many	polymers	are	piezoelectric	(Table	10.4).	The	most	widely	used	piezoelectric	polymer	is
PVDF,	which	exhibits	four	crystalline	structures.	The	beta	(β)	phase	of	PVDF	exhibits	a	polar
structure	 and	 is	 ferroelectric,	 pyroelectric,	 and	 piezoelectric.	 PVDF	 films	 are	 prepared	 by
stretching	or	rolling	the	nonpolar	alpha	(α)	phase	sheets.	During	this	process,	the	PVDF	films
undergo	 a	 phase	 transformation	 from	 the	 nonpolar	 α	 to	 the	 polar	 β	 phase.	 This	 phase
transformation	can	also	be	achieved	by	annealing	or	by	applying	an	electric	field,	also	known
as	poling.	Unlike	PZT	and	BaTiO3,	the	d31	coefficient	for	PVDF	is	positive,	whereas	the	d33
coefficient	is	negative	(Table	10.5).	This	means	that	when	a	voltage	is	applied	in	the	thickness
direction	 (the	poling	direction,	or	Direction	3),	 the	PVDF	film	will	expand	 in	 the	 thickness
direction	and	shrink	in	the	length	direction.	Also,	although	the	piezoelectric	coefficients	for
PVDF	 and	 related	 polymers	 (∼10	 pC/N)	 tend	 to	 be	 lower	 than	 those	 for	 ceramics	 (∼102
pC/N;	 Table	 10.3)	 by	 a	 factor	 of	 10	 to	 50,	 the	 dielectric	 constants	 of	 PVDF	 and	 related
materials	 are	 also	 lower	 than	 PZT	 and	 other	 ferroelectrics.	 This	 is	 why	 the	 voltage



coefficients	(i.e.,	the	g	values)	of	PVDF	and	related	materials	are	similar	to	those	for	PZT	and
other	ferroelectric	ceramics	(Table	10.5).

TABLE	10.5
Approximate	 Ranges	 of	 Values	 for	 the	 Piezoelectric,	 Dielectric,	 and	 Mechanical	 Properties	 of	 copolymers	 in
comparison	with	PZT	and	Quartz

Blends	of	PVDF	with	 trifluoroethylene	 (TrFE)	and	 tetrafluoroethylene	 (TeFE),	known	as
Teflon™,	are	also	piezoelectric.	Similarly,	odd-numbered	and	odd-odd	nylons	or	polyamides
(e.g.,	 nylon	9	or	nylon	5,	7)	 and	polymers	known	as	 cyanopolymers	 (containing	 the	C–CN
group)	 are	 also	 piezoelectric.	 Ferroelectric	 nylons	 exhibit	 more	 useful	 piezoelectric



properties	(e.g.,	d31	∼15	pC/N)	at	higher	temperatures	(up	to	200°C;	Cheng	and	Zhang	2008).
The	monomers	or	repeat	units	of	some	of	these	are	shown	in	Table	10.4.

TABLE	10.6
Piezoelectric	and	Other	Properties	of	PVDF	Films

In	Table	 10.5,	 the	 approximate	 ranges	 of	 selected	 piezoelectric	 properties	 of	 PVDF	 and
some	of	 its	 blends	 are	 shown.	Note	 that	 these	values	 are	 for	 illustration	purposes	only	 and
should	 not	 be	 used	 for	 design.	 The	 properties	 are	 strongly	 dependent	 on	 the	 processing
methods	 used,	 crystal	 structures,	 temperature,	 and	 on	 the	 frequency,	 and	 it	 is	 therefore
important	 to	 get	 more	 accurate	 data	 from	 the	 suppliers.	 For	 example,	 the	 piezoelectric
properties	of	a	PVDF	film	depend	strongly	on	the	orientation	of	the	films	(Table	10.6).	The
following	example	illustrates	the	use	of	piezoelectric	polymers.

Example	10.5: Polyvinylidene	Fluoride	Film	Sensor

A	 commercially	 available	 poled	 PVDF	 film,	 electroded	 using	 silver	 metallic	 ink,	 is	 110	 μm	 thick.	 A	 stress	 of
20,000	Pa	is	applied	to	this	film	over	a	1-in.2	area.

1.	 Assuming	 that	 the	 film	has	a	 rigid	backing	and	deforms	only	 in	 the	 thickness
direction,	what	will	be	the	open-circuit	voltage	generated?

2.	 If	the	film	is	now	subjected	to	the	same	level	of	force	as	in	part	(a)	but	the	film
has	 a	 compliant	 backing,	with	 a	 force	 acting	 on	 the	 cross	 section	 of	 the	 film
such	 that	 the	 film	 stretches	 in	 the	 length	 direction,	 what	 will	 be	 the	 voltage
generated	across	the	thickness	of	the	film?	Assume	that	g33	=	350	×	10−3	and	g31
=	220	×	10−3	V	·	m/N.

Solution



1.	 The	stress	is	acting	on	a	1-in.2	area,	and	because	the	film	has	a	rigid	backing,	it
can	deform	only	along	 the	 thickness	 (Direction	3).	Thus,	we	must	use	 the	g33
coefficient.

From	Equation	10.66,	the	electric	field

The	thickness	of	the	film	is	110	μm;	therefore,	the	voltage	generated	across	the	film	thickness
will	be

=	(−7000	V/m)	×	(110	×	10−6m)	=	−0.77	V

2.	 For	 this	 part,	 the	 film	 has	 a	 compliant,	 not	 rigid,	 backing	 and	 can	 change	 its
length.	We	must	use	the	g31	coefficient	to	calculate	the	electric	field	generated.

The	 example	 states	 that	 the	 force	 applied	 is	 the	 same	 as	 before.	 A	 stress	 of	 20,000	 Pa	 was
previously	applied	over	a	1-in.2	area.	Let	us	first	calculate	the	force	that	is	applied.

The	area	was	=	(1	in.2)	×	(2.54	cm/in.)2	×	(10−2	m/cm)2	=	6.452	×	10−4	m2.
Thus,	the	force	applied	=	(20,000	N/m2)	×	6.452	×	10−4	m2	=	12.903	N.
The	same	force	is	now	applied	over	a	cross	section	of	the	film	that	is	2.54	cm	in	length	and	110	μm

wide.	The	cross-sectional	area	is	now	2.794	×	10−6	m2.	This	is	a	very	small	area.
We	now	have	a	much	higher	level	of	stress	for	the	same	force	as	before:

=	(12.903	N)/(2.794	×	10−6	m2)	=	4.62	×	106	Pa

The	electric	field	generated	across	the	thickness	of	the	film	now	is

=	−(220	×	10−3V·m/N)	×	(4.62	×	106	Pa)	=	−1.02	×	106	V/m

Now	note	that	this	electric	field	still	appears	across	the	thickness	of	the	film	of	110	×	10−6	m.
This	is	what	the	coefficient	g31	represents.

Thus,	 the	voltage	generated	will	be	=	(−1.02	×	106	V/m)	×	(110	×	10−6	m)	∼−112	V.	This
voltage	 is	much	 higher	 because	 of	 the	 increased	 level	 of	 stress	 caused	 by	 the	 smaller	 cross-
sectional	area.

10.15 APPLICATIONS	AND	PROPERTIES	OF	HARD	AND	SOFT	LEAD	ZIRCONIUM
TITANATE	CERAMICS

Often,	PZT	ceramics	are	classified	as	soft	PZT	and	hard	PZT	(Table	10.3).	This	terminology
has	its	origins	in	the	field	of	magnetism,	wherein	we	refer	to	soft	and	hard	magnets	(Chapter
11).	 In	 general,	 soft	 PZTs	 have	 higher	 piezoelectric	 coefficient	 values.	 For	 example,	Navy
types	 II	 and	VI	 are	 considered	 soft	 PZTs	 (Figure	10.37).	 These	 soft	 PZT	 compositions	 are
donor-doped	 (e.g.,	 Nb5+	 substituting	 for	 Ti4+;	 see	 Chapter	 2)	 materials	 that	 have	 lower
coercive	 fields	 (∼6−15	 kV/cm	 for	 PZT).	 We	 can	 move	 the	 domains	 in	 these	 materials
relatively	 easily,	 so	 they	 are	 considered	 soft	 ferroelectrics	 or	 piezoelectrics.	 The	 donor-
doping	process	creates	positively	charged	point	defects	on	which	 the	charge	 is	balanced	by
cation	 vacancies	 or	 defects	with	 effective	 negative	 charge	 (Chapter	 2).	 Typically,	 dielectric
losses	in	these	soft	PZT	materials	are	higher	(tan	δ	∼	0.02)	because	domain	wall	mobility	is



increased.	 Soft	 PZT	 materials	 are	 useful	 for	 low-power	 ultrasonic	 transducers,	 force	 and
acoustic	pickups,	and	so	on.

Hard	PZT	compositions	are	acceptor-doped	materials	with	relatively	high	coercive	fields
(∼18−22	 kV/cm).	 DOD	 types	 I	 and	 III	 are	 examples	 of	 hard	 PZT	 (Table	 10.3).	 Their
piezoelectric	coefficients	are	smaller.	Their	coercivity	is	higher	and	their	dielectric	losses	are
smaller	by	an	order	of	magnitude	 (tan	δ	∼	0.001−0.004).	Hard	PZT	materials	are	useful	 in
applications	 such	 as	 resonant	mode	 ultrasonic	 devices,	 piezomotors,	 and	 so	 on.	Hard	 PZT
materials	are	doped	with	acceptor	dopants	 that	create	point	defects	with	a	negative	effective
charge.	This	charge	is	balanced	by	the	presence	of	oxygen	ion	vacancies,	which	are	positively
charged	defects	(Chapter	2).

The	 relationship	 of	 electric	 field	 versus	 strain	 for	 some	 soft	 and	 hard	 piezoelectrics	 is
shown	in	Figure	10.38.	This	figure	also	shows	data	for	some	relaxor	ferroelectrics,	such	as
PMN-PT,	that	rely	on	electrostriction	as	a	source	for	developing	strain.

Soft	 piezoelectrics	 usually	 show	 higher	 piezoelectric	 coefficients.	 Their	 disadvantage	 is
that	 their	 domain-wall	 motion	 is	 easy,	 so	 they	 tend	 to	 have	 higher	 dielectric	 losses.	 This
means	that	when	they	are	used	as	piezoelectric	devices	driven	by	an	electric	voltage,	they	will
generate	a	considerable	amount	of	heat.	Another	problem	with	soft	piezoelectrics	is	 that	 the
electric-field-versus-strain	 relationship	 shows	hysteresis.	This	means	 that	when	 the	material
extends	 from	one	 dimension	 to	 another	 and	 the	 field	 is	 removed,	 the	material	 does	 not	 go
back	 to	 its	 original	 dimension.	 This	 limits	 their	 applications	 as	 precise	 micropositioning
devices.

Hard	 piezoelectrics	 show	 lower	 piezoelectric	 coefficients.	 Their	 advantage	 is	 that	 their
dielectric	losses	are	very	small.	These	materials	can	be	driven	using	higher	electric	fields	and
will	not	generate	a	lot	of	heat.	They	also	do	not	exhibit	much	hysteresis	in	the	electric-field-
versus-strain	relationship.

FIGURE	10.37 (a)	P–E	 hysteresis	 loop	and	 (b)	 the	corresponding	 strain–electric	 field	butterfly	 loop	 for	 a	 soft	 zirconium
titanate	 (PZT)	 ceramic	 DOD	 II	 or	 PIC	 151.	 (From	 Schneider,	 G.A.,	 Annu.	 Rev.	 Mater.	 Res.,	 37,	 491–538,	 2007.	 With
permission.)



FIGURE	10.38 Strain	 versus	 electric	 field	 behavior	 for	 soft	 and	 hard	 zirconium	 titanate	 (PZT)	 ceramics,	 compared	 to	 an
electrostrictive	 lead	magnesium	niobate-lead	 titanate	 (PMN-PT)	ceramic.	 (From	Park,	S.-E.	and	Shrout	T.R.,	J.	Appl.	Phys.,
82(4),	1804–1811,	1997.	With	permission.)

10.16 ELECTROMECHANICAL	COUPLING	COEFFICIENT

Consider	a	piezoelectric	material	 that	 is	 subjected	 to	a	 stress.	An	elastic	 strain	will	develop
and	 the	 material	 will	 store	 some	 elastic	 energy.	 When	 the	 same	 piezoelectric	 material	 is
subjected	 to	an	 electrical	 field,	 it	will	 develop	 a	piezoelectric	 strain.	This	 causes	 it	 to	 store
additional	energy.	The	electromechanical	coupling	coefficient	(k)	is	defined	as

where	W12,	W1,	 and	W2	 are	 the	 piezoelectric,	 mechanical,	 and	 electrical	 energy	 densities,
respectively.

The	strain	development	in	a	piezoelectric	material	as	a	function	of	stress	(X)	and	electric
field	(E)	was	given	by	Equation	10.7.

For	a	stress	δX,	the	total	energy	stored	can	be	written	as	follows:

The	 first	 term,	 that	 is,	½	 sE	 (δX)2,	 is	 the	mechanical	 energy	 stored	 (W1)	 and	 the	 second
term,	½	dδXδE,	is	the	piezoelectric	energy	stored	(W12).



The	 dielectric	 displacement	D	 can	 be	 created	 or	 changed	 in	 a	 material	 by	 applying	 an
electric	 field.	 The	 cause	 and	 effect	 are	 related	 by	 the	 dielectric	 constant.	 A	 change	 in	 the
dielectric	displacement	can	also	occur	by	applying	stress,	which	changes	the	distance	among
the	entities	that	cause	dipoles.	Thus,	the	change	in	dielectric	displacement	is	written	as	shown
in	Equation	10.9.

Now,	if	an	electric	field	δE	is	applied,	the	total	energy	stored	can	be	written	as

From	the	definitions	of	W1,	W2,	and	W12	in	Equations	10.47,	10.49,	and	10.50,	we	get

or

Note	that	the	compliance	values	for	short-circuit	(sE)	and	open-circuit	(sD)	conditions	are
very	different.

We	can	now	develop	a	relationship	between	these	two	as	follows.
Now,	δx	=	sEδX	+	dδE,	and	also

Therefore,	we	get

Substituting	for	δE	(as	given	by	Equation	10.12)	and	from	Equations	10.12	and	10.54,	we
get

Note	that	g	=	d/εX;	therefore,	simplifying	the	right-hand	side	of	the	second	step	in	Equation
10.55,	we	get

or



This	can	be	rewritten	as

Recognizing	that	the	last	term	in	Equation	10.57	is	k2	(from	Equation	10.52),	we	get

Equation	 10.58	 is	 very	 important	 because	 it	 shows	 that	 the	 open-	 and	 closed-circuit
compliances	are	related	to	each	other	via	the	electromechanical	coupling	coefficient.	We	can
show	that	the	stiffness	(c)	values	under	open-	and	closed-circuit	conditions	are	also	similarly
related.

Note	that	usually	for	stiffness,	the	left-hand	side	is	the	short-circuit	value.
Instead	of	equating	δx	as	we	did	to	write	Equation	10.54	and	then	deriving	Equation	10.58,

we	can	equate	δE	and	show	that

This	derivation	involves	an	approximation	that	assumes	that	k4	≪	1.
We	can	rewrite	Equation	10.60	as

Multiplying	both	numerator	and	denominator	by	½E2,	we	get

Equation	10.62	tells	us	that	the	electromechanical	coupling	coefficient	can	be	written	as	the
ratio	 of	 energy	 densities.	 The	 denominator	 is	 the	 total	 electrical	 energy	 that	 is	 stored	 in	 a
piezoelectric	 body	 when	 a	 piezoelectric	 that	 is	 subjected	 to	 an	 electric	 field	 E	 is	 free	 to
deform	and	is	not	constrained.	Under	these	conditions,	the	stress	X	is	maintained	constant,	and
the	strain	x	changes.	The	term	 	represents	the	electrical	energy	stored	in	a	piezoelectric

when	the	material	is	constrained	such	that	the	strain	x	is	constant.	Thus,	the	numerator	term	in
Equation	10.61	 represents	 the	 difference	 in	 electrical	 energy	between	 a	 piezoelectric	 that	 is
free	to	deform	and	a	piezoelectric	that	is	constrained.	This	is	equal	to	the	mechanical	energy
that	results	from	the	conversion	of	electrical	energy	and	is	stored	in	the	piezoelectric	body.

This	 stored	 mechanical	 energy	 can	 be	 recovered	 from	 the	 piezoelectric	 and	 used.	 The
electrical	energy	stored	in	the	piezoelectric	also	can	be	used.	In	this	sense,	 the	parameter	k2



should	not	be	thought	of	as	the	efficiency	in	the	same	sense	as	we	think	of	the	efficiency	of	an
engine.	We	define	k2	as	the	ratio	of	usefully	converted	energy	to	the	input	energy.	Thus,	for
piezoelectric	 applications	 where	 the	 piezoelectric	 is	 used	 as	 a	 transducer,	 high	 coupling
coefficients	are	desirable.	If,	for	example,	 the	value	of	k2	 is	0.7,	 this	does	not	mean	 that	 the
transducer	is	only	70%	efficient.

If	the	piezoelectric	material	is	clamped,	it	cannot	develop	any	strain;	that	is,	no	mechanical
deformation	 is	allowed.	Thus,	no	mechanical	energy	can	be	 stored,	and	so	 the	only	energy
stored	is	electrical	energy.

In	Equation	10.62,	the	first	term	in	the	numerator	is	the	total	input	electrical	energy	and	the
second	term	in	the	numerator	is	the	electrical	energy	stored	at	constant	strain	(i.e.,	a	clamped
sample	that	cannot	store	any	mechanical	energy).	The	difference	between	these	terms	is	in	the
conversion	of	 the	 input	electrical	energy	 into	mechanical	energy.	We	define	 the	ratio	of	 the
electrical	energy	converted	into	mechanical	energy	to	the	total	input	electrical	energy,	as	the
effective	coupling	coefficient	(κeff),	represented	as	follows:

Instead	of	starting	with	the	relationship	among	compliances	under	open-	and	closed-circuit
conditions	 (Equation	 10.59),	 we	 can	 start	 with	 the	 stiffness	 under	 open-	 and	 closed-circuit
conditions	and	show	that	this	coefficient	can	also	be	defined	as

10.17 ILLUSTRATION	OF	AN	APPLICATION:	PIEZOELECTRIC	SPARK	IGNITER

Piezoelectrics	are	used	in	a	variety	of	applications	(Figure	10.28).	Most	applications	involve	a
relatively	 sophisticated	 system	 that	 takes	 advantage	 of	 the	 direct	 or	 converse	 piezoelectric
effect.

We	 have	 chosen	 a	 relatively	 simple	 application	 in	 the	 piezoelectric	 spark	 igniter	 to
illustrate	 the	applications	of	 some	of	 the	equations	derived	 so	 far.	We	will	 show	 that,	 for	 a
piezoelectric	 spark	 igniter	 made	 from	 a	 poled	 piezoelectric	 cylinder	 of	 diameter	 (d)	 and
length	(or	height)	l,	the	voltage	generated	(V)	under	open-circuit	conditions	is	given	by

When	 the	 piezoelectric	 igniter	 is	 subjected	 to	 a	 compressive	 force	 F	 across	 a	 cross-
sectional	area,

A	=	πd2

The	definition	of	the	piezoelectric	voltage	constant	(g)	is



The	electric	field	generated	and	the	stress	applied	are	related	by	the	following	expression:

Another	relationship	we	have	seen	in	Table	10.1	is

Note	 that,	 in	 this	 case,	we	 are	dealing	with	 the	 stress	 (X)	 applied	 in	Direction	3,	 and	 the
electric	field	is	generated	across	the	length	of	the	cylinder;	hence,	we	relate	these	properties
to	g33.

Therefore,

Representing	the	electric	field	generated	across	the	length	(i.e.,	height)	of	the	cylinder	as	E
=	V/l,	we	get

This	is	written	as	follows:

When	the	piezoelectric	igniter	is	first	subjected	to	a	compressive	stress	by	using	a	force	F
on	 area	 A,	 the	 strain	 (x)	 developed	 under	 open-circuit	 conditions	 (i.e.,	 constant	 dielectric
displacement	D)	is	given	by

The	first	part	of	this	equation	is	the	definition	of	strain.	The	second	part	relates	the	strain
(x)	to	the	stress	(F/A)	via	compliance	 	under	open-circuit	conditions.

The	mechanical	work	 (wm)	 done	 by	 the	 force	F	 in	 creating	 a	 change	 in	 length	 (δlD)	 is
given	by	the	equation

From	 the	 definition	 of	 the	 electromechanical	 coupling	 coefficient	 (k2),	 the	 result	 of	 this
mechanical	work	done	and	the	electrical	energy	available	will	be

We	 can	 also	 view	 the	 compressed	 piezoelectric	 cylinder	 as	 a	 capacitor	 with	 generated
voltage	V;	for	this	capacitor	with	capacitance	C	and	voltage	V,	the	electrical	energy	stored	in
this	capacitor	is



Equating	these	expressions	for	wel	and	substituting	for	C	in	terms	of	dielectric	permittivity
and	geometrical	parameters,	we	get

Solving	for	V,

or

Substituting	 	and	 ,	we	get	the	following	expression:

This	simplifies	to	the	following	equation	that	we	derived	previously:

If	this	voltage	V	generated	is	high	enough	to	overcome	the	gap	between	the	two	electrodes
connected	to	the	piezoelectric,	a	spark	will	be	created	between	the	ends	of	the	wires	connected
to	the	circular	electroded	faces	of	the	piezoelectric.	If	this	happens,	we	have	a	change	from	an
open-circuit	 condition	 to	 a	 closed-circuit	 condition.	 The	 compliance	 of	 the	 material
undergoes	a	change	to	its	short-circuit	value	 	from	its	open-circuit	value	 .	Because	 the
short-circuit	compliance	is	smaller,	this	transition	allows	for	the	development	of	an	additional
strain.	Let	us	assume	that	if	we	were	to	apply	a	force	F	on	area	A	under	a	closed	circuit,	then
the	total	change	in	length	would	be	δlE.	What	we	considered	before	was	the	strain	x	developed
under	open-circuit	conditions,	that	is,	the	constant	dielectric	displacement.	Let	us	refer	to	this
change	in	length	under	open-circuit	conditions	as	δlD.

When	we	apply	a	force	F	on	an	area	A	under	open-circuit	conditions,	the	displacement	will
be	δlD.	 If	 a	 spark	 is	 generated	 such	 that	 a	 closed-circuit	 condition	 is	 created,	 an	 additional
change	in	length	will	occur,	with	a	magnitude	of	(δlE	−	δlD).

This	additional	change	in	length	resulting	from	the	transition	from	closed-	to	open-circuit
conditions	will	be	given	by



The	 corresponding	 additional	 mechanical	 energy	 stored	 with	 this	 extra	 deformation,
resulting	from	the	formation	of	spark	causing	the	closed-circuit	condition,	will	be	given	by
the	following	equation:

This	 corresponds	 to	 the	 extra	 electrical	 energy	 (using	 the	 definition	 of	 coupling
coefficient)	as	shown	here:

Thus,	the	total	energy	stored	in	a	piezoelectric	before	and	after	the	short-circuit	condition
will	be	(from	Equations	10.73	and	10.80):

or

In	Equation	10.82,	if	we	substitute	 	from	Equation	10.58,	we	get



FIGURE	10.39 Increase	in	the	dielectric	displacement	in	certain	zirconium	titanate	(PZT)	compositions	plotted	as	a	function
of	the	compressive	stress.	(From	Moulson,	A.J.	and	Herbert	J.M.,	Electroceramics:	Materials,	Properties	and	Applications,
Wiley,	New	York,	2003.	With	permission.)

Substituting	for	 ,	we	get

Therefore,

In	 reality,	 the	 electrical	 energy	 stored	 in	 a	 piezoelectric	 igniter	 is	 even	 higher	 than	 this
because	compressive	 stress	causes	an	additional	 increase	 in	 the	dielectric	displacement	 (D).
This	occurs	because	some	of	the	so-called	90°	ferroelectric	domains	switch	their	orientation
under	 the	 influence	of	 the	 compressive	 stress.	This	 increase	 in	 dielectric	 displacement	 as	 a
function	of	the	compressive	stress	is	shown	in	Figure	10.39.

Example	10.6: Calculation	of	the	Voltage	of	a	Piezoelectric	Igniter

A	poled	 PZT	 cylinder	with	 a	 diameter	 of	 2	mm	 and	 a	 thickness	 of	 5	mm	 is	 to	 be	 used	 as	 a	 spark	 igniter.	What
voltage	is	generated	by	applying	a	compressive	force	of	100	N	to	the	circular	cross	section	of	this	disk?	Assume
that	the	d33	for	this	PZT	is	289	pC/N	and	the	dielectric	constant	in	a	free	(unclamped)	state	 	is	1300.
Solution
The	 electric	 field	 generated	 and	 the	 stress	 applied	 are	 related	by	Equations	10.66	and	10.67.	 Therefore,	 for	 this
ceramic,	the	g33	will	be	given	by

The	area	of	the	circular	cross	section	is	given	by	πd2/4	=	3.1416	×	10−6	m2.



The	stress	applied	is	the	force	divided	by	the	area	of	the	circular	cross	section	and	works	out	to	31,830,981	Pa
or	31.83	MPa.
The	electric	field	generated	=	−(31,830,981	Pa)	×	(0.0255	V/m)	=	811,690	V/m	or	0.812	MV/m.
This	 field	 runs	 across	 the	 height	 of	 the	 piezoelectric	 spark	 igniter;	 thus,	 the	 voltage	 this	 field	 generates	 is	 =

(811,690	V/m)	×	(5	×	10−3	m)	=	4058	V.	If	the	applied	stress	is	compressive,	the	voltage	generated	is	in	the	same
direction	as	the	poling	voltage	(Figure	10.25).
Thus,	a	relatively	small	force	(∼100	N),	which	can	be	generated	by	a	human	hand,	leads	to	the	generation	of

4000	V.	If	the	ends	of	this	cylinder	are	connected	by	wires	and	if	the	two	wires	are	brought	within	a	few	millimeters
of	each	other	but	are	not	allowed	to	touch,	a	spark	jumps	between	the	tips	of	the	wire.	Although	this	voltage	is	high,
the	 amount	 of	 charge	 accumulated	 because	 of	 the	 direct	 piezoelectric	 effect	 and	 the	 resultant	 current	 is	 actually
quite	small	and	is	not	likely	to	be	very	dangerous.

10.18 RECENT	DEVELOPMENTS

10.18.1 STRAIN-TUNED	FERROELECTRICS

One	of	 the	 limitations	of	materials	developed	 to	date	 is	 that	most	of	 them	are	not	useful	 in
high-temperature	 applications	 due	 to	 depoling.	 Strain-tuned	 ferroelectrics	 are	 ferroelectric
materials	 or	 devices	 whose	 dielectric	 properties	 have	 been	 altered	 due	 to	 a	 built-in	 strain
(Schlom	 et	 al.	 2007).	 This	 approach	 could	 lead	 to	 better	 high-temperature	 performance	 of
current	ferroelectrics.

Strain	is	used	as	a	method	for	controlling	the	electrical	properties	of	materials	or	devices
in	 several	 semiconductors	 (e.g.,	 silicon-germanium)	 and	 has	 recently	 been	 applied	 to
ferroelectrics.	One	 of	 the	 limitations	 of	many	well-known	 ferroelectrics	 is	 that	 their	Curie
temperatures	(Tc)	are	low.	For	example,	the	Tc	in	BaTiO3	is	only	∼120°C.	Thus,	BaTiO3	loses
its	 ferroelectric	 and	 piezoelectric	 behavior	 at	 temperatures	 greater	 than	 120°C.	 BaTiO3
epitaxial	 thin	 films	 were	 recently	 grown	 on	 ReScO3	 substrates	 (Re	 indicates	 a	 rare-earth
element).	The	lattice-constant	mismatch	(Figure	10.40)	 leads	 to	 the	development	of	a	biaxial
compressive	strain	of	∼1.7%	in	these	films.	This	 in	 turn	causes	 the	remnant	polarization	to
increase.	More	importantly,	the	Tc	of	such	films	increases	by	almost	500°C.	Thus,	strain-tuned
ferroelectrics	 offer	ways	 to	 use	 existing	 ferroelectric	 and	 piezoelectric	materials	 at	 higher
temperatures.	 In	 strain-tuned	BaTiO3,	 the	 increase	 in	Tc	 also	 offers	 the	 hope	 of	 using	 this
environmentally	 friendly	 material	 in	 applications	 instead	 of	 lead-containing	 piezoelectrics
such	as	PZT.



FIGURE	10.40 Lattice	constants	of	several	pseudocubic	 ferroelectrics	 (above	 the	horizontal	 line)	compared	 to	 the	 lattice
constants	 of	 several	 substrate	 materials.	 (From	 Schlom,	 D.G.,	 et	 al.,	 Annu.	 Rev.	 Mater.	 Res.,	 37,	 589–626,	 2007.	 With
permission.)

FIGURE	10.41 (a)	Room-temperature	values	of	planar	(kp)	and	(b)	longitudinal	(k33)	coupling	coefficients.	(From	Shrout,
T.S.	and	S.J.	Zhang.,	J.	Electroceram.,	19,	111–124,	2007.	With	permission.)

10.18.2 LEAD-FREE	PIEZOELECTRICS

Considerable	research	has	been	directed	toward	the	development	of	lead-free	piezoelectrics.
Many	 countries	 around	 the	 world	 have	 directives	 requiring	 strict	 control	 of	 hazardous
materials	 arising	 from	 all	 sources,	 including	 electronics,	 automotive	 components,	 and
consumer	 appliances.	This	 is	 especially	 important	 for	materials	 that	 contain	 toxic	 elements
such	 as	 lead.	 The	 two	 major	 classes	 of	 materials	 that	 have	 been	 developed	 are	 potassium
sodium	niobate	(K05Na05NbO3,	KNN)	and	sodium	bismuth	titanate	(Na05Bi05TiO3,	NBT).	The
dielectric	 constants	 and	 the	 d33	 coefficients	 for	 some	 of	 the	 lead-free	 piezoelectrics	 were
shown	in	Figures	10.32	and	10.33,	respectively.	In	these	diagrams,	BT	is	BaTiO3,	and	LF	is	a
liquid	flux-grown	crystal,	which	refers	to	a	method	for	growing	single	crystals.



The	 planar	 coupling	 coefficients	 (kp)	 and	 k33	 values	 for	 these	 materials	 are	 shown	 in
Figure	10.41.

10.19 PIEZOELECTRIC	COMPOSITES

Of	all	of	 the	piezoelectric	materials	 that	have	been	developed,	 there	 is	no	 single	perfect	 or
ideal	material.	Piezoelectric	composites	have	been	developed	in	order	to	try	to	optimize	the
properties	of	different	piezoelectric	and	nonpiezoelectric	materials.

One	major	advantage	of	polymer-ceramic	piezoelectric	composites	 is	 that	 they	are	quite
flexible.	 The	 so-called	 macro	 fiber	 composites	 (MFCs;	 Figure	 10.42)	 of	 ceramic
ferroelectrics	such	as	PZT,	a	brittle	material,	are	arranged	in	a	polymer	matrix	(the	polymer
is	ferroelectric	or	linear	dielectric;	Sodano	et	al.	2004).	Such	MFCs	have	applications	in	the
control	of	vibrations	in	defense-related	applications	such	as	aircraft	and	machine	guns,	and	in
civil	structures	such	as	buildings	and	cable-stayed	bridges	(Song	et	al.	2006).	One	limitation
in	 the	 structural	 applications	 of	 MFCs	 is	 that	 piezoelectric	 actuators	 require	 a	 source	 of
power,	which	may	be	disrupted	during	certain	events,	 such	as	earthquakes,	when	control	of
vibration	is	needed	most.

MFC	structures	have	been	used	 for	vibration	 control	 in	 smart	 tennis	 rackets,	 smart	 skis,
and	other	applications.	Unlike	applications	involving	vibration	control	in	large	structures,	the
main	advantage	composites	offer	 in	 such	applications	 is	 that	 they	 function	without	 the	need
for	an	external	power	source.

Since	 the	 dielectric	 constant	 of	 polymers	 is	 relatively	 low,	 ceramics	 such	 as	 PZT	 are
embedded	in	the	polymer	mix.	The	piezoelectric	voltage	constant	or	the	g	coefficient	of	such
composites	is	higher	(Equation	10.67).	This	is	similar	to	a	point	that	has	already	been	made—
that	 PVDF	 has	 a	 lower	 d	 coefficient	 compared	 to	 PZT.	 However,	 its	 g	 coefficient	 is
comparable	to	that	of	PZT	because	PVDF	has	a	lower	dielectric	constant	compared	to	PZT.



FIGURE	 10.42 Photograph	 of	 a	 zirconium	 titanate	 (PZT)-based	 flexible	 macro	 fiber	 composite.	 (Courtesy	 of	 Smart
Material	Corporation,	Sarasota,	Florida.)

Another	advantage	of	 composites	 is	 that	polymer	composites	can	 lower	overall	 acoustic
impedance.	The	acoustic	impedance	of	water	is	∼1.5	MRayl.	Many	polymers	have	an	acoustic
impedance	of	∼3.5	MRayl.	Most	muscle,	fat,	tissue,	and	so	on	have	an	acoustic	impedance	of
∼1.3–1.7	MRayl.	 Bones	 have	 an	 acoustic	 impedance	 of	∼3.8–7.4	MRayl	 (Gururaja	 1996).
PZT	 has	 a	 high	 acoustic	 impedance	 (∼35	Mrayl).	 If	 PZT	 is	 used	 by	 itself	 for	 ultrasound
detection	 or	 imaging,	 there	 is	 a	 tremendous	 acoustic	 impedance	 mismatch	 at	 the	 PZT–
biological	 tissue	 or	 PZT–water	 interfaces	 (Harvey	 et	 al.	 2002).	 This	 impedance	 mismatch
causes	high	 reflection	or	ringing	 of	 the	 signal.	To	better	match	 (i.e.,	 to	 lower)	 the	 acoustic
impedance,	 composites	 of	 PZT	 fibers	 with	 epoxy	 are	 used.	 These	 can	 be	 prepared	 by
arranging	the	fiber	bundles	and	then	filling	them	with	epoxy,	called	arrange	and	fill.	This	is
followed	by	 a	dicing	 step	 in	which	 cubic	blocks	 are	obtained	by	 cutting	 the	 cured	material
perpendicular	 to	 the	 fiber	 length	 direction.	 This	 provides	 the	 so-called	 1–3	 connectivity
(Figure	10.43).	The	 effect	 of	 the	 arrangement	 of	 different	 phases	 is	 known	 as	 connectivity,
and	 certain	 properties	 in	 composites	 of	 all	 types	 depend	 not	 only	 on	 the	 relative	 volume
fractions	but	also	on	the	geometry	that	is	used	to	connect	the	different	phases.

We	can	develop	composites	using	different	types	of	piezoelectric	materials.	As	mentioned
in	Section	10.10,	 PZT–PVDF	 composites	 are	 formed	 to	 decrease	 the	 piezoelectric	 effect	 in
PVDF-based	infrared	(IR)	detectors	or	imaging	elements	(Section	10.20).	The	mechanism	by
which	piezoelectricity	occurs	in	PVDF	is	different	from	that	in	PZT,	hence	the	piezoelectric
coefficients	 of	PVDF	and	PZT	are	d33	∼−30	pC/N	 (note	 the	negative	 sign)	 and	∼	 +200	 to
+400	pC/N,	respectively.	Thus,	we	can	create	composites	of	PZT	particles/crystals	dispersed
in	a	PVDF	matrix	(the	0–3	composite;	Figure	10.43a),	in	which	the	overall	piezoelectric	effect



is	 substantially	 reduced	 (Dietze	 and	 Es-Souni	 2008).	 This	 helps	make	 a	 better	 pyroelectric
detector	that	responds	more	to	temperature	change	than	to	mechanical	shock	or	vibration.

The	effective	piezoelectric	coefficients	of	such	PZT-PVDF-TrFE	composites	are	shown	in
Figure	 10.44.	 The	 corresponding	 changes	 in	 the	 effective	 pyroelectric	 coefficients	 of	 such
composites	are	shown	in	Figure	10.45.

FIGURE	 10.43 Illustration	 of	 connectivity	 in	 composites:	 (a)	 particles	 in	 a	 polymer:	 0–3;	 (b)	 polyvinylidene	 fluoride
(PVDF)	composite:	0–3;	(c)	zirconium	titanate	(PZT)	spheres	in	a	polymer:	1–3;	(d)	diced	composite:	1–3;	(e)	PZT	rods	in	a
polymer:	1–3;	(f)	sandwich	composite:	1–3;	(g)	glass–ceramic	composite:	1–3;	(h)	transverse	reinforced	composite:	1–2–0;	(i)
honeycomb	composite:	3–1P;	(j)	honeycomb	composite:	3–1S;	(k)	perforated	composite:	1–3;	(l)	preformed	composite:	3–2;
(m)	replamine	composite:	3–3;	(n)	burps	composite:	3–3;	(o)	sandwich	composite:	3–3;	and	(p)	ladder-structured	composite:	3–
3.	(From	Neelkanta,	P.,	Handbook	of	Electromagnetic	Materials,	CRC	Press,	Boca	Raton,	FL,	1995.	With	permission.)



FIGURE	10.44 Effective	piezoelectric	 coefficients	of	polyvinylidene	 fluoride-zirconium	 titanate	 (PVDF-PZT)	composites.
Note	 the	minimum	in	 the	piezoelectric	d33,eff	coefficient	at	about	40%	(vol/vol)	zirconium	titanate	 (PZT).	 (From	Dietze,	M.
and	Es-Souni	M.,	Sens.	Actuators,	A143,	329–334,	2008.	With	permission.)

10.20 PYROELECTRIC	MATERIALS	AND	DEVICES

A	 pyroelectric	 material	 is	 one	 that	 shows	 temperature-dependent	 spontaneous	 polarization
(Lang	 2005).	 To	 understand	 the	 origin	 of	 the	 pyroelectric	 effect,	 consider	 a	 disk	 of	 poled
single-crystal	or	polycrystalline	BaTiO3	such	that	the	polarization	axis	is	perpendicular	to	the
electrodes.

In	the	poled	material	or	in	a	single	crystal,	we	have	dipoles	throughout	the	volume	of	the
material.	 These	 dipoles	 lead	 to	 a	 certain	 level	 of	 bound	 charge	 density	 on	 the	 surface,
attracting	nearby	charges	such	as	 ions	or	electrons	 toward	 the	faces	of	 the	material.	This	 is
how	the	pyroelectric	effect	was	discovered	in	the	aluminum	borosilicate	mineral	tourmaline
(then	 known	 as	 lyngourion	 in	 Greek	 or	 lyncurium	 in	 Latin)	 by	 the	 Greek	 philosopher
Theophrastus	almost	2400	years	ago!	These	external	charges	are	attracted	to	the	pyroelectric
material	 and	neutralize	 the	bound	charges	on	 the	 surfaces	of	 the	pyroelectric	 crystal.	 If	 the
temperature	is	constant	(dT/dt	=	0)	and	the	electrodes	on	this	pyroelectric	BaTiO3	sample	are
connected	 to	an	ammeter,	no	current	will	 flow	 through	 the	sample	because	no	 free	charges
are	left	behind	on	the	surfaces	(Figure	10.46).



FIGURE	 10.45 Effective	 pyroelectric	 coefficient	 (peff)	 of	 polyvinylidene	 fluoride-zirconium	 titanate	 (PVDF-PZT)
composites.	(From	Lang,	S.B.,	Phys.	Today	(August),	31–35,	2005.	With	permission.)

If	the	temperature	is	increased	(dT/dt	>	0),	the	dipole	moment	for	the	ferroelectric	material
decreases.	This	means	that	the	total	polarization	(P)	decreases.	Consequently,	the	total	bound
charge	 density	 on	 the	 surfaces	 of	 the	 ferroelectric	 material	 also	 decreases	 (Figure	 10.46).
This	means	that	there	now	will	be	free	charge	on	the	surfaces	of	the	pyroelectric	material.	As
shown	in	Figure	10.46,	the	negative	charges	(i.e.,	electrons)	flow	from	the	top	surface	toward
the	 ammeter,	 while	 a	 conventional	 current	 would	 flow	 in	 the	 opposite	 direction	 (Figure
10.46c).	The	current	that	flows	when	the	temperature	of	a	pyroelectric	material	is	changing	is
known	as	the	pyroelectric	current.

If	we	further	cool	 the	sample	(i.e.,	dT/dt	<	0),	 the	 ferroelectric	polarization	will	 increase
(Figure	10.46b).	This	will	cause	an	 increase	 in	 the	bound	charge	density,	and	electrons	will
flow	from	the	wire	 toward	 the	pyroelectric	material	surface	 in	order	 to	compensate	 for	 the
increased	bound	charge	density.	Thus,	we	will	again	see	a	pyroelectric	current	to	flow,	but	its
direction	 will	 be	 opposite	 to	 that	 when	 the	 material	 was	 being	 heated	 (dT/dt	 >	 0).	 This	 is
analogous	to	the	development	of	a	transient	current	due	to	the	development	of	a	piezoelectric
voltage	(Figure	10.24).

If	we	do	not	connect	the	surfaces	of	the	pyroelectric	material	to	an	ammeter	or	some	other
resistor	 using	 conductive	 wires,	 then	 there	 will	 be	 no	 electrical	 current.	 Instead,	 we	 can
measure	a	pyroelectric	voltage.	Again,	the	sign	of	this	voltage	will	change	as	we	heat	or	cool
the	material.

If	the	pyroelectric	material	is	perfectly	insulated	from	its	surroundings	so	that	the	charges
cannot	 flow	 in	 an	 external	 circuit,	 then	 the	 charges	 built	 on	 the	 surface	 eventually	will	 be
neutralized	 by	 the	 intrinsic	 conductivity	 of	 the	 pyroelectric	 material.	 This	 means	 that	 the
pyroelectric	charge	that	is	developed	will	leak	away	inside	the	material.

The	pyroelectric	 coefficient	 (p)	 of	 a	 material	 is	 defined	 as	 the	 change	 in	 the	 dielectric
displacement	(D)	caused	by	a	unit	change	in	temperature	(T).



The	change	in	dielectric	displacement	(D)	or	saturation	polarization	(Ps)	as	a	result	of	the
temperature	change	is	known	as	the	primary	pyroelectric	effect.

FIGURE	10.46 (a)	Pyroelectric	 crystal	with	 an	 intrinsic	 dipole	moment	 in	 an	 open	 circuit	 state,	 (b)	 the	 same	pyroelectric
crystal	in	a	short	circuit	state	at	a	fixed	temperature,	(c)	the	same	pyroelectric	crystal	in	a	short	circuit	state	under	heating—a
change	 in	 the	dipole	moment	generate	electric	 current	 flowing	 the	external	 circuit.	 (From	Lang,	S.B.,	Phys.	Today	 (August),
31–35,	2005.	With	permission.)

Because	the	units	of	D	are	in	C/m2,	the	units	of	pyroelectric	coefficient	(p)	will	be	C	m−2K
−1.	If	we	apply	an	electric	field	(E)	or	a	stress	(X)	to	a	material,	the	dipole	moment	will	also
change.

The	dielectric	displacement	(D)	for	a	material	is	given	by

The	total	polarization	originates	from	the	induced	polarization	(Pinduced)	and	ferroelectric
polarization	(Ps).	Thus,	we	can	write



Now,	(ε0E	+	Pinduced)	=	εE,	where	ε	is	the	permittivity	of	the	pyroelectric	material;	we	can
rewrite	Equation	10.87	as	follows:

Taking	the	derivative	of	both	sides	with	respect	to	temperature	(T),	we	get

The	true	pyroelectric	coefficient	(p)	is	defined	as

In	this	definition,	the	constant	stress	(X)	means	that	the	material	is	not	clamped	and	is	free
to	expand	or	contract.	Thus,	 this	definition	of	the	true	pyroelectric	coefficient	 includes	both
the	 so-called	 primary	 pyroelectric	 effect	 and	 the	 secondary	 pyroelectric	 effect.	 In	 the
secondary	pyroelectric	effect,	 the	changes	in	temperature	or	electric	field	cause	a	change	in
the	dimension	of	the	material	(i.e.,	contraction	or	expansion	due	to	thermal	expansion	or	via
the	direct	piezoelectric	effect).	Then	the	strain	(x)	is	not	constant.	The	change	in	dimensions,
from	either	 thermal	expansion/contraction	or	 the	piezoelectric	 effect	of	 the	applied	electric
field,	causes	changes	in	both	the	dipole	moment	and	the	bound	charge	density,	and	this	causes
the	development	of	a	pyroelectric	current	or	pyroelectric	voltage.

Secondary	 pyroelectric	 effect	 should	 not	 be	 confused	 with	 a	 correction	 to	 the	 true
pyroelectric	 coefficient	 (p)	 because	 of	 the	 temperature	 dependence	 of	 permittivity—that	 is,
(∂ε/∂T)	in	Equation	10.91.	We	can	write	a	generalized	pyroelectric	coefficient	(pg)	as

The	effect	of	the	change	in	dielectric	permittivity	with	temperature	(∂ε/∂T)	also	results	in
the	development	of	a	change	in	the	bound	charge	density,	which	can	induce	the	development
of	 a	 current.	 This	 is	 not	 considered	 the	 true	 pyroelectric	 effect	 because	 this	 change	 in	 the
dielectric	constant	with	temperature	occurs	in	all	dielectrics	and	not	just	in	polar	dielectrics.
In	 ferroelectrics,	 the	 term	 (∂ε/∂T)	 can	 be	 quite	 high;	 this	 effect	 is	 comparable	 to	 the	 true
pyroelectric	effect.

To	 accurately	measure	 the	 primary	 pyroelectric	 effect,	we	must	 consider	 the	 effect	 of	 a
temperature	change	on	spontaneous	polarization	(Ps)	while	maintaining	a	constant	strain	(x);
that	 is,	 the	 material	 is	 not	 allowed	 to	 change	 its	 dimension	 and	 is	 rigidly	 clamped.	 The
primary	 pyroelectric	 effect	 is	 defined	 as	 the	 change	 in	 saturation	 polarization	 (Ps)	 with
temperature	(T)	when	we	keep	the	sample	dimensions	constant.	This	means	we	do	not	include
any	 effects	 of	 the	 change	 in	 dielectric	 displacement	 (D)	 due	 to	 a	 change	 in	 the	 dielectric
permittivity	(ε)	with	temperature	(T)	or	electric	field	(E).

Usually,	it	is	very	difficult	to	isolate	and	measure	only	the	primary	pyroelectric	effect.	The
secondary	 pyroelectric	 effect	 can	 be	 calculated	 using	 the	 thermal	 expansion	 coefficient,
Young’s	modulus,	and	the	piezoelectric	coefficient.	The	total	pyroelectric	effect	(due	to	both



the	 primary	 and	 secondary	 effects)	 typically	 is	 measured.	 The	 values	 of	 the	 pyroelectric
coefficients	 for	 some	materials	 are	 shown	 in	Table	10.7;	 the	 total	 pyroelectric	 coefficients
represent	the	algebraic	sum	of	the	primary	and	secondary	coefficients.

For	 a	 pyroelectric	 crystal	 or	 poled	 material	 with	 a	 metalized	 electrode	 area	 A
(perpendicular	to	the	poling	axis),	the	pyroelectric	current	is	given	by

This	can	be	rewritten	as	follows:

TABLE	10.7
Pyroelectric	coefficients	of	Some	Materials

From	this	equation	and	Equation	10.90,	we	get



If	 the	 temperature	 change	 (ΔT)	 is	 small,	 then	 the	 pyroelectric	 coefficient	 (p)	 can	 be
assumed	 to	 be	 constant	 over	 a	 small	 temperature	 range.	 Under	 these	 conditions,	 the
pyroelectric	 current	 will	 be	 proportional	 to	 the	 rate	 of	 change	 of	 temperature	 (heating	 or
cooling,	as	in	Equation	10.94).

10.20.1 PYROELECTRIC	DETECTORS	FOR	INFRARED	DETECTION	AND	IMAGING

An	important	application	of	pyroelectric	materials	is	to	detect	infrared	(IR)	radiation.	There
are	 two	 windows	 in	 the	 atmosphere	 in	 which	 IR	 radiation	 can	 travel	 through	 air	 without
significant	 absorption	 (primarily	 by	 water	 vapor)	 and	 without	 being	 scattered	 by	 dust
particles.	One	is	in	the	range	of	3–5	μm,	and	the	other	between	8	and	14	μm.	At	a	temperature
of	∼300	K,	 objects	 and	warm-blooded	 animals	 emit	 heat	 in	 the	 form	 of	 IR	 radiation	 of	 a
wavelength	 (λ)	∼10	 μm.	 Pyroelectrics	 can	 be	 used	 to	 make	 IR	 detectors.	 We	 can	 use	 IR
radiation	detectors	to	get	a	thermal	image	of	an	intruder	hiding	behind	a	wall	or	tree,	as	long
as	there	is	a	temperature	difference	between	the	body	temperature	of	the	intruder	and	his	or
her	 surroundings.	 This	 is	 one	 approach	 to	 making	 pyroelectric	 IR	 detection	 and	 imaging
systems.	Such	pyroelectric	material-based	IR	detectors	are	known	as	thermal	detectors.

Another	approach	to	making	IR	detectors	is	to	use	narrow-bandgap	semiconductors	(such
as	mercury	cadmium	telluride	or	HCT).	These	detectors,	also	known	as	quantum	detectors	or
photon	detectors,	operate	on	the	principle	that	an	electron	from	the	valence	band	is	promoted
to	the	conduction	band	by	absorbing	a	photon	(IR	radiation,	in	this	case).	Such	detectors	are
extremely	 sensitive	 in	 the	 far-IR	 range.	 However,	 detectors	 based	 on	 narrow-bandgap
semiconductors	require	cooling	to	liquid	nitrogen	temperatures	(∼	77	K).	If	we	do	not	cool
the	narrow-bandgap	semiconductor,	 there	 is	enough	thermal	energy	at	 room	temperature	 to
flood	the	conduction	band	simply	by	the	thermal	excitation	of	electrons	from	the	valence	band
into	the	conduction	band.

PROBLEMS

10.1 In	Figure	10.17,	the	coercive	voltage	is	∼3.0	V.	What	will	the	thickness	of	the	film	be	if
the	corresponding	coercive	field	is	70	kV/cm?

10.2 For	ferroelectric	materials,	is	the	saturation	polarization	(Pc)	a	microstructure-sensitive
property?	Explain.

10.3 For	 ferroelectric	 materials,	 is	 the	 coercive	 field	 a	 microstructure-sensitive	 property?
Explain.

10.4 What	will	happen	 if	 a	piezoelectric	 ferroelectric	material	used	 in	a	device,	 such	as	an
actuator,	 is	 exposed	 to	 temperatures	 that	 are	 close	 to	 the	Curie	 temperature	 or	Curie-
temperature	range?

10.5 Explain	how	the	piezoelectric	and	electrostriction	effects	can	be	used	to	create	mirrors,
whose	 surface	 can	 be	 adjusted	 using	 an	 electric	 voltage	 (known	 as	 adaptive	 optics).
What	materials	will	you	use	for	this	application,	and	why?

10.6 PZN	 and	 PZN-8%-PT	 (PZN-8PT)	 single	 crystals	 of	 relaxor	 ferroelectric	 materials
oriented	in	the	(001)	direction	were	investigated	by	Park	et	al.	(1996)	for	their	potential
as	electromechanical	actuators.	The	percent	strain	developed	in	Direction	3	is	shown	as



a	function	of	the	electric	field,	also	in	Direction	3	(Figure	10.47).	From	these	data,	show
that	the	d33	coefficients	are	approximately	1700	and	1150	pC/N	for	PZN-8PT	and	PZN
samples,	respectively,	as	marked	on	Figure	10.47.	What	would	 the	g33	values	be	 if	 the
dielectric	constants	for	PZN-8PT	and	PZN	materials	are	4200	and	3600,	respectively?

FIGURE	10.47 Strain–electric	field	data	for	PZN	and	PZN	(001)-oriented	single	crystals.	(From	Park,	S.-E.,	et	al.,	IEEE.
Int.	Symp.	Appl.	Ferroelectr.,	1,	79–82,	1996.	With	permission.)

10.7 The	 electric	 field–strain	 response	 for	 the	 PZN	 and	 PZN-8PT	 samples	 is	 linear.	 The
dielectric	loss	(tan	δ)	values	for	these	samples	are	∼0.008	and	0.012	and	are	considered
rather	low.	How	is	the	linear	relationship	between	the	electric	field–strain	response	and
the	dielectric	loss	to	which	it	is	connected?	Explain.



FIGURE	 10.48 Strain–electric	 field	 relationship	 for	 lead	 magnesium	 niobate-lead	 titanate	 (PMN-PT)	 and	 soft	 and	 hard
zirconium	titanate	(PZT).	(From	Park,	S.-E.	and	Shrout	T.R.,	J.	Appl.	Phys.,	82(4),	1804–1811,	1997.	With	permission.)

10.8 Ultrahigh	strain	actuators	based	on	relaxor	ferroelectrics	were	investigated	by	Park	and
Shrout	(1997).	The	data	on	PMN-PT	and	soft	and	hard	PZT	samples	are	shown	in	Figure
10.48.

a.	 Show	that	for	soft	PZT	samples,	the	d33	coefficient	is	∼700	pC/N.	Use	the	initial	linear
portion	of	the	data	shown	in	Figure	10.48.

b.	 What	does	the	nonlinear	nature	of	the	electric	field–strain	curve	tell	us	about	the	domain
motion	in	these	materials?

c.	 As	we	can	see	from	the	data,	 there	is	a	significant	hysteresis	 in	the	strain–electric	field
behavior.	What	does	this	say	about	the	suitability	of	this	material	for	making	an	accurate
positioning	device?

d.	 Would	 the	 dielectric	 losses	 in	 soft	 PZT-SH	 be	 relatively	 low	 or	 high?	 What	 is	 the
problem	if	the	dielectric	losses	are	high?

10.9 From	 the	 data	 shown	 in	 Figure	 10.48,	 show	 that	 the	 d33	 coefficient	 for	 the	 hard	 PZT
sample	will	 be	∼250	 pC/N.	What	 is	 the	 advantage	 of	 this	material	 if	 it	 is	 used	 as	 an
actuator	or	positioning	device,	compared	to	the	soft	PZT	material?

10.10 From	 the	 data	 shown	 in	 Figure	 10.48,	 show	 that	 the	 d33	 coefficient	 for	 the
electrostrictive	PMN-PT	ceramic	sample	is	∼800	pC/N.

10.11 There	is	virtually	no	hysteresis	in	PMN-PT.	Thus,	the	dielectric	losses	will	be	expected
to	be	smaller	than	those	for	the	soft	PZT	sample,	and	the	micropositioning	that	can	be
achieved	using	these	materials	will	be	quite	accurate.	What	are	the	limiting	factors	for



using	this	material	for	micropositioning	applications?	What	will	happen	if	we	attempt	to
induce	larger	strains	using	higher	electric	fields	(e.g.,	to	go	up	to	0.15%	strain)?

10.12 A	poled	piezoelectric	cylinder	made	using	PZT-DOD	type	I	material,	of	5-mm	diameter
and	12-mm	height,	is	subjected	to	a	force	of	700	N.	What	is	the	voltage	generated	across
the	height	of	the	cylinder?	What	is	the	electrical	energy	(in	millijoules)	stored	when	the
cylinder	 is	 under	 open-circuit	 conditions?	What	 is	 the	 extra	 electrical	 energy	 stored
when	 the	 cylinder	 undergoes	 additional	 compression	 under	 closed-circuit	 conditions?
Use	the	properties	of	PZT-DOD	type	I	included	in	Table	10.3.

10.13 A	piezoelectric	PVDF	thin	film	is	4	cm	in	length,	2	cm	in	width,	and	10	pm	in	thickness.
Assume	that	the	film	is	poled	in	the	thickness	direction.	What	will	be	the	change	in	the
dimension	of	the	film	along	its	length	if	a	voltage	of	150	V	is	applied	in	the	thickness
direction?	 What	 will	 be	 the	 change	 in	 the	 thickness	 of	 the	 film	 under	 the	 same
conditions?	Assume	that	d31	=	25	pC/N	and	d33	=	−35	pC/N.

10.14 A	piezoelectric	plate	is	made	from	a	poled	polycrystalline	DOD	type	II	ceramic	(Table
10.3).	The	original	dimensions	of	the	plate	are	9	×	4	×	1	mm,	and	those	of	the	electrodes
are	9	×	4	mm.	If	a	voltage	of	50	V	is	applied	along	the	thickness	direction,	what	are	the
new	dimensions	of	this	plate?

10.15 Piezoelectrics	 are	 utilized	 in	 dental	 and	 bone	 surgery.	 This	 involves	 using	 ultrasonic
vibrations	 to	cut	 tissue.	Which	piezoelectric	effect,	direct	or	converse,	 is	used	for	 this
application?	A	frequency	of	25	to	29	kHz	is	used	to	make	micromovements	of	about	60–
210	 μm.	 These	 movements	 cut	 only	 mineralized	 tissue.	 In	 this	 frequency	 range,	 the
neurovascular	and	other	soft	tissues	are	not	cut	(Labanca	et	al.	2008).

10.16 Vibrations	 in	 civil	 structures,	 such	 as	 buildings	 and	 bridges,	 can	 be	 controlled	 using
piezoelectric	 materials	 formed	 into	 multilayer	 actuators	 or	 amplified	 piezoelectric
actuators	(Song	et	al.	2006).	How	do	you	think	such	actuators	can	be	used	for	the	control
of	vibrations	in	these	structures?

10.17 BaTiO3,	 one	 of	 the	 first	 ferroelectric	 ceramic	materials	 developed,	 is	 widely	 used	 to
make	multilayer	capacitors.	However,	this	material	has	no	widespread	applications	as	a
piezoelectric.	Explain.

10.18 Piezoelectric	fiber	macrocomposites	are	used	in	some	tennis	rackets.	Explain	how	such
piezoelectrics	 work	 to	 reduce	 the	 transmission	 of	 vibrations	 from	 the	 racket	 to	 the
player ’s	elbow.

10.19 Can	 we	 use	 a	 lead-free	 PZT	 material	 that	 has	 been	 optimized	 for	 outstanding
piezoelectric	properties	as	a	pyroelectric	detector?	Explain.

10.20 Find	out	how	 the	 focusing	problems	associated	with	 the	Hubble	space	 telescopes	were
corrected	using	piezoelectric	actuators.	Explain	the	mechanism	qualitatively.

GLOSSARY

Aging:	 The	 small	 level	 of	 randomization	 undergone	with	 time	 by	 domains	 in	 a	 freshly
poled	 piezoelectric	 after	 the	 poling	 electric	 field	 has	 been	 removed.	 This	 causes	 a
decrease	in	the	piezoelectric	properties	with	time.



Butterfly	loop:	A	diagram	showing	the	development	of	strain	in	a	ferroelectric	material
(Figure	10.26b).

Closed-circuit	 compliance	 (sE):	 The	 compliance	 of	 a	 material	 when	 the	 electrodes
providing	the	field	for	the	piezoelectric	effect	are	short-circuited	(i.e.,	E	=	0).	This	is	the
same	as	short-circuit	compliance	and	is	related	to	open-circuit	compliance	(sD)	by	 the
following	equation

sD	=	sE[1	−	k2]

Coercive	field	(ec):	The	electric	 field	necessary	 to	cause	domains	 in	a	 ferroelectric	with
some	remnant	polarization	to	be	randomized	again	in	order	to	obtain	a	state	of	zero	net
polarization	(Figure	10.15).

Connectivity:	 A	 particular	 geometrical	 arrangement	 of	 the	 different	 phases	 in	 a
composite;	this	affects	many	properties	(but	not	all)	of	a	composite	(Figure	10.43).

Converse	piezoelectric	effect:	Generation	of	a	mechanical	strain	by	applying	an	electric
field	to	a	poled	piezoelectric	material;	also	known	as	the	motor	effect	(Figure	10.25),	it
results	in	mechanical	strain	and	is	characterized	by	the	d	coefficient.	The	d	coefficient,
also	known	as	the	piezoelectric	charge	constant,	is	equal	to	the	polarization	induced	per
unit	stress.

Curie-point	shifters:	Compounds	added	to	a	ferroelectric	to	lower	its	Curie-temperature.
Curie-point	 suppressors:	 Compounds	 added	 to	 a	 ferroelectric	 to	 broaden	 its	 Curie
transition	so	that	the	dielectric	constant	is	relatively	stable	with	temperature.

Curie	temperature:	The	 temperature	at	which	a	 ferroelectric	material	 transforms	 into	a
centrosymmetric	 paraelectric	 form.	 Relaxor	 ferroelectrics	 have	 a	 Curie-temperature
range.

Curie–Weiss	 law:	 The	 variation	 in	 the	 dielectric	 constant	 of	 the	 paraelectric	 phase	 at
temperatures	above	T0	(or	Tc),	which	is	written	as

or

Also	 stated	 as	 “the	 inverse	 of	 dielectric	 susceptibility	 (χe)	 varies	 linearly
with	temperatures	above	Tc	or	T0.”

Depoling:	The	randomization	of	previously	aligned	domains	by	the	application	of	higher
temperatures	 or	 stress.	 Piezoelectric	 activity	 can	 cease	 to	 exist,	 and	 it	 limits	 the
applications	of	piezoelectrics	to	relatively	low	temperatures.

Direct	piezoelectric	effect:	Generation	of	a	voltage	or	charge	by	applying	a	 stress	 to	a
poled	 piezoelectric—also	 known	 as	 the	 generator	 effect	 and	 characterized	 by	 the	 g



coefficients	(Figure	10.25)	as	well	as	the	piezoelectric	voltage	constant.	It	is	equal	to	the
strain	induced	per	unit	dielectric	displacement	(D)	applied.

Electromechanical	 coupling	 coefficient	 (k):	 The	 ratio	 of	 piezoelectric	 energy	 density
(W12)	stored	in	a	material	to	the	product	of	the	electrical-	(W1)	and	mechanical-energy
(W2)	densities	stored;	it	is	given	by

Electrostriction:	 The	 elastic	 strain	 (x)	 induced	 by	 the	 application	 of	 an	 electric	 field,
which	 is	proportional	 to	 the	 square	 of	 the	 electric	 field	 (E).	 This	 effect	 is	 seen	 in	 all
materials	 and	 is	 embedded	 in	 the	 strain	 developed	 in	 ferroelectric	 piezoelectric
materials.

Ferroelectric	domains:	A	region	of	a	ferroelectric	material	 in	which	the	polarization	of
all	cells	is	in	the	same	direction	(Figure	10.6).

Ferroelectrics:	Materials	that	show	a	spontaneous	and	reversible	polarization.
Generalized	 pyroelectric	 coefficient	 (pg):	 A	 pyroelectric	 coefficient	 that	 includes	 the
primary	and	secondary	coefficients,	 in	addition	 to	a	correction	needed	because	of	 the
dependence	of	permittivity	on	temperature.	It	is	given	by	the	following	equation:

Generator	effect:	See	Direct	piezoelectric	effect.
Hard	 piezoelectrics:	 Compositions	 of	 lead	 zirconium	 titanate	 (PZT;	 often	 acceptor-
doped)	 or	 other	 materials	 that	 offer	 lower	 piezoelectric	 coefficients,	 low	 dielectric
losses,	 a	 higher	 coercive	 field,	 and	 little	 or	 no	 hysteresis	 in	 the	 strain–electric	 field
relationship.	 These	 materials	 are	 well-suited	 for	 micropositioning	 and	 other
applications	that	may	require	higher	electric	fields.

Hydrostatic	 piezoelectric	 coefficients:	 Piezoelectric	 coefficients	 under	 hydrostatic
conditions	that	are	designated	with	a	subscript	(e.g.,	dh	or	gh);	the	product	dh	×	gh	is	the
figure	 of	merit	 that	 is	 important	 for	 applications	 including	 underwater	 sonar	 probes,
hydrophones,	and	imaging	applications.

Hysteresis	 loop:	 The	 trace	 of	 change	 in	 polarization	 or	 dielectric	 displacement	 for	 a
ferroelectric	material	as	a	function	of	the	electric	field	(Figure	10.15).

Morphotropic	phase	boundary	(MPB):	The	boundary	on	a	phase	diagram	across	which
there	is	a	change	in	the	crystal	structure	of	a	piezoelectric	material;	for	compositions	of
ceramics,	 such	 as	 PZT,	 which	 are	 at	 or	 near	 the	 MPB,	 the	 dielectric	 properties	 are
maximized.	Recent	research	has	raised	questions	about	the	existence	of	such	a	boundary
in	the	PZT	system.

Nonlinear	dielectrics:	Materials	in	which	the	polarization	developed	is	not	linearly	related
to	the	electric	field.	The	dielectric	constant	of	 these	materials	 is	field-dependent;	 these
include	 ferroelectrics	 and	 other	 materials,	 such	 as	 water,	 in	 which	molecules	 have	 a
permanent	dipole	moment.



Open-circuit	 compliance	 (sD):	 The	 compliance	 of	 a	 material	 under	 open-circuit
conditions,	related	to	the	short-circuit	compliance	by	the	following	equation

sD	=	sE[1	−	k2].

Paraelectric	phase:	The	high-temperature	phase	derived	from	an	originally	ferroelectric
material’s	 parent	 phase,	 which	 now	 has	 no	 dipole	 moment	 per	 unit	 cell.	 This	 phase
behaves	as	a	linear	dielectric.

Photon	detectors:	Infrared	(IR)	detectors	based	on	the	creation	of	an	electron–hole	pair
in	narrow-band	gap	semiconductors	by	absorption	of	IR	radiation.	They	are	also	known
as	quantum	detectors	and	are	fundamentally	different	from	thermal	detectors.

Piezoelectric:	A	material	that	develops	an	electrical	voltage	or	charge	when	subjected	to
stress	and	a	relatively	large	strain	when	subjected	to	an	electric	field.

Piezoelectric	charge	constant:	The	d	coefficient	that	describes	the	converse	piezoelectric
effect.	 This	 is	 the	 strain	 generated	 per	 unit	 of	 electric	 field	 applied	 or	 the	 induced
polarization	per	unit	stress;	the	units	are	m/V	or	C/N.

Piezoelectric	 voltage	 constant:	The	g	 coefficient	 that	 describes	 the	 direct	 piezoelectric
effect.	This	 is	 the	induced	electric	field	per	unit	of	stress	or	strain	induced	per	unit	of
dielectric	displacement	(D)	applied.

Poled	 ferroelectric:	 A	 ferroelectric	 material	 in	 which	 the	 domains	 are	 aligned	 in	 a
particular	direction;	only	a	poled	ferroelectric	shows	a	measurable	piezoelectric	effect.

Poling:	 The	 process	 of	 applying	 an	 electric	 field	 to	 a	 ferroelectric	 or	 piezoelectric
material	 in	order	 to	cause	 the	alignment	of	domains.	This	process	 typically	 is	carried
out	at	higher	temperatures,	often	using	a	heated	oil	bath.

Primary	 pyroelectric	 effect:	 The	 change	 in	 dielectric	 displacement	 (D)	 or	 saturation
polarization	 (Ps)	 as	 a	 result	 of	 the	 temperature	 change	 while	 maintaining	 a	 constant
strain	(x),	that	is,	with	the	material	clamped.

Pseudocubic:	The	cubic	crystal	structure	polymorph	of	materials	such	as	BaTiO3.
Pyroelectric	coefficient	 (p):	The	change	 in	dielectric	displacement	 (D)	 caused	by	a	unit
change	in	temperature	(θ).

Pyroelectric	 current:	 The	 current	 that	 flows	 when	 the	 temperature	 of	 a	 pyroelectric
material	is	changing.

Quantum	detectors:	Pyroelectric	infrared	detectors.	See	Thermal	detectors.
Relaxor	 ferroelectrics:	 Ceramic	 materials	 with	 high	 dielectric	 constants,	 high
electrostriction	 coefficients,	 high-frequency	 dispersion,	 and	 a	 broad	 Curie	 transition,
such	as	lead	magnesium	niobate	(PMN).	They	are	useful	in	actuator	applications.

Remnant	 polarization	 (Pr):	 The	 polarization	 that	 remains	 after	 removing	 the	 electric
field	from	a	ferroelectric	material	that	has	been	subjected	to	sufficiently	high	fields	to
cause	saturation.

Saturation	polarization	(Ps):	The	maximum	possible	 ferroelectric	polarization	 that	can
be	obtained	for	a	given	ferroelectric	material.



Secondary	pyroelectric	effect:	The	change	in	the	spontaneous	polarization	of	a	material
with	 a	 change	 in	 temperature	 (which	 causes	 thermal	 expansion	 or	 contraction)	 or
applied	electric	field	(which	causes	a	change	in	dimension	because	of	the	piezoelectric
effect);	here,	the	strain	is	not	constant.

Short-circuit	compliance:	See	Closed-circuit	compliance.
Soft	 piezoelectrics:	 Materials	 with	 smaller	 coercive	 fields	 and	 higher	 d33	 values	 that
exhibit	 easy	 domain	 switching,	 causing	 dielectric	 losses	 and	 hysteresis	 in	 the	 electric
field–strain	relationships.	They	are	typically	donor-doped,	such	as	PZT.

Strain-tuned	 ferroelectrics:	 Ferroelectric	 materials	 or	 devices	 whose	 properties	 are
altered	because	of	strain	created	during	their	processing.

Thermal	 detectors:	 Infrared	 (IR)	 detectors	 based	 on	 the	 pyroelectric	 effect.	 These	 are
different	from	the	quantum	or	photon	detectors,	which	are	based	on	the	generation	of	an
electron–hole	pair	in	narrow-bandgap	semiconductors.

Transducer:	A	device	that	can	convert	one	form	of	energy	into	another.
Unpoled	state:	A	ferroelectric	or	piezoelectric	material	that	has	not	been	subjected	to	the
poling	process.

Virgin	state:	A	ferroelectric	or	piezoelectric	material	 that	has	not	been	subjected	 to	any
electric	 field	 and	 therefore	 has	 a	 random	 configuration	 of	 domains	 and	 no	 net
polarization.

Weiss	domains:	See	Ferroelectric	domains.
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11	Magnetic	Materials

KEY	TOPICS

Origin	of	magnetism
Diamagnetic,	paramagnetic,	and	superparamagnetic	materials
Ferromagnetic,	ferrimagnetic,	and	antiferromagnetic	materials
Ferromagnetic	hysteresis	loop
Soft	and	hard	magnetic	materials
Technologies	and	devices	based	on	magnetic	materials

11.1 INTRODUCTION

The	word	magnet	has	its	origin	in	a	magnetic	material	known	as	magnetite,	which	is	a	form
of	iron	oxide	or	lodestone	used	as	a	magnetic	compass.	Lodestone	was	mined	in	the	province
of	Magnesia.	It	is	believed	that	among	the	minerals	found	in	Magnesia	(a	part	of	Macedonia),
magnesium	carbonate	was	white,	manganese	dioxide	was	brown,	and	the	third	magnetite	was
black	iron	oxide.	The	magnetite	was	probably	the	first	material	known	to	be	magnetic.

As	we	will	see,	in	reality,	all	materials	in	this	world	are	magnetic,	that	is,	they	respond	to
magnetic	fields	in	some	fashion.	One	objective	of	this	chapter	is	to	introduce	the	fundamental
concepts	 related	 to	 magnetic	 materials.	 In	 this	 regard,	 we	 will	 explore	 the	 origin	 of
magnetism	in	materials.	We	will	define	different	types	of	magnetism	in	materials	that	include
ferromagnetic	 and	 ferrimagnetic	 materials.	 The	 second	 objective	 is	 to	 explore	 different
technologies	 based	 on	 the	 use	 of	 magnetic	 materials,	 including	 those	 used	 in	 information
storage	 (e.g.,	 magnetic	 hard	 disks).	 We	 will	 also	 briefly	 mention	 materials	 called
multiferroics.	These	materials	simultaneously	exhibit	two	or	more	switchable	properties,	such
as	ferroelectric	and	ferromagnetic	behaviors.	Since	the	origins	of	the	ferroelectricity	and	the
ferromagnetism	 are	 different,	 there	 is	 a	 huge	 amount	 of	 interest	 in	 the	 basic	 science	 of
multiferroics.	 Also,	 the	 magnetically	 tunable	 dielectric	 polarization	 and	 the	 electrically
tunable	magnetization	have	a	great	potential	to	offer	a	new	paradigm	of	the	device	physics.

Most	concepts	regarding	magnetic	materials	and	technologies	would	be	better	followed	if
you	have	already	learned	the	basics	of	linear	dielectric	materials	and	ferroelectric	materials
from	Chapter	10.	You	would	start	to	recognize	that	many	of	the	equations	we	would	deal	with
here	 for	magnetic	materials	 are	very	 similar	 to	 those	used	 for	 ferroelectrics.	Thus,	 the	 so-
called	 phenomenology	 underlying	 the	 group	 of	 dielectrics	 and	 ferroelectrics	 and	 that	 of
ferromagnetic	 and	 ferrimagnetic	 materials	 is	 similar.	 However,	 it	 is	 important	 to	 keep	 in
mind	 that	although	many	of	 the	phenomena	and	equations	appear	very	 similar,	 the	physical
origins	of	magnetic	and	dielectric	behavior	are	quite	different.	The	former	 is	 related	 to	 the
spin	motions	of	electrons	and	 the	 latter	 is	 related	 to	 the	nonuniform	distribution	of	electric
charge	or	the	surface-bound	electrons.



11.2 ORIGIN	OF	MAGNETISM

All	materials	are	magnetic.	This	means	that	every	material	responds	to	an	externally	applied
magnetic	field	in	a	specific	manner.	The	origin	of	magnetism	lies	in	a	very	basic	principle,
that	 is,	 a	moving	 electric	 charge	 (namely	 electric	 current)	 produces	 a	magnetic	 field.	 This
connection	 between	 an	 electrical	 current	 and	magnetism	was	 probably	 first	 noted	 by	Hans
Oersted,	who	discovered	 that	 a	 compass	 needle	 placed	 next	 to	 a	 current-carrying	wire	was
deflected	in	a	perpendicular	direction.	Thus,	it	was	found	that	a	current-carrying	coil	behaved
similar	to	a	bar	magnet	and	produced	a	magnetic	moment	(μ),	which	was	found	to	be	equal	to
the	product	of	the	current	(I)	and	the	area	(A)	of	the	loop	(Figure	11.1).	The	magnetic	moment
is	a	building	block	of	the	magnet	and	conceptually	similar	to	a	dipole	moment	of	dielectric
materials	in	chapter	7.	The	unit	of	magnetic	moment	is	ampere	square	meter	(A·m2).

There	 are	 three	 origins	 of	 the	 electric	 charge	 motion	 responsible	 for	 magnetism:	 (i)
electron	orbiting	nucleus	(due	to	orbital	angular	momentum	of	electrons),	(ii)	electron	spin
(due	 to	 spin	 angular	momentum	 of	 electrons,	 which	 is	 the	most	 important	mechanism	 for
magnetic	 materials),	 (iii)	 nuclear	 spin	 (small	 contribution	 in	 general).	 Except	 for	 limited
cases,	 the	magnetic	 behavior	 of	materials	 is	mainly	 developed	 from	 two	 types	 of	 electron
motions,	 namely	 spin	 and	 orbital	 (Figure	 11.2).	 These	 motions	 can	 be	 compared	 with	 the
motion	 of	 the	 earth	 that	 spins	 around	 its	 own	 axis	 while	 simultaneously	 having	 an	 orbit
around	the	sun.

These	motions	 of	 the	 electrons	 create	 a	 spin	magnetic	moment	 and	 an	 orbital	magnetic
moment.	Niels	Bohr	first	considered	the	magnetic	behavior	of	an	atom	based	on	the	planetary
or	orbital	motion	of	electrons	that	resulted	in	the	generation	of	a	magnetic	field	and	proposed
the	 so-called	 Bohr ’s	 theory	 of	 magnetism.	 Later	 on,	 it	 was	 shown	 that	 the	 spin	 magnetic
moment	plays	a	critical	role	in	determining	the	magnetic	properties	of	materials.

Let’s	first	take	a	look	at	the	orbital	magnetic	moment	originating	from	the	orbital	angular
momentum	 of	 an	 electron,	 since	 this	 is	 easy	 to	 understand	 intuitively.	 A	 charged	 particle
rotating	in	an	orbit	creates	the	angular	magnetic	moment	(μ),	which	is	given	by

In	 this	 equation,	 q	 is	 the	 charge,	L	 is	 the	 angular	momentum,	 and	m	 is	 the	mass	 of	 the
charged	particle.	In	Equation	11.1,	L	is	equal	to	r·m·v	(r:	the	radius	of	rotation	in	an	orbit,	m:
the	mass	of	a	charged	particle,	v:	the	velocity	of	a	charged	particle	in	an	orbit).	Bohr	showed
that	the	angular	momentum	of	an	electron	is	quantized.	In	magnetism,	a	basic	unit	of	magnetic
moment	is	defined	as	shown	in	Equation	11.2.	This	is	known	as	a	Bohr	magneton	(μB):



FIGURE	11.1 Magnetic	moment	(μ)	induced	by	a	current	loop.	(From	Kasap,	S.O.,	Principles	of	Electronic	Materials	and
Devices,	McGraw	Hill,	New	York,	2002.	With	permission.)

FIGURE	11.2 Spin	motion	 (a)	 and	orbital	motion	 (b)	of	 an	 electron.	 (From	Askeland,	D.	 and	Fulay	P.,	The	 Science	 and
Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

In	this	equation,	ħ	=	h/2π,	where	h	is	the	Planck’s	constant,	qe	is	the	electronic	charge,	and
me	is	the	mass	of	the	electron.

From	Equation	11.1,	another	parameter	known	as	the	gyromagnetic	ratio	(γ)	which	relates
the	angular	momentum	to	the	magnetic	moment	is	defined	as:

The	 basic	 unit	 of	 charge	 that	 we	 often	 use	 is	 electronic	 charge	 (qe	 =	 1.6	 ×	 10−19	 C).
Similarly,	the	spin	magnetic	moment	from	the	spin	motion	of	an	electron	can	be	expressed	as
μ	=	(−e/m)	S	in	which	S	is	the	spin	angular	momentum.

Defining	 the	Bohr	magneton	as	a	unit	 for	 the	magnetic	moment	allows	us	 to	express	 the
magnetic	moment	of	an	 ion,	atom,	or	a	molecule.	Now,	 let	us	see	how	we	can	calculate	 the
total	magnetic	moment	of	a	material.	The	total	magnetic	dipole	moment	per	unit	volume	of	a
material	is	known	as	the	magnetization	(M).	We	can	calculate	the	magnetization	of	a	material
by	calculating	the	vector	sum	of	different	magnetizations	of	electrons	and	nuclei	that	make	up
the	 atom.	 The	 magnetization	 that	 develops	 in	 a	 material	 is	 similar	 to	 the	 development	 of
polarization	 (P)	 in	 dielectrics,	 because	 the	 unit	 of	 the	 magnetic	 dipole	 moment	 is	 ampere



square	 meter,	 and	 the	 unit	 of	 magnetization	 will	 be	 ampere	 square	 meter/cubic	 meter	 or
ampere/meter.

The	nucleus	does	not	 have	 a	planetary	motion.	However,	 it	 does	have	 a	 spin.	There	 is	 a
magnetic	moment	associated	with	the	spin	of	the	nucleus.	However,	the	magnetic	moment	due
to	 nuclear	 spin	 is	 very	 small	 (~10−3	 μB)	 and	 can	 be	 ignored	 while	 calculating	 the	 total
magnetic	moment	 of	 an	 atom	 or	 an	 ion.	 Important	 applications	where	we	make	 use	 of	 the
nuclear	 magnetic	 moment	 are	 the	 techniques	 of	 nuclear	 magnetic	 resonance	 (NMR)	 and
magnetic	resonance	imaging	(MRI).

Thus,	to	calculate	the	total	magnetic	moment	of	an	atom,	we	need	to	add	up	the	magnetic
moments	of	all	the	electrons.	In	doing	so,	we	need	to	account	for	the	magnetic	moments	due
to	both	the	angular	motion	and	the	spin	of	the	electrons	(Figure	11.2).	The	expressions	for	the
magnetic	 moments	 involve	 concepts	 of	 quantum	 mechanics.	 Additional	 information
regarding	these	concepts	can	be	found	in	physics	textbooks.

What	is	important	is	to	recognize	that	most	free	atoms	possess	a	net	magnetic	moment.	The
word	free	here	means	that	atoms	are	not	bonded	to	other	atoms,	that	is,	they	are	isolated	and
do	not	form	part	of	any	solid	or	liquid.	Although	most	free	atoms	have	a	magnetic	moment,
most	 often	 but	 not	 always,	when	 atoms	 bond	 to	 other	 atoms	 to	 form	 a	 solid	 or	 liquid,	 the
electrons	of	different	atoms	interact,	and	the	resultant	material	has	no	net	magnetic	moment.
This	 is	 why,	 although	 all	 atoms	 contain	 electrons	 and	 each	 electron	 can	 be	 viewed	 as	 a
magnet,	most	materials	behave	essentially	as	nonmagnetic	materials.

Let	us	take	a	look	at	a	few	materials,	such	as	transition	elements	(with	incomplete	3d,	4d,
or	5d	orbitals),	lanthanides	(partially	filled	4f	orbital),	or	actinides	(partially	filled	5f	orbital),
wherein	some	of	the	electron	shells	are	incomplete.	In	some	of	these	materials,	even	after	the
atoms	form	a	solid,	the	atoms	in	the	resultant	structure	have	a	net	effective	magnetic	moment.
Similarly,	ions	of	many	elements	may	also	have	a	net	effective	magnetic	moment	even	when
they	are	part	of	a	material.	In	these	solids	with	a	partially-filled	orbital,	the	magnetic	moment
resulting	from	the	electron	spin	dominantly	contributes	to	the	magnetism	and	the	role	of	the
orbital	magnetic	moment	is	limited.

In	manganese	 (Mn,	 atomic	number	Z	=	 25),	 for	 example,	 an	 electronic	 configuration	 is
1s22s22p6	3s23p63d54s2,	and	the	orbitals	from	1s2	to	3p6	are	completely	filled.	The	rules	of
quantum	mechanics	 tell	us	 that	before	 filling	up	 the	3d	sublevel,	 the	4s	 level	must	be	filled.
Thus,	after	filling	up	the	3p	orbital,	we	first	add	two	electrons	to	the	4s	level,	and	these	are
paired.	This	means	that	the	only	difference	between	the	quantum	numbers	of	the	electrons	in
the	4s	level	is	that	one	electron	has	an	upward	spin	(↑)	whereas	the	other	has	a	downward	spin
(↓).	In	this	case,	five	more	electrons	remain	to	fill	the	next	energy	level	(3d).	From	quantum
mechanics,	the	rule	for	filling	the	3d	subshell	is	that	all	electrons	must	remain	unpaired	until
the	 subshell	 is	 half-filled;	 five	 electrons	 can	 thus	 have	 the	 same	 spin.	 However,	 they	 have
different	angular	momentum	which	cancel	each	other.	Therefore,	in	a	manganese	atom,	there
are	five	unpaired	electrons	with	the	same	spin	angular	momentum.	The	spin	of	each	unpaired
electron	produces	a	magnetic	moment	of	one	Bohr	magneton.	Therefore,	a	free	Mn	atom	has
a	net	magnetic	moment	of	5	μB	(Table	11.1).

However,	when	Mn	atoms	form	a	Mn	crystal,	 the	magnetic	moments	of	 the	spin	motions
cancel	 each	 other	 out.	 Thus,	 the	 atoms	 in	 a	manganese	 crystal	 do	not	 have	 a	 net	magnetic
moment.	Similarly,	in	other	compounds	of	Mn,	bonding	of	Mn	with	other	elements	will	have



to	be	accounted	for	to	find	whether	the	resultant	material	will	have	any	net	magnetic	moment.
Most	 often,	 the	 spin	 and	 orbital	 magnetic	 moments	 are	 canceled	 out	 or	 quenched	 when
elements	 form	 bonds	 with	 other	 atoms,	 resulting	 in	 zero	 net	 magnetic	 moment	 for	 most
materials	 (paramagnetic	 in	 Figure	 11.3).	 From	 a	 practical	 viewpoint,	 Mn	 is	 considered
nonmagnetic,	since	the	spin	magnetic	moments	are	randomly	distributed.	When	we	say	that	a
material	 is	 not	 magnetic	 or	 that	 it	 is	 nonmagnetic,	 it	 means	 that	 the	 material	 has	 no	 net
magnetic	 moment	 at	 zero	 magnetic	 field.	 Most	 materials	 that	 are	 considered	 nonmagnetic
(e.g.,	copper,	aluminum,	silica,	and	polyethylene)	exhibit	a	net	magnetic	moment	only	when
they	are	exposed	to	an	external	magnetic	field.

We	now	consider	another	example,	namely	iron	(Fe).	The	electronic	structure	of	an	iron
atom	 (atomic	 number	 Z	 =	 26)	 is	 expected	 to	 be	 1s22s22p63s23p63d8.	 However,	 the	 actual
electronic	structure	of	iron	is	1s22s22p63s23p63d64s2.	This	is	because	the	4s	orbital	(sublevel)
is	 filled	 first.	Thus,	 in	 this	electronic	configuration,	 the	3d	orbital	 (capable	of	accepting	10
electrons)	again	remains	incomplete.	Out	of	these	six	electrons,	the	first	five	electrons	in	the
3d	 level	 can	 remain	 unpaired.	However,	 one	more	 electron	 is	 left	 over	 to	 fill	 the	 3d	 level.
Because	 the	 3d	 orbital	 is	 now	 half-full,	 the	 sixth	 electron	 pairs	 up	 with	 one	 of	 the	 five
electrons	 in	 the	 3d	 level.	Thus,	 in	 an	 iron	 (Fe)	 atom,	 four	 electrons	 in	 the	 3d	 level	 remain
unpaired	(Table	11.1).

Each	unpaired	electron	produces	a	magnetic	dipole	moment	that	is	equal	to	a	basic	unit	of
magnetic	 moment,	 Bohr	 magneton	 (μB).	 Consequently,	 an	 iron	 atom	 has	 a	 net	 magnetic
moment	 of	 4	 μB.	 In	 iron,	when	 the	 atoms	 form	 a	 phase	with	 a	 particular	 crystal	 structure,
some,	 but	 not	 all,	 of	 these	magnetic	moments	 are	 quenched,	 that	 is,	 canceled.	Therefore,	 a
material	 such	as	 iron	has	a	net	magnetic	moment.	 In	 iron,	 all	 the	magnetic	moments	of	 the
atoms	 are	 in	 the	 same	 direction,	 due	 to	 an	 exchange	 interaction	 between	 neighboring	 spin
magnetic	 moments.	 A	 material	 in	 which	 all	 the	 magnetic	 moments	 of	 atoms	 or	 ions	 are
aligned	 in	 the	 same	direction	 is	 known	 as	 a	 ferromagnetic	material.	 It	 possesses	 strong	 net
magnetic	moments	without	an	external	magnetic	field.	(Figure	11.3).

TABLE	11.1

Pairing	of	3d	and	4s	Electrons	in	Different	Transition	Elements



FIGURE	 11.3 Schematic	 representation	 of	 the	 alignment	 of	 magnetic	 moments	 in	 different	 materials.	 (From	 Jiles,	 D.C.,
Introduction	to	the	Electronic	Properties	of	Materials,	Nelson	Thornes,	Cheltenham,	UK,	2001.	With	permission.)

In	some	materials	(e.g.,	iron	oxide	[Fe3O4]),	 the	ions	at	the	different	locations	of	the	unit
cell	 have	 magnetic	 moments	 that	 are	 aligned	 in	 opposite	 directions	 or	 are	 antiparallel.
However,	the	magnetic	moments	of	two	sublattices	are	not	completely	canceled	out,	because
two	sublattices	do	not	have	the	same	magnitude	of	the	magnetic	moments	(see	Example	11.2).
A	 material	 in	 which	 the	 magnetic	 moments	 of	 atoms	 or	 ions	 are	 antiparallel	 but	 are	 not
canceled	 out	 is	 known	 as	 a	 ferrimagnetic	 material.	 The	 alignment	 of	 electron	 spins	 in
ferrimagnetic	materials	is	shown	schematically	in	Figure	11.3.

Note	 that	 ferromagnetic	or	 ferrimagnetic	materials	do	not	 have	 to	 contain	 iron	or	 other
ferromagnetic	 elements	 (e.g.,	 Ni,	 Co,	 Gd).	 For	 example,	 Cu2MnAl,	 ZrZn,	 and	 InSb	 are
ferromagnetic,	 even	 though	 the	 latter	 two	are	 ferromagnetic	only	 at	 very	 low	 temperatures
(O’Handley	1999).

If	the	spin	magnetic	moments	due	to	different	ions	or	atoms	are	completely	canceled	out,
the	material	 is	 known	 as	 antiferromagnetic	 (e.g.,	 Cr,	 α-Mn,	 and	MnO).	 In	 Cr	 with	 a	 body-
centered	cubic	(BCC)	crystal	structure,	 the	magnetic	moment	of	 the	center	atom	is	canceled
out	 by	 the	 magnetic	 moments	 of	 the	 corner	 atoms	 and	 the	 magnetic	 behavior	 is
antiferromagnetic.	 Magnetic	 moments	 associated	 with	 some	 atoms	 and	 ions	 are	 shown	 in
Table	11.2.

The	following	examples	illustrate	how	to	calculate	the	magnetic	moments	of	ions.

Example	11.1: Magnetic	Moments	of	Ferrous	(Fe2+)	and	Ferric	(Fe3+)	Ions

The	atomic	number	of	iron	(Fe)	is	26.	From	Table	11.1,	what	are	the	magnetic	moments	of	(a)	ferrous	(Fe2+)	and
(b)	ferric	(Fe3+)	ions?

Solution
1.	 As	 seen	 earlier,	 the	 electronic	 structure	 of	 an	 iron	 atom	 is

1s22s22p63s23p63d64s2,	 with	 four	 unpaired	 electrons	 in	 the	 3d	 level.	When	 a
ferrous	 ion	 (Fe2+)	 is	 formed,	 two	 electrons	 are	 removed	 from	 an	 iron	 atom.



This	occurs	by	removing	 the	 two	electrons	 that	belong	 to	 the	4s	energy	 level.
Thus,	 the	 electronic	 configuration	 of	 the	 divalent	 ferrous	 (Fe2+)	 ion	 is
1s22s22p63s23p63d6.	 The	 first	 five	 electrons	 in	 the	 3d	 level	 remain	 unpaired.
The	sixth	electron	is	paired	with	one	of	the	five	electrons.	This	again	leaves	us
the	Fe2+	 ion	with	four	unpaired	electrons.	Consequently,	 the	magnetic	moment
of	a	free	ferrous	(Fe2+)	ion	is	4	μB.

2.	 For	 the	 ferric	 (Fe3+)	 ion,	 we	 can	 think	 of	 starting	 with	 an	 Fe2+	 ion	 and
removing	one	more	electron	 (or,	 starting	with	a	neutral	 iron	atom	and	 taking
out	a	total	of	three	electrons).	This	third	electron	comes	from	one	of	the	paired
electrons	 in	 Fe2+	 to	 give	 us	 a	 total	 of	 five	 unpaired	 electrons.	 Thus,	 the
magnetic	moment	of	a	trivalent	or	ferric	ion	(Fe3+)	is	5	μB.	In	Example	11.2,	we
will	 see	how	 the	magnetic	moments	of	 the	Fe2+	and	Fe3+	 ions	 can	 be	 used	 to
calculate	the	total	magnetization	per	unit	volume	in	Fe3O4.

TABLE	11.2

Magnetic	Moments	(μB)	of	Some	Atoms	and	Ions

Example	11.2: Ferrimagnetism	in	Iron	Oxide

From	 the	 magnetic	 moments	 of	 the	 ferrous	 and	 ferric	 ions,	 calculate	 the	 net	 magnetic	 moment	 per	 formula	 in
ferrimagnetic	iron	oxide	(Fe3O4).

Solution
Another	 way	 to	 write	 the	 formula	 for	 this	 material	 is	 FeO:Fe2O3.	 This	 representation	 distinguishes	 between	 the
divalent	and	trivalent	forms	of	iron.	For	one	formula	unit	of	this	material,	the	number	of	unpaired	electrons	will	be	4
(from	Fe2+)	and	10	(five	each	from	a	total	of	two	Fe3+)	ions.	Thus,	the	total	number	of	unpaired	electrons	is	4	+
10	=	14	μB.	However,	this	material	is	ferrimagnetic.



In	Fe3O4,	one-half	of	the	ferric	(Fe
3+)	ions	occupy	the	so-called	tetrahedral	sites	(Chapter	2).	The	other	half	of

the	Fe3+	ions	occupy	the	so-called	octahedral	sites.	The	spin	magnetic	moments	of	the	ferric	ions	located	in	these
different	 crystallographic	 sites	 are	 antiparallel,	 and	 they	 cancel	 each	 other	 out.	 The	 only	 magnetic	 moments
remaining	in	Fe3O4	are	due	to	the	divalent	ferrous	ions	that	occupy	the	octahedral	sites	(same	type	of	site	that	was

occupied	by	one-half	of	the	Fe3+	ions).	Thus,	in	Fe3O4,	the	actual	magnetic	moment	per	unit	formula	will	be	only

4	μB	since	there	is	only	one	Fe
2+	ion	per	formula	unit	(see	Table	11.1).

11.3 MAGNETIZATION	 (M),	 FLUX	 DENSITY	 (B),	 MAGNETIC	 SUSCEPTIBILITY
(χM),	PERMEABILITY	(μ),	AND	RELATIVE	MAGNETIC	PERMEABILITY	(μr)

We	now	examine	some	of	the	relationships	between	the	applied	magnetic	field	(the	cause)	and
the	 magnetization	 created	 (the	 effect).	 The	 equations	 will	 be	 similar	 to	 those	 we	 saw	 in
Chapter	7	for	dielectrics.	However,	there	are	fundamental	and	important	differences	between
the	origins	of	these	phenomena.	For	example,	ferromagnetic	behavior	is	seen	in	amorphous
materials,	because	the	magnetic	response	is	linked	to	the	motion	of	electrons.	Ferroelectricity,
on	the	contrary,	is	seen	only	in	crystalline	materials	or	crystalline	regions	in	materials	such
as	 polyvinylidene	 fluoride	 (PVDF).	 Ferromagnetism	 and	 ferrimagnetism	 are	 seen	 in
materials	that	are	either	conductors	or	insulators,	whereas	ferroelectric	behavior	is	seen	only
in	insulating	materials.	Some	of	these	similarities	and	differences	will	become	clearer	as	we
discuss	these	materials	in	further	detail.

TABLE	11.3

Equivalence	between	Properties	and	Phenomena	of	Dielectric	and	Magnetic	Materials

When	magnetizing	field	(H)	 is	applied	 to	a	material,	 it	creates	magnetization	(M).	This	 is
equivalent	 to	 the	application	of	an	electric	field	(E),	which	creates	a	polarization	(P).	When
we	use	the	term	magnetizing	field	(H),	we	are	referring	to	an	externally	generated	magnetic
field,	which	is	created	using	either	a	current-carrying	coil	or	a	permanent	magnet.

Magnetizing	 field	 (H)	 results	 in	 the	 creation	 of	 a	magnetic	 flux	 density	 (B)	 or	magnetic
induction	 inside	the	material.	When	a	magnetic	flux	(ϕ)	is	created	by	magnetizing	field	(H),



there	would	be	a	certain	number	of	magnetic	flux	lines	per	unit	area.	The	number	of	flux	lines
per	unit	area	is	known	as	the	magnetic	flux	density	(B)	or	magnetic	 induction.	Consider	 the
flux	density	as	the	intensity	of	magnetic	field	at	any	given	location	in	a	magnetic	material.	The
unit	 for	 flux	 density	 is	Weber/square	meter,	written	 as	Wb/m2,	 which	 is	 also	 equivalent	 to
Tesla.

The	equivalent	of	 the	magnetic	flux	density	generated	due	 to	 the	magnetizing	field	 is	 the
dielectric	 displacement	 (D)	 created	 by	 the	 application	 of	 an	 electric	 field.	This	 equivalence
between	 different	 electric	 and	 magnetic	 quantities	 is	 shown	 in	 Table	 11.3.	 Before	 moving
forward,	note	that	both	H	and	B	are	sometimes	called	magnetic	field.	This	is	because	both	H
and	B	play	roles	that	electric	field	(E)	does	in	Maxwell’s	equations	on	the	electric	magnetic
wave	(Section	8.1).	To	prevent	unnecessary	confusion,	we	will	call	H	and	B	as	magnetizing
field	and	magnetic	flux	density	(or	magnetic	induction)	in	this	book.

11.3.1 MAGNETIZING	FIELD	(H),	MAGNETIZATION	(M),	AND	FLUX	DENSITY	(B)
Magnetizing	 field	 is	 often	 created	 by	 passing	 electrical	 current	 through	 a	 wire.	 Uniform
magnetizing	fields	can	be	created	using	a	toroidal	solenoid	(Figure	11.4a)	or	a	solenoid	made
using	an	insulated	conductive	wire	wrapped	around	a	cylinder	(Figure	11.4b).	Consider	a	coil
of	length	l	with	n	turns,	carrying	a	current	I;	then,	the	magnetizing	field	created	is	given	by

Equation	11.5	indicates	that	the	unit	of	H	is	in	amperes	per	meter	(A/m).

FIGURE	 11.4 Illustration	 of	 (a)	 a	 toroidal	 solenoid	 and	 (b)	 a	 solenoid	 made	 using	 a	 current-carrying	 coil.	 (With	 kind
permission	from	du	Tremolet	de	Lacheisserie,	E.,	et	al.,	Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)

Recall	 the	 relationship	 between	 the	 dielectric	 displacement	 (D),	 polarization	 (P),	 and
electric	field	(E),	which	is

In	 magnetic	 materials,	 the	 magnetizing	 field	 (H)	 is	 the	 cause,	 and	 the	 effect	 is
magnetization	(M).	The	amount	of	magnetization	(M)	created	within	a	material	will	depend	on



both	 the	composition	of	 the	material,	 that	 is,	how	susceptible	 the	material	 is	 to	magnetizing
field	and	the	strength	of	magnetizing	field.

We	can	show	that	the	magnetic	flux	density	created	within	the	material	(Bint)	is	related	to	the
magnetization	M	and	magnetizing	field	H	by	the	following	equation:

In	this	equation,	the	magnetic	permeability	of	free	space	(μ0)	is	given	by

μ0	=	4π	×	10−7	Wb/A	·	m	or	H/m

Because	the	unit	of	magnetic	induction	(B)	is	Wb/m2,	and	the	unit	of	magnetizing	field	(H)
is	 ampere/meter,	 the	 unit	 for	 magnetic	 permeability	 (μ)	 is	 Weber/ampere	 meter	 or
Henry/meter	 (H/m).	 Also,	 note	 that	 in	 Section	 11.2,	 the	 symbol	 μ	 has	 been	 used	 for	 the
magnetic	moment.

The	first	term	on	the	right-hand	side	of	Equation	11.7,	that	is,	μ0H,	can	be	described	as	the
magnetic	 induction	B0	 that	 extends	 to	 the	 outside	 of	 the	 solenoid	 and	 is	 called	 the	 external
magnetic	induction.

Thus,	the	total	magnetic	induction	created	inside	the	material	(Bint)	is	a	sum	of	two	factors,
namely	the	externally	applied	induction	and	the	magnetization	created	inside	the	material,	that
is,	Equation	11.7.

In	vacuum,	there	is	no	material,	and	hence,	magnetization	created	inside	a	current-carrying
coil	is	zero	(μ0M	=	0).	Then,	the	magnetic	flux	density	(Bint)	and	the	magnetizing	field	(H)	are
related	by	the	following	equation:

We	 neglected	 the	 subscript	 Bint	 because	 there	 is	 no	 material	 inside	 the	 solenoid.	 This
indicates	that	the	magnetic	flux	inside	the	empty	solenoid	is	the	same	as	the	external	magnetic
induction.

Now,	 consider	 placing	 different	 types	 of	magnetic	materials	 inside	 the	 solenoid	 and	 see
how	the	magnetic	flux	density	inside	the	solenoid	(Bint)	will	change	with	a	reference	to	B0.	For
example,	we	can	place	a	piece	of	copper	or	aluminum,	silver,	superconductor,	or	iron	inside
the	solenoid	and	expose	it	to	the	magnetic	field	(H).	Also,	imagine	that	we	have	the	magical
ability	 to	 look	 into	 this	material	 and	 observe	 the	magnetic	 flux	 lines.	We	will	 observe	 that
these	different	materials	react	to	the	external	magnetic	induction	in	different	ways.



FIGURE	11.5 A	current-carrying	coil	generates	higher	flux	density	(B)	inside	a	magnetic	material.	(From	Askeland,	D.	and
Fulay	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

In	 the	 case	 of	 the	 superconductor,	 the	 flux	 density	 or	 induction	 inside	 the	 material	 is
actually	zero,	that	is,	Bint	=	0,	because	the	induced	magnetization	(μ0M)	in	the	superconductor
cancels	B0	 (i.e.,	μ0M	=	−B0).	This	means	 that	 the	 entire	magnetic	 flux	 is	 excluded	 from	 the
inside	of	a	superconductor	in	a	superconducting	state.	For	silver,	 the	Bint	or	 the	flux	density
will	be	slightly	less	 than	B0	(B0	+	μ0M	<	B0),	 that	 is,	 some	of	 the	flux	 is	excluded	from	the
inside	 of	 the	 material.	 Such	 materials	 in	 which	 the	 Bint	 is	 less	 than	 B0	 are	 known	 as
diamagnetic	materials	which	are	the	fifth	class	of	magnetic	materials	in	addition	to	the	four
classes	summarized	in	Figure	11.3.	Another	way	to	state	the	diamagnetisim	is	to	say	that	the
flux	lines	will	be	diluted	inside	a	diamagnetic	material	such	as	silver	and	completely	excluded
from	the	inside	of	a	superconductor.

For	materials	such	as	copper	and	aluminum,	we	will	see	that	the	Bint	will	be	slightly	greater
than	B0.	 These	materials	 are	 known	 as	paramagnetic	materials.	 In	 these	materials,	 the	 flux
lines	will	be	slightly	concentrated	inside	the	material.

For	materials	such	as	iron	(or	any	other	ferromagnetic	or	ferrimagnetic	material),	we	will
find	 that	 the	 flux	 lines	 are	 heavily	 concentrated,	 that	 is,	 the	 flux	 density	 inside	 the	material
(Bint)	will	be	significantly	higher	than	the	external	magnetic	induction	(B0).

For	 the	same	value	of	 the	magnetizing	field	 (H),	 the	magnetic	 flux	density	 (Bint)	 inside	a
ferromagnetic	 or	 ferrimagnetic	 material	 will	 be	 considerably	 higher	 than	 that	 for	 either
vacuum	or	a	diamagnetic	or	paramagnetic	material	 (Figure	11.5	and	Example	11.3).	This	 is
similar	to	the	dielectric	displacement	(D)	inside	a	parallel-plate	capacitor	being	higher	for	a
capacitor	filled	with	a	material	having	a	high	dielectric	constant	 in	comparison	to	 the	value
for	 one	 filled	with	 vacuum.	 In	 ferromagnetic	 and	 ferrimagnetic	materials,	 the	 flux	 density
caused	by	induced	magnetization	dominates	(i.e.,	μ0M	>>	μ0H).



We	will	discuss	these	different	classes	of	materials	in	detail.	For	now,	let	us	revert	to	see
how	the	flux	density	created	inside	the	material	(Bint)	relates	to	the	external	induction	(B0).

11.3.2 MAGNETIC	SUSCEPTIBILITY	(χM)	AND	MAGNETIC	PERMEABILITY	(μ)
Similar	 to	 dielectrics,	 we	 define	 magnetic	 susceptibility	 (χm)	 as	 a	 property	 that	 relates
magnetization	 M	 (the	 effect)	 to	 the	 magnetizing	 field	 H	 (the	 cause).	 Thus,	 magnetic
susceptibility	is	defined	as

Susceptibility	values	represent	the	tendency	of	a	magnetic	material	to	fall	for	the	presence
of	magnetizing	field.

For	diamagnetic	and	paramagnetic	materials,	the	internal	flux	density	(Bint)	created	can	be
shown	to	be	linearly	proportional	to	the	magnetizing	field	(H)	according	to	the	equation

In	 this	 equation,	 the	 symbol	 μ	 is	 the	 magnetic	 permeability	 of	 a	 material.	We	 note	 that
similar	to	the	dielectric	constant	(εr),	magnetic	permeability	and	susceptibility	are	tensors	that
relate	 two	vectors.	We	will	 treat	 them	here	as	scalar	quantities.	Equation	11.10	 indicates	 that
the	magnetic	induction	created	within	a	diamagnetic	or	paramagnetic	material	depends	on	the
strength	of	the	external	magnetic	field	applied	and	the	magnetic	permeability	of	the	material.

It	 is	 easier	 to	 express	 the	 magnetic	 permeability	 of	 a	 material	 relative	 to	 the	 magnetic
permeability	of	free	space.	We	define	the	relative	magnetic	permeability	(μr)	as	the	ratio	μ/μ0.
We	rewrite	Equation	11.10	as	follows:

We	 can	 now	 establish	 a	 relationship	 between	 the	 magnetic	 susceptibility	 (χm)	 and	 the
relative	magnetic	permeability	(μr).

We	start	with	Equation	11.7:

Bint	=	B0	+	μ0M	=	μ0H	+	μ0M

For	diamagnetic	and	paramagnetic	materials,	the	magnetic	field	created	inside	the	material
(Hint)	is	approximately	equal	to	the	externally	applied	magnetic	field	(H).

From	Equations	11.7	and	11.11,	we	get

Bint	=	μ0μrH	=	(μ0H	+	μ0M)

or,	solving	for	M,	we	get

From	 Equations	 11.9	 and	 11.12,	 we	 get	 a	 relationship	 between	 relative	 magnetic
permeability	(μr)	and	magnetic	susceptibility	(χm):



This	is	similar	to	dielectrics	and	can	be	written	as	follows:

11.3.3 DEMAGNETIZING	FIELDS

Note	 that	 in	 deriving	 Equations	 11.7	 and	 11.12,	 we	 assumed	 that	 for	 diamagnetic	 and
paramagnetic	materials,	the	magnetizing	field	created	inside	the	material	(Hint)	filling	the	coil
is	approximately	the	same	as	the	magnetizing	field	(H)	 that	electric	current	generates	 inside
an	 empty	 coil	 (see	 Figure	 11.5).	 This	 is	 not	 true	 for	 ferromagnetic	 and	 ferrimagnetic
materials	exhibiting	large	magnetization	(M)—commonly	known	as	magnetic	materials.	This
is	 because	 inside	 these	 magnetic	 materials	 (when	 they	 are	 in	 their	 ferromagnetic	 or
ferrimagnetic	state),	large	magnetization	produces	internal	demagnetizing	field	that	partially
nullify	the	magnetizing	field	(H)	inside	ferromagnetic	or	ferrimagnetics.	This	demagnetizing
field	causes	 the	magnetic	 flux	 lines	 (showing	B)	 inside	 the	magnetic	material	 to	move	 in	 a
direction	 opposite	 to	 that	 of	 the	magnetizing	 field	 lines	 (showing	 H)	 inside	 the	 magnetic
material.	 This	 can	 be	 shown	 using	Maxwell’s	 equations.	 Please	 pay	 careful	 attention	 to	 the
arrows	showing	induction	(B)	in	Figure	11.5.

TABLE	11.4

Demagnetizing	Factors	(Nd)	for	Different	Shapes

Note	 that	magnetizing	 field	 lines	 (depicting	H)	 and	 flux	 lines	 (showing	B)	 have	 a	 same
direction	outside	the	ferromagnetic	or	ferrimagnetic	material.

However,	 the	magnetizing	field	 (H)	and	 the	magnetization	(M)	 are	antiparallel	 inside	 the
ferromagnetic	or	ferrimagnetic	material	and	magnetic	induction	(B)	is	actually	reduced	by	a
certain	 factor	known	as	 the	demagnetizing	 factor	 (Nd).	 Instead	 of	writing	Bint	 =	μ0H	 +	 μ0M
(Equation	11.7),	as	we	did	for	diamagnetic	and	paramagnetic	materials,	we	write	the	internal
flux	density	for	a	ferromagnetic	or	ferrimagnetic	material	as



NdM	 in	 Equation	 (11.15)	 is	 the	 demagnetizing	 field	 (Hd)	 which	 decreases	 the	 magnetic
induction	(B)	by	partially	neutralizing	 the	driving	force	(H)	 for	 the	magnetization	(M).	The
demagnetizing	factor	(Nd)	is	dependent	on	the	geometry	of	magnetic	materials	(toroid,	long
cylinder,	sphere,	etc.)	and	ranges	from	0	to	1	(Table	11.4).

As	can	be	seen	from	these	values	of	Nd,	in	many	sample	calculations,	we	often	make	use	of
toroid	 or	 long	 cylinders	 for	 which	 the	 Nd	 is	 zero	 or	 small	 so	 that	 the	 effect	 of	 the
demagnetizing	fields	does	not	have	to	be	considered.	The	demagnetizing	factors	indicate	the
ease	 with	 which	 magnetization	 within	 ferromagnetic	 or	 ferrimagnetic	 materials	 can	 be
switched	to	different	directions	to	decrease	the	magnetic	flux	density	outside	the	materials.

11.3.4 FLUX	DENSITY	IN	FERROMAGNETIC	AND	FERRIMAGNETIC	MATERIALS

Thus,	 the	 magnetic	 flux	 density	 (B)	 induced	 in	 a	 magnetic	 material	 is	 related	 to	 the
magnetizing	 field	 (H)	 by	 its	 magnetic	 permeability	 (μ)	 (Figure	 11.5).	 Note	 that	 for
convenience,	 in	 this	 diagram	 for	 ferromagnetic	 or	 ferrimagnetic	materials,	 only	 the	 initial
portion	 of	 the	 B–H	 relationship	 is	 shown.	 In	 reality,	 these	 materials	 are	 magnetically
nonlinear	(Figure	11.6).	The	more	permeable	the	material,	the	higher	will	be	the	flux	density
inside	 the	material.	This	 is	what	 the	 term	magnetic	permeability	means.	 In	 some	ways,	 it	 is
useful	 to	 think	of	magnetic	permeability	 (μ)	as	being	similar	 to	electrical	conductivity—the
higher	 the	magnetic	permeability	 (μ),	 the	higher	 the	ability	of	a	material	 to	carry	magnetic
field.

FIGURE	11.6 Dependence	of	magnetic	permeability	(μ)	of	iron	on	magnetizing	field	(H)	(dashed	curve).	The	development
of	 initial	 magnetization	 is	 also	 shown	 (thick	 line)	 as	 the	 flux	 density.	 (From	 Jiles,	 D.C.,	 Introduction	 to	 Magnetism	 and
Magnetic	Materials,	Chapman	and	Hall,	London,	1991.	With	permission.)



The	relative	magnetic	permeability	of	ferromagnetic	and	ferrimagnetic	materials	is	large
(~100–600,000)	and	field	dependent.	This	is	why,	similar	to	ferroelectrics,	ferromagnetic	and
ferrimagnetic	materials	are	considered	nonlinear	magnetic	materials.

The	 field	 dependence	 of	 the	 permeability	 (μ)	 of	 a	 magnetic	 field	 (Henry/meter)	 for	 a
magnet	of	annealed	iron	(Fe)	is	shown	in	Figure	11.6.

The	 following	example	 illustrates	 the	effect	of	 inserting	a	magnetic	material	on	 the	 flux
density	created	within	a	solenoid.

Example	11.3: Flux	Density	for	Air	and	Iron	Core

The	applied	magnetic	field	(H)	for	a	toroidal	solenoid	(Figure	11.4a)	is	given	by	N	×	I,	where	N	 is	 the	number	of
turns	per	meter	and	I	is	the	current	in	amperes	(Equation	11.5).	(a)	What	is	the	flux	density	(B)	created	for	a	current
of	 0.5	A	 if	 the	 toroidal	 solenoid	 has	 an	 air	 core?	 (b)	What	 is	 the	 flux	 density	 (B)	 if	 the	 core	 is	 filled	with	 iron?
Assume	 that	 the	 relative	magnetic	 permeability	 of	 iron	 is	 900	 for	 the	 field	 generated	 using	 0.5	 A.	 The	 average
circumference	of	the	solenoid	is	75	cm,	and	there	are	1000	turns.

Solution
1.	 The	average	circumference	of	the	solenoid	winding	is	I	=	75	cm,	and	there	are

1000	turns.	Therefore,	the	value	of	N	(turns	per	meter)	=	1000	turns/(0.75	m)	=
1333.33.

The	magnetic	field	created	is	H	=	N	×	I	=	(1333.33)	×	(0.5	A)	=	666.66	A/m.
The	 flux	 density	 generated	 from	 this	 field	 in	 air	will	 be	 (Bair)	=	 (μ0H)	 =	 (4π	 ×	 10

−7	H/m)

(666.66	A/m)	=	8.38	×	10−4	T.	We	assumed	 that	 the	magnetic	 permeability	 of	 air	 (μair)	 is	 the
same	 as	 that	 of	 vacuum	 (μ0).	 A	 very	 small	 level	 of	 flux	 density	 (B)	 is	 generated	 inside	 the
toroidal	 solenoid	 filled	with	air.	For	 comparison,	 this	 is	 the	 type	of	 flux	density	 created	by	 the
earth’s	natural	magnetic	field.

2.	 Now	 the	 solenoid	 gap	 is	 filled	with	 iron.	 The	 relative	magnetic	 permeability
(μr)	of	iron	is	1000	for	the	level	of	magnetic	field	created	inside	the	solenoid.	In
magnetic	 circuit	 design,	 such	 values	 of	 μr	 are	 usually	 obtained	 from	 data
similar	to	those	shown	in	Figure	11.6.

Therefore,	 for	 this	 scenario,	 the	 flux	 density	 created	 inside	 the	 solenoid	 will	 be	 (from	 Equation
11.11)	B	=	μ0μrH	=	(4π	×	10

−7	H/m)	(1000)	(666.66	A/m)	=	0.838	T.	This	 is	a	 relatively	high	 flux
density	created	inside	the	solenoid	using	iron,	which	is	a	ferromagnetic	material.

11.4 CLASSIFICATION	OF	MAGNETIC	MATERIALS

One	 way	 of	 classification	 described	 here	 is	 based	 on	 the	 relative	 values	 and	 signs	 of	 the
magnetic	 susceptibility:	 diamagnetic,	 paramagnetic,	 antiferromagnetic,	 ferromagnetic,
ferrimagnetic,	superconductivity.

11.4.1 DIAMAGNETIC	MATERIALS

In	 diamagnetic	 materials,	 when	 an	 external	 magnetic	 field	 is	 applied,	 the	 material	 tries	 to
exclude	 the	 magnetic	 flux.	 Many	 materials	 (e.g.,	 most	 metals,	 inert	 gases,	 and	 organic
compounds)	 often	 classified	 as	 nonmagnetic	 actually	 exhibit	 a	weak	 diamagnetic	 response.
Diamagnetism	is	an	inherent	property	of	the	orbital	motion	of	individual	electrons	in	a	field
(Goldman	1999).	 It	 is	 basically	 a	Lenz’s	 law–like	 effect,	 occurring	 at	 an	 atomic	 scale.	The



relative	 magnetic	 permeability	 (μr)	 of	 diamagnetic	 materials	 is	 <1.	 This	 means	 that	 the
magnetic	susceptibility	(χm)	is	negative	(Equation	11.13).

Note	that	atoms	in	the	diamagnetic	materials	do	not	have	net	magnetic	dipoles	under	zero
magnetizing	 field.	 Only	 when	 a	 magnetizing	 field	 is	 applied,	 the	 magnetic	 moment	 is
produced	 at	 an	 atomic	 level.	 In	 diamagnetic	 materials,	 each	 atom	 has	 an	 even	 number	 of
valence	electrons	and	there	are	no	net	magnetic	moments	in	the	atomic	level.	Then	the	applied
magnetic	 field	 distorts	 electron	 orbital	 motion,	 leading	 to	 negative	magnetic	 susceptibility
(Table	11.5).	Therefore,	the	diamagnetic	materials	reduce	the	effect	of	the	magnetizing	field.
Since	the	magnetic	moment	of	the	diamagnetic	materials	comes	from	the	precession	motion
of	electrons,	the	susceptibility	of	the	diamagnetic	materials	is	independent	of	temperature.	In
contrast,	 other	 types	 of	magnetic	 behaviors	 depend	 on	 temperature.	 Diamagnetic	materials
actually	tend	to	expel	the	magnetic	flux	lines	out	from	their	interior.	Certain	materials	known
as	superconductors	are	perfect	diamagnetic	materials.	This	means	that	in	superconductors,	the
magnetic	 field	 can	 be	 completely	 expelled.	 This	 occurs	 when	 the	 temperature	 T	 of	 a
superconductor	 is	 less	 than	 the	 so-called	 critical	 temperature	 (Tc),	 at	 which	 the
superconducting	 state	 exists.	 This	 critical	 temperature	 (Tc)	 below	which	 a	material	 exhibits
superconductivity	 is	 not	 related	 to	 the	 Curie	 temperature	 (Tc)	 of	 ferromagnetic	 and
ferrimagnetic	materials	(see	Section	11.6.1).	The	magnetic	susceptibility	of	superconductors
is	χm	=	−1.	This	important	difference	between	a	conductor	and	a	superconductor	is	shown	in
Figure	11.7.

TABLE	11.5

Magnetic	Susceptibilities	of	Some	Elements



The	expulsion	of	magnetic	flux	lines	due	to	the	diamagnetic	behavior	of	a	superconductor
is	 known	 as	 the	 Meissner	 effect,	 which	 is	 the	 basis	 of	 magnetic	 levitation	 using
superconductors.	When	a	permanent	magnet	is	brought	near	a	superconductor	(when	it	is	in
this	superconducting	state),	 it	 tries	 to	expel	 the	magnetic	 field.	The	result	 is	 that	 the	magnet
can	float	or	levitate	over	the	superconductor	(Figure	11.8).

FIGURE	 11.7 Expulsion	 of	 magnetic	 flux	 lines	 in	 a	 superconductor	 at	 T	 <	 Tc.	 In	 a	 conductor,	 the	 magnetic	 flux	 lines
continue	 to	penetrate.	 (From	Kasap,	S.O.,	Principles	of	Electronic	Materials	and	Devices,	McGraw	Hill,	New	York,	 2002.
With	permission.)

FIGURE	 11.8 Illustration	 of	Meissner	 effect	 in	 superconductors.	 (From	 http://www.wondermagnet.com/images/super5.jpg.
With	permission.)

11.4.2 PARAMAGNETIC	MATERIALS

When	a	paramagnetic	material	is	placed	inside	the	coil,	the	flux	density	inside	(Bint)	is	slightly
larger	than	B0.	This	effect	originates	from	the	atoms	or	ions	that	have	unpaired	electrons,	and
it	leads	to	a	net	magnetic	moment	for	the	free	atom	or	an	ion.	The	atoms	or	ions	are	known	as

http://www.wondermagnet.com/images/super5.jpg


paramagnetic	 atoms	 or	 paramagnetic	 ions.	 Examples	 include	 materials	 such	 as	 aluminum.
The	atoms	in	these	materials	have	a	permanent	magnetic	moment.	When	a	magnetic	field	is
applied,	 these	 magnetic	 moments	 get	 oriented	 and	 create	 a	 magnetization	 in	 the	 same
direction	as	the	applied	field.	Thus,	in	paramagnetic	materials,	the	susceptibility	is	very	small
(χm~	 +	 10−6	 –	 10−3)	 but	 positive.	 As	 temperature	 increases,	 the	 thermal	 motion	 becomes
important	and	the	susceptibility	of	the	paramagnetic	materials	decreases.

This	can	be	shown	by	a	demonstration	in	which	a	stream	of	liquid	oxygen	is	deflected	by	a
strong	 permanent	 magnet	 held	 next	 to	 it	 (Featonby	 2005).	 As	 a	 side	 note,	 the	 unpaired
electrons	that	create	a	magnetic	moment	in	oxygen	are	also	related	to	the	absorption	of	red
light	(~630-nm	wavelength)	and	impart	a	blue	color	to	liquid	oxygen!	Paramagnetic	materials
show	a	 slight	attraction	 in	 the	presence	of	a	permanent	magnet.	However,	 the	paramagnetic
response	 is	 so	 small	 that,	 for	 all	 practical	 purposes,	 these	 materials	 are	 also	 considered
nonmagnetic.	 Another	 important	 point	 is	 that	 at	 the	 Curie	 temperature,	 ferromagnetic	 and
ferrimagnetic	materials	transform	into	paramagnetic	materials.

The	 relative	value	and	sign	of	magnetic	 susceptibility	 (χm)	 or	magnetic	 permeability	 (μ)
are	often	used	 to	classify	magnetic	materials.	The	 relationships	between	magnetic	 field	and
magnetization	for	different	materials	are	shown	in	Figure	11.9.	Note	that	this	diagram	is	not
to	 scale.	 Also,	 it	 does	 not	 show	 the	 nonlinear	 nature	 of	 ferromagnetic	 and	 ferrimagnetic
materials.	 In	 principle,	 if	 you	 apply	 a	 very	 high	 magnetic	 field,	 the	 inductance	 of	 the
paramagnetic	materials	 can	 be	 comparable	 to	 that	 of	 the	 ferromagnetic	 and	 ferromagnetic
materials,	since	the	inductance	of	the	ferromagnetic	and	ferromagnetic	materials	is	saturated
at	high	magnetic	field	(Figure	11.13).

The	magnetic	 susceptibility	values	 for	 some	diamagnetic	 and	paramagnetic	 elements	 are
presented	in	Table	11.5.



FIGURE	11.9 Magnetic	permeability	for	different	types	of	magnetic	materials.	Values	are	not	to	scale.	(From	Askeland,	D.
and	Fulay	P.,	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

11.4.3 SUPERPARAMAGNETIC	MATERIALS

Another	 technologically	 important	 class	 of	 materials	 is	 superparamagnetic	 materials.	 The
superparamagnetism	 is	 seen	 in	 ferromagnetic	 and	 ferrimagnetic	materials	 fabricated	 in	 the
form	 of	 nanoparticles	 or	 nanoscale	 structures,	 that	 is,	 the	 grain	 size	 of	 a	 polycrystalline
material	 becomes	 of	 the	 order	 of	 a	 few	 nanometers.	 For	 example,	 in	 the	 bulk	 form,	 BCC
(Chapter	2)	 iron	 (Fe)	 is	 ferromagnetic.	As	we	decrease	 the	 size	 of	 iron	 particles	 or	 grains
from	the	bulk	to	a	few	micrometers	and	then	down	to	a	few	nanometers,	the	thermal	energy	at
room	temperature	(~kBT)	becomes	comparable	with	the	magnetic	energy.	Such	nanoparticles
or	nanoscale	grains	 eventually	become	 single	domain.	Thus,	 a	nanoparticle	or	 a	nanosized
grain	 (~5–10	 nm)	 of	 iron	 or	 similar	 ferromagnetic	 or	 ferrimagnetic	 materials	 has	 a	 net
dipole	moment.	However,	if	 the	energy	associated	with	the	magnetic	moment	of	this	single-
domain	 nanoparticle	 or	 grain	 is	 comparable	 with	 the	 thermal	 energy,	 the	magnetic	 dipole
moment	 rotates	 rapidly	at	 room	 temperature.	Single-domain	nanoparticles	and	nanograined
materials	of	ferromagnetic	and	ferrimagnetic	materials	consequently	behave	as	 if	 they	have
no	 net	 magnetic	 moment.	 This	 behavior,	 in	 which	 a	 material	 that	 is	 originally	 either
ferromagnetic	or	ferrimagnetic	in	its	bulk	form	behaves	similar	to	a	paramagnetic	material	at
a	nanoscale	level,	is	known	as	superparamagnetism.	The	materials	in	this	nanoscale	form	that
exhibit	such	behavior	are	known	as	superparamagnetic	materials.



The	 existence	 of	 this	 effect	 imposes	 a	 limit	 on	 how	 small	 the	 grain	 size	 of	 magnetic
nanostructures	that	are	used	for	magnetic	data	storage	can	be.

The	exact	dimension	or	size	at	which	the	thermal	energy	can	exceed	the	magnetic	energy
and	 render	 the	 material	 superparamagnetic	 depends	 on	 the	 composition,	 coercivity,	 and
magnetic	anisotropy	of	the	material.	However,	in	general	terms,	the	superparamagnetic	effects
become	dominant	once	 the	grain	or	particle	size	becomes	of	 the	order	of	 less	 than	100	nm
and	more	typically	~10	nm.

Magnetic	 materials	 form	 the	 basis	 of	 different	 classes	 of	 what	 can	 be	 described	 as
passively	smart	materials.	A	smart	material	is	one	which	has	properties	that	are	controllable
using	an	external	stimulus	(temperature,	stress,	electric	field,	magnetic	field,	etc.).

Materials	 known	 as	 ferrofluids	 are	 based	 on	 the	 use	 of	 superparamagnetic	 materials
(Figure	 11.10a).	 A	 ferrofluid	 is	 a	 stable	 dispersion	 of	 superparamagnetic	 particles	 (Figure
11.10b).	Ferrofluids	behave	as	liquid	magnets,	that	is,	when	a	permanent	magnet	is	placed	next
to	 them,	 the	 entire	material	 shows	 a	body	motion.	The	 carrier	 fluid	 is	 typically	 an	organic
substance,	but	it	could	also	be	water.	Because	the	particles	are	colloidal	in	nature	and	surface-
active	 agents	 (surfactants)	 are	 used,	 the	 particles	 of	 magnetic	 materials	 used	 to	 make
ferrofluids	do	not	settle	out	easily	or	form	agglomerates.	Commercially	available	ferrofluids
are	made	using	 iron,	 iron	oxide,	and	other	materials.	Ferrofluids	are	used	commercially	as
cooling	media.	The	advantage	 in	using	 them	as	 such,	 as	 for	 example,	 for	 cooling	of	high-
wattage	 speakers,	 is	 that	 this	 heat-transfer	 fluid	 can	be	 held	 in	 place	 by	 the	magnetic	 fields
created	by	the	permanent	magnets	used	to	make	the	audio	speakers	(Rosensweig	et	al.	2008).

The	 formation	 of	 spikes	 in	 a	 ferrofluid	 caused	 by	 its	 movement	 in	 response	 to	 a
nonuniform	magnetic	field	(created	by	a	permanent	magnet	held	below,	as	shown	in	Figure
11.10a)	makes	an	interesting	demonstration	of	the	behavior	of	these	materials.

Superparamagnetic	nanoparticles	of	materials	such	as	Fe3O4	have	also	been	functionalized
through	surface	modification	so	that	biological	species,	molecules,	cells,	and	so	on	can	attach
to	them.	These	biological	species	can	then	be	separated	from	the	rest	of	the	material	using	a
permanent	magnet.

Ferrofluids	are	distinctly	different	from	the	so-called	magnetorheological	(MR)	fluids	 that
are	 based	 on	 dispersions	 of	 larger	 (not	 superparamagnetic)	 and	magnetically	multidomain
ferromagnetic	or	ferrimagnetic	particles	with	very	low	coercivity.	Applications	of	MR	fluids
include	vibration	control	and	have	been	commercialized	(Figure	11.10c).



FIGURE	 11.10 (a)	 Formation	 of	 spikes	 in	 a	 ferrofluid.	 (b)	 Superparamagnetic	 nanoparticles	 of	 iron	 oxide	 (Fe3O4).
(Courtesy	of	Ferrotec	Corporation	and	Dr.	Kuldip	Raj,	Ferrotec	Corporation,	USA.)	(c)	Soft	magnetic,	multidomain	 iron	(Fe)
particles	(~2	μm)	used	in	magnetorheological	fluids.	(Courtesy	of	Pradeep	Fulay,	University	of	Pittsburgh,	PA.)

11.4.4 ANTIFERROMAGNETIC	MATERIALS

In	antiferromagnetic	materials,	 the	 individual	atom	or	 ion	has	a	net	 spin	magnetic	moment,
however,	these	magnetic	moments	are	aligned	in	an	antiparallel	way.	If	then,	the	spin	magnetic
moments	cancel	out	completely.	This	 is	because	of	 the	way	by	which	 the	 ions	or	atoms	are
arranged	in	a	given	crystal	structure.	Consequently,	antiferromagnetic	materials	have	no	net
magnetization	in	the	absence	of	applied	magnetic	field	(H).	Chromium	(Cr)	and	α-manganese
(α-Mn)	 are	 examples	 of	 antiferromagnetic	 elements.	 An	 example	 of	 an	 antiferromagnetic
compound	 is	manganese	 oxide	 (MnO),	 in	 which	 the	 spin	magnetic	moments	 of	Mn2+	 ions
located	at	different	crystallographic	sites	cancel	each	other	out	(Figure	11.11).	Note	that	in	this
compound,	 oxygen	 ions	do	not	 have	 a	net	magnetic	moment.	However,	 through	 a	quantum
mechanical	 interaction,	 they	 mediate	 the	 magnetic	 moments	 of	 Mn2+	 ions.	 In	 the



antiferromagnetic	materials,	 susceptibility	 (χm)	 is	 slightly	 larger	 than	0	and	dependent	upon
the	applied	field	intensity.

If	 we	 heat	 an	 antiferromagnetic	 material	 to	 a	 high	 temperature,	 eventually	 all	 the
antiferromagnetic	 coupling	 will	 be	 destroyed	 and	 the	 material	 will	 become	 paramagnetic.
When	we	 cool	 an	 antiferromagnetic	material	 from	 a	 high	 temperature,	 known	 as	 the	Néel
temperature	(TN	or	θN),	at	which	it	is	in	a	paramagnetic	state,	the	antiferromagnetic	coupling
will	set	in	on	the	sublattice.	This	will	be	discussed	later	in	Section	11.5	(Figure	11.12c).

FIGURE	11.11 Antiferromagnetic	coupling	of	magnetic	moments	of	Mn2+	ions	in	MnO.	(From	Askeland,	D.	and	Fulay	P.,
The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)



FIGURE	11.12 (a)	Curie–Weiss	law	behavior	for	ferromagnetic	materials.	Note	that	the	Curie–Weiss	law	is	the	variation	of
1/χ	 at	 T	 >	 Tc.	 (With	 kind	 permission	 from	 du	 Tremolet	 de	 Lacheisserie,	 E.,	 et	 al.,	Magnetism:	 Fundamentals,	 Springer
Science+Business	 Media,	 2002.)	 (b)	 Comparison	 of	 1/χ	 versus	 T	 for	 ferromagnetic,	 ferrimagnetic,	 antiferromagnetic,	 and
paramagnetic	materials.	 (From	Goldman,	A.,	Handbook	 of	Modern	Ferromagnetic	Materials,	 Kluwer,	 Boston,	MA,	 1999.
With	permission.)	(c)	Néel	temperature	(TN	or	θN)	for	antiferromagnetic	materials.	(From	Goldman,	A.,	Handbook	of	Modern
Ferromagnetic	Materials,	Kluwer,	Boston,	MA,	1999.	With	permission.)

11.4.5 FERROMAGNETIC	AND	FERRIMAGNETIC	MATERIALS

These	materials	have	the	strongest	response	to	an	externally	applied	magnetic	field.	In	other
words,	these	materials	are	very	susceptible	to	magnetic	fields.	In	general,	when	we	refer	to	a
magnetic	 material,	 it	 is	 understood	 that	 this	 refers	 to	 a	 ferromagnetic	 or	 ferrimagnetic
material	(Figure	11.12a).	The	term	nonmagnetic	material	is	commonly	used	for	diamagnetic
or	paramagnetic	materials.

The	most	 important	 feature	of	 ferromagnetic	and	 ferrimagnetic	materials	 is	 that	 there	 is
net	magnetization	 even	without	magnetizing	 field,	 due	 to	 the	 spontaneous	 alignment	 of	 the
magnetic	 moments	 in	 solids	 (Figure	 11.3).	 Therefore,	 ferromagnetic	 and	 ferrimagnetic
materials	are	characterized	by	a	magnetic	hysteresis	loop,	similar	to	the	polarization–electric
field	 loops	 exhibited	 by	 ferroelectric	 materials.	 The	 terminology	 used	 for	 a	 magnetic
hysteresis	loop	is	very	similar	to	that	used	for	ferroelectrics	and	is	shown	in	Figure	11.13a.
Note	 that	 in	 Figure	 11.9,	 we	 have	 shown	 only	 the	 initial	 portion	 of	 the	 hysteresis	 loop.	 In
Figure	11.13a,	the	nonlinear	nature	of	these	materials	is	quite	clear.	Furthermore,	in	general,
the	magnetic	susceptibility	values	of	ferromagnetic	and	ferrimagnetic	materials	will	be	very
high	compared	with	those	of	diamagnetic	and	paramagnetic	materials.



FIGURE	11.13 (a)	Typical	magnetic	hysteresis	 loops	of	ferromagnetic	and	ferrimagnetic	materials	shown	here	as	(i)	M–H
loop	and	(ii)	B–H	 loop,	 respectively.	 (From	Skomski,	R.	and	J.Coey	M.D,	eds.,	Permanent	Magnetism,	 Institute	 of	Physics,
Bristol,	UK,	1999.	With	permission.)	(b)	Schematic	illustration	showing	transition	of	multidomain	particles	or	grains	to	single-
domain	 and	 superparamagnetic	particles	or	grains.	 (From	Hadjipanayis,	G.C.,	J.	Magn.	Magn.	Mater.,	 200.	 373,	 1991.	With
permission.)

The	 hysteresis	 loop	 is	 the	 trace	 of	magnetization	 (M)	 developed	 in	 these	materials	 as	 a
function	of	magnetizing	field	(H).	Note	that	a	ferromagnetic	and	a	ferrimagnetic	material	are
not	distinguished	simply	by	examining	the	shape	of	the	hysteresis	loop.

It	 is	 a	 common	 practice	 to	 show	 the	 values	 of	 μ0M	 (Tesla)	 instead	 of	 the	 value	 of
magnetization	M	(ampere/meter).	The	quantity	μ0M	is	known	as	the	magnetic	polarization	(J).
Often,	the	hysteresis	loop	is	also	shown	as	the	magnetic	induction	(B)	versus	the	magnetizing
field	(H).	Again	similar	to	linear	dielectrics,	for	linear	magnetic	materials	(i.e.,	diamagnetic
and	paramagnetic),	by	definition,	the	magnetic	susceptibility	(χm)	is	independent	of	the	applied



field	 (H).	 However,	 for	 ferromagnetic	 and	 ferrimagnetic	 materials,	 the	 magnetic
susceptibility	or	permeability	is	indeed	dependent	on	the	applied	field	(Figure	11.13a).

Similar	 to	 ferroelectrics	 (Chapter	10),	 ferromagnetic	and	ferrimagnetic	materials	exhibit
the	presence	of	magnetic	domains.	A	magnetic	domain	is	a	region	of	a	material	in	which	the
magnetic	 moments	 have	 a	 coupling	 that	 results	 in	 net	 magnetization.	 A	 ferromagnetic	 or
ferrimagnetic	 material	 typically	 consists	 of	 many	 magnetic	 domains.	 If	 the	 material	 is
polycrystalline,	typically,	there	will	be	many	magnetic	domains	within	each	grain.	A	change
in	 the	 magnetization	 of	 the	 hysteresis	 loop	 in	 Figure	 11.13a	 is	 due	 to	 the	 reversal	 of	 the
magnetic	domains.	As	magnetizing	field	increases,	domains	whose	magnetization	direction	is
parallel	 to	 magnetizing	 field	 direction	 becomes	 larger	 and	 other	 domains	 shrink.	 As
mentioned	 in	Section	11.4.3,	 if	 a	 particle	 or	 grain	 becomes	 too	 small,	 it	 becomes	 a	 single-
domain	 body	 and	 eventually	 becomes	 a	 superparamagnetic	 material	 (Figure	 11.13b).	 In
addition,	notice	the	concomitant	changes	in	coercivity	of	these	materials.

The	 maximum	 possible	 magnetization	 we	 can	 get	 in	 a	 ferromagnetic	 or	 ferrimagnetic
material	 is	known	as	 the	saturation	magnetization	 (Ms).	This	 is	 also	 sometimes	 shown	with
the	symbol	Js	=	μ0Ms.	It	is	defined	as	the	maximum	possible	magnetic	dipole	moment	per	unit
volume	of	a	given	material.	Very	often,	the	saturation	magnetization	is	expressed	as	the	flux
density	 (B)	 that	 it	 creates	 in	 a	 material.	 Because	 μ0M	 >>	 μ0H	 for	 ferromagnetic	 and
ferrimagnetic	 materials,	 the	 saturation	 magnetization	 is	 often	 expressed	 as	 Bsat	 ~	 μ0Ms
(Figure	11.13a).

Note	 that	 in	 literature,	 coercivity	 is	 sometimes	 written	 as	HcB	 or	 bHc.	 The	 subscript	 or
prefix	B	shows	that	this	is	the	coercivity	for	the	induction–magnetic	field	(B–H)	 loop.	 If	 the
coercivity	 symbols	 appear	 as	 HcM	 or	 mHc,	 it	 indicates	 the	 coercivity	 value	 for	 the
magnetization–magnetic	field	(M–H)	loop.	For	materials	with	μ0HcM	>	Br,	 the	magnitude	of
HcM	is	larger	than	HcB	(du	Trémolet	de	Lacheisserie	et	al.	2002).

Sometimes,	especially	in	the	older	literature	on	magnetic	materials,	you	will	encounter	cgs
and	 emu	 units	 for	magnetic	 properties.	 For	 example,	magnetization	 is	 expressed	 in	Gauss.
One	Tesla	is	10,000	Gauss.	Conversions	of	different	units	for	the	various	magnetic	properties
are	 listed	 in	Table	11.6.	The	 conversion	 factors	provided	are	 for	 conversion	of	 a	Gaussian
quantity	to	the	corresponding	unit	in	the	SI	system.

The	following	examples	illustrate	how	the	magnetic	moment	of	free	atoms	or	ions	can	be
used	to	calculate	 the	saturation	magnetization	 in	ferromagnetic	and	ferrimagnetic	materials,
and	how	the	results	compare	with	the	measured	values.

Example	11.4: Saturation	Magnetization	(Ms)	and	Magnetic	Polarization	(Js)	of	BCC	Iron

The	BCC	form	of	iron	(Fe)	is	ferromagnetic.
1.	 If	 the	 room-temperature	 unit-cell	 lattice	 constant	 of	 this	 structure	 is	 2.866	Å,

what	will	be	the	saturation	magnetic	polarization	of	BCC	iron?
2.	 Compare	 this	 with	 the	 experimental	 value	 of	 2.1	 T,	 which	 is	 the	 room-

temperature	saturation	magnetization	of	this	form	of	iron.
3.	 What	is	the	“effective”	magnetic	moment	of	iron	atoms	in	a	BCC	iron	crystal?

Solution



1.	 As	shown	in	Figure	11.14,	in	BCC	iron,	we	have	eight	iron	atoms	at	the	corners
and	one	atom	at	the	center	of	the	unit	cell.	Each	of	the	eight	corner	atoms	counts
only	as	one-eighth	because	it	is	shared	among	a	total	of	eight	unit	cells	(Chapter
2).	The	atom	at	the	cube	center	counts	as	one.	Thus,	the	actual	number	of	atoms
per	unit	cell	of	BCC	iron	is	two.

Each	iron	atom	has	a	magnetic	moment	of	4	μB	because	there	are	four	unpaired	electrons	per	atom
(Table	11.1).
Thus,	the	total	dipole	moment	per	unit	cell	of	BCC	iron	will	be	=	(2	atoms/unit	cell)	×	4	μB	=	8	×

11.274	×	10−24	A	·	m2/unit	cell.
The	volume	of	each	unit	cell	in	BCC	iron	=	(2.866	×	10−10	m)3	=	23.544	×	10−30	m3.	Now,	BCC

iron	 is	 ferromagnetic.	This	means	 that	all	 the	magnetic	dipole	moments	associated	with	all	 the	atoms
point	in	the	same	direction.
Thus,	the	magnetization	(Ms)	will	be	equal	to	the	total	magnetization	per	unit	volume.

TABLE	11.6

Units	for	the	Various	Magnetic	Properties



FIGURE	11.14 Crystal	structure	of	body-centered	cubic	iron.

Magnetization	is	often	expressed	as	μ0Ms,	rather	than	as	Ms,	because	then,	it	has	units	of	Tesla,	and
it	is	easier	to	compare	μ0M	with	μ0H	(see	Example	11.6).

2.	 The	Ms	 value	 of	 3.15	 ×	 106	 A/m	 is	 equivalent	 to	 Js	 =	 μ0Ms	 =	 3.95	 T.	 The
measured	value	of	 saturation	magnetization	 is	2.1	T.	This	difference	 is	due	 to
cancelation	of	some	of	the	magnetic	spin	moments	when	the	“free”	iron	atoms
get	together	and	form	a	BCC	crystal.

3.	 Because	 the	 actual	 value	 of	magnetization	 is	 2.1	 T,	we	 can	 back-calculate	 the
“effective”	magnetic	moment	 of	 an	 iron	 atom	 in	 BCC	 iron.	 Let	 the	 effective
magnetic	moment	be	x	Bohr	magnetons	per	 iron	atom	in	BCC	iron.	Then,	 the
total	saturation	magnetization	will	be

Therefore,	Ms	=	7.87	×	x	×	10
5	A/m.	This	 corresponds	 to	 the	magnetic	polarization	Js	=	μ0Ms	 =

(7.87	×	x	×	105	A/m)	(4π	×	10−7	Wb/A	·	m)	=	(0.9895	×	x)	T.
This	is	given	as	2.1	T,	which	means	x	=	2.122.
Thus,	although	a	free	iron	atom	has	a	magnetic	moment	of	4	μB,	an	iron	atom	in	a	BCC	iron	crystal

behaves	as	if	its	magnetic	moment	is	only	2.122	μB.
Similar	 calculations	 can	 be	 done	 for	 other	 materials	 as	 well.	 The	 properties	 of	 some	 magnetic

materials,	 including	 the	 effective	 magnetic	 moments	 of	 atoms,	 expressed	 as	 the	 number	 of	 Bohr
magnetons	 per	 atom	or	 per	 formula	 unit	 (nB/formula	 unit),	 are	 shown	 in	Table	 11.7.	 Compare	 these
values	with	those	listed	in	Table	11.2.

Example	11.5: Saturation	Magnetization	in	Ceramic	Ferrites

Ceramic	 ferrites	 are	 useful	 magnetic	 materials.	 Iron	 oxide	 (Fe3O4)	 is	 one	 example	 of	 a
ceramic	ferrite	(Figure	11.15a).	This	material	shows	ferrimagnetic	behavior,	characterized	by
the	 antiferromagnetic	 coupling	 of	 the	 magnetic	 moments	 of	 Fe3+	 ions	 on	 different
crystallographic	 sites	 (Example	11.2).	 These	 crystallographic	 arrangements	 are	 shown	 in	 a
subcell	of	Fe3O4	(Figure	11.15b).	Oxygen	ions	mediating	these	magnetic	interactions	are	not



shown	for	the	sake	of	clarity.	(a)	Calculate	the	saturation	magnetization	(μ0Ms)	for	Fe3O4	 if
the	 lattice	 constant	 (a0)	 of	 the	 larger	 unit	 cell,	 which	 consists	 of	 eight	 smaller	 unit	 cells
(Figure	11.15a),	is	8.37	Å.	(b)	What	will	be	the	saturation	flux	density	(Bs)	for	this	material?

TABLE	11.7

Magnetic	Properties	of	Some	Magnetic	Materials

FIGURE	11.15 (a)	Crystal	structure	of	iron	oxide	and	(b)	arrangements	of	ferrous	(Fe2+)	and	ferric	(Fe3+)	ions	in	a	subcell
of	Fe3O4.	 (From	Askeland,	D.	and	Fulay	P.	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.
With	permission.)

Solution



1.	 In	Fe3O4,	the	magnetic	moments	of	ferric	ions	(Fe3+)	(each	Fe3+	has	a	magnetic
moment	 of	 5)	 canceled	 out	 because	 of	 the	 antiferromagnetic	 coupling	 of	 an
equal	number	of	Fe3+	ions	located	at	both	tetrahedral	and	octahedral	sites.	Thus,
only	the	ferrous	ions	(Fe2+)	contribute	to	the	net	magnetic	moment.

In	each	subcell,	the	single	Fe2+	contributes	to	the	total	magnetic	moment.	We	have	a	total	of	eight
subcells	that	make	the	larger	unit	cell	(Figure	11.15a).	The	magnetic	moment	for	each	cell	being	4	μB
for	 eight	unit	 cells,	 the	 total	magnetic	moment	will	 be	32	μB.	Under	 saturation	 conditions,	 all	 these
magnetic	moments	will	be	aligned	with	 the	 field	due	 to	 the	divalent	 ferrous	 ions	and	hence	 the	 total
magnetization	will	be

The	 volume	 of	 the	 unit	 cell	 is	 (8.37	 ×	 10−10	 m)3	 =	 5.86	 ×	 10−30	 m3,	 and	 the	 saturation
magnetization	per	unit	volume	is

This	can	be	expressed	in	Tesla	as	the	magnetic	polarization	Js	=	μ0Ms	=	(4π	×	10
−7	Wb/A	·	m)	(5.1

×	105	A/m)	=	0.64	T.
This	is	close	to	the	experimentally	measured	value	of	~0.6	T	at	290	K	(Table	11.7).	For	ferrites,	the

differences	 in	 the	 measured	 and	 calculated	 values	 of	 magnetization	 may	 be	 due	 to	 the	 incomplete
quenching	of	the	orbital	magnetic	moments,	changes	in	the	relative	ratios	of	divalent	and	trivalent	ions
(i.e.,	 changes	 in	 Fe2+/Fe3+	 ratio),	 and	 changes	 in	 the	 distribution	 of	 these	 ions	 among	 different
tetrahedral	and	octahedral	sites.

2.	 Now	 we	 can	 calculate	 the	 magnetic	 flux	 density	 under	 saturation	 (Bsat).	 The
relationship	between	B	and	M	is	given	by

B	=	μ0H	+	μ0M

For	 ferromagnetic	 and	 ferrimagnetic	materials,	 the	 second	 term	 dominates,	 that	 is,	 μ0M	>>	 μ0H,
especially	under	high	fields.	Thus,	ignoring	the	first	term,	Bsat	~	μ0Ms	=	0.64	T.



TABLE	11.8

Magnetic	Moments	for	Different	Ferrites

In	Table	11.8,	the	values	of	magnetic	moments	and	the	coupling	of	different	moments	for
some	ceramic	ferrites	are	shown.

When	the	divalent	ions	go	to	only	the	tetrahedral	site	and	the	trivalent	ions	occupy	only	the
octahedral	site,	the	structure	is	known	as	a	normal	spinel	structure.	For	example,	zinc	ferrite
(ZnFe2O4)	 has	 a	 normal	 structure.	 However,	 as	 seen	 in	 the	 case	 of	 Fe3O4	 (written	 as
FeFe2O4),	 the	 trivalent	 ions	 (i.e.,	 what	 are	 supposed	 to	 be	 the	 B-site	 cations)	 are	 evenly
distributed	across	both	tetrahedral	and	octahedral	sites.	This	structure	is	known	as	the	inverse
spinel	structure.	Examples	of	inverse	spinel	ferrites	include	FeFe2O4,	NiFe2O4,	and	CoFe2O4.
Some	spinels,	such	as	MnFe2O4,	may	exhibit	partly	normal	and	inverse	spinel	structures.

Note	that	the	addition	of	zinc	ferrite	(with	zero	net	magnetic	moment)	to	nickel	ferrite	or
MnFe2O4	increases	 the	net	magnetic	moment	of	these	materials.	This	is	counterintuitive	and
can	be	 explained	 as	 follows.	When	 zinc	 ions	 substitute	 for	 a	 part	 of	 the	 tetrahedral	 sites	 in
either	 nickel	 or	manganese	 ferrite,	 they	 reduce	 the	 antiparallel	 coupling	 between	Fe3+	 ions
distributed	 on	 the	 tetrahedral	 sites	 in	 the	 inverse	 spinel	 structure.	 This,	 in	 turn,	 causes	 an
increase	in	the	net	magnetization.

11.5 OTHER	PROPERTIES	OF	MAGNETIC	MATERIALS

11.5.1 CURIE	TEMPERATURE	(Tc)
Ferromagnetic	 and	 ferrimagnetic	materials	 undergo	 a	 transformation	 at	 high	 temperatures,
by	which	they	become	paramagnetic.	The	temperature	at	which	the	spontaneous	magnetization



in	 a	 ferromagnetic	 or	 ferrimagnetic	 material	 vanishes	 is	 known	 as	 the	 Curie	 temperature.
Similar	 to	 ferroelectrics	 (Chapter	 10),	 the	 Curie–Weiss	 law	 describes	 the	 variation	 of
magnetic	 susceptibility	with	 temperature	 for	 levels	 above	 the	Curie	 temperature,	written	 as
follows:

In	 this	 equation,	 χm	 is	 the	 magnetic	 susceptibility,	 T	 is	 the	 temperature,	 θp	 is	 the
paramagnetic	Curie	temperature	(often,	slightly	greater	than	Tc),	and	C	is	the	Curie	constant.

The	variation	in	1/χm	as	a	function	of	temperature	for	T	>	Tc	 is	what	the	Curie–Weiss	law
represents.	Note	that	this	law	does	not	apply	to	the	variation	of	magnetization	at	temperatures
below	 Tc.	 The	 variation	 of	 susceptibility	 above	 Tc	 (Curie–Weiss	 law)	 and	 the	 changes	 in
magnetization	 below	 Tc	 are	 shown	 in	 Figure	 11.12.	 Because	 the	 material	 behaves	 as	 a
paramagnetic	material	above	Tc,	the	Curie–Weiss	law	describes	the	variation	in	permeability
and	susceptibility	of	the	paramagnetic	phase.	Curie	temperature	(Table	11.7)	is	very	important
from	a	technological	perspective	because,	often,	this	parameter	limits	the	highest	temperature
that	can	be	used	for	a	magnetic	material.

For	ferrimagnetic	materials,	the	dependence	of	1/χm	on	temperature	departs	from	linearity
as	we	approach	Tc.	This	is	shown	in	Figure	11.12b.

In	 antiferromagnetic	 materials,	 there	 is	 no	 net	 magnetic	 moment	 because	 the	 magnetic
moments	 cancel	 out.	 However,	 as	 we	 increase	 the	 temperature,	 the	 extent	 of	 antiparallel
coupling	is	reduced.	This	causes	the	magnetic	susceptibility	to	increase	 (i.e.,	1/χm	decreases)
with	 increase	 in	 temperature.	 This	 increase	 in	 the	 susceptibility	 continues	 until	 temperature
increases	 to	Néel	 temperature	 (TN	 or	 θN),	 at	which	 an	 antiferromagnetic	material	 becomes
paramagnetic	(Figure	11.12c).

11.5.2 MAGNETIC	PERMEABILITY	(μ)
In	 addition	 to	 saturation	 magnetization,	 many	 other	 properties	 of	 ferromagnetic	 and
ferrimagnetic	 materials,	 important	 for	 different	 applications,	 are	 often	 specified.	 These
include	the	initial	(low-field)	and	high-field	permeabilities.

As	 can	 be	 seen	 from	 Figures	 11.6	 and	 11.16,	 the	 magnetic	 permeability	 (μ)	 of
ferromagnetic	 and	 ferrimagnetic	materials	 depends	 strongly	 on	 the	 strength	 of	 the	 applied
magnetic	field	(H).

At	 very	 low	 fields,	 the	 magnetic	 permeability	 is	 low	 because	 the	 applied	 field	 is	 not
sufficient	 to	 cause	 any	 kind	 of	 domain	 growth.	 This	 is	 often	 referred	 to	 as	 the	 initial
permeability	 (μi).	As	 the	 field	 increases,	 the	domains	 are	 aligned	along	 the	direction	of	 the
magnetic	field.	This	is	similar	to	the	orientation	of	domains	in	ferroelectric	materials.	As	the
domains	become	oriented,	a	relatively	sharp	increase	in	magnetization	occurs.	This	is	why,	in
this	 region,	 the	magnetic	permeability	 increases	significantly	 to	μmax	 (Figure	11.16).	As	 the
field	 approaches	 relatively	 high	 values,	 in	 which	 essentially	 all	 domains	 are	 aligned,	 the
permeability	begins	to	decrease	again	(Figures	11.6	and	11.16).	This	is	the	saturation	region.



What	this	means	is	that	the	material	cannot	accept	any	more	flux,	that	is,	it	essentially	becomes
impermeable	to	the	magnetic	field.	In	the	designing	of	magnetic	circuits,	often,	care	has	to	be
taken	not	to	create	such	bottlenecks	that	effectively	will	not	allow	any	more	magnetic	flux	to
pass	through.	As	shown	in	Figure	11.17,	if	the	applied	field	is	not	enough	to	cause	saturation,
we	get	what	is	called	a	minor	loop.

FIGURE	11.16 Field	 dependence	 of	 permeability	 for	 ferromagnetic	 and	 ferrimagnetic	materials.	 (From	Askeland,	D.	 and
Fulay	P.	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

11.5.3 COERCIVE	FIELD	(Hc)
Similar	to	ferroelectrics,	application	of	a	certain	level	of	coercive	field	(μ0Hc	or	Hc)	is	needed
to	 remove	any	 remnant	magnetization	 in	 the	material.	This	 field	 is	 known	as	 the	coercivity
(Hc)	or	coercive	field	of	a	magnetic	material.	The	relative	value	of	coercivity	defines	soft	and
hard	magnetic	materials.	These	materials	are	further	discussed	in	Section	11.8.

The	 coercivity	 values	 define	 one	 way	 to	 classify	 ferromagnetic	 and	 ferrimagnetic
materials	 as	hard	 (see	 Section	 11.9)	 or	 soft	magnetic	materials	 (see	 Section	 11.11).	A	 hard
material	 is	 easily	 distinguished	 from	 a	 soft	magnet	 by	 comparing	 the	 values	 of	 coercivity
relative	to	the	saturation	magnetization	(Figure	11.18).

Ferromagnetic	and	ferrimagnetic	materials	are	used	for	flux	enhancement	or	as	materials
that	can	 store	energy	or	 information	 (data).	The	 first	 application,	 that	 is,	 flux	enhancement,
requires	high	permeability	and	 low	coercivity	 (see	Section	11.11).	 In	general,	materials	 that
have	a	coercivity	of	less	than	~5000	A/m	are	considered	soft	magnetic	materials	(see	Section
11.11),	whereas	those	with	coercivity	larger	than	approximately	104	A/m	are	known	as	hard
magnetic	materials	 (Figure	11.19).	 In	 the	 so-called	 cgs	 (emu)	 system	of	 units,	 coercivity	 is
expressed	in	Oersteds	(Oe).	One	ampere/meter	is	equal	to	4π	×	10−3	Oe.



FIGURE	 11.17 Minor	 hysteresis	 loops.	 (From	 Goldman,	 A.,	Handbook	 of	 Modern	 Ferromagnetic	 Materials,	 Kluwer,
Boston,	1999.	With	permission.)

FIGURE	 11.18 Typical	 shapes	 of	 hysteresis	 loops	 for	 soft	 and	 hard	 magnetic	 materials,	 diagram	 not	 to	 scale.	 (From
Askeland,	D.	and	Fulay	P.	The	Science	and	Engineering	of	Materials,	Thomson,	Washington,	DC,	2006.	With	permission.)

Hard	 magnetic	 materials	 are	 also	 known	 as	 permanent	 magnets	 (see	 Section	 11.9).
Materials	whose	coercivity	values	range	between	a	few	hundred	and	~104	A/m	are	known	as
semihard	magnetic	materials.	 These	 semihard	materials	 are	 useful	 for	magnetic	 storage	 of
data	 (e.g.,	 audio	 and	 video	 cassettes	 or	 magnetic	 hard	 disks	 used	 in	 computers	 and	 other
electronic	gadgets;	see	Section	11.12).

Similar	 to	 ferroelectrics,	 the	 coercivity	 (Hc)	 of	 magnetic	 materials	 is	 a	 microstructure-
sensitive	property.	For	essentially	the	same	material	composition,	coercivity	can	be	changed
by	orders	of	magnitude.	Of	course,	we	can	change	the	composition	and	design	an	appropriate
microstructure	to	develop	a	material	with	the	desired	magnetic	properties.	Currently,	through
such	careful	design,	we	have	obtained	extremely	low	coercivity	magnetic	materials,	such	as



Fe84Zr7B9	that	has	a	coercivity	of	μ0Hc	~	10−7	T.	Note	the	negative	sign	in	the	exponent.	On
the	contrary,	we	also	have	a	material	such	as	Fe84Nd7B9	with	very	high	coercivity	of	μ0Hc	~	1
T.	We	 have	 a	 large	 range	 of	 coercivities	 in	 engineered	 magnetic	 materials.	 In	 real-world
applications,	the	cost-to-performance	ratio	and	many	other	factors,	such	as	durability,	weight,
and	mechanical	properties,	are	also	very	important.

11.5.4 NUCLEATION	AND	PINNING	CONTROL	OF	COERCIVITY

When	magnetizing	field	is	applied,	the	magnetic	domains	in	a	material	are	forced	or	coerced
to	orient	in	the	direction	of	the	field.	The	coercive	field	and	the	initial	part	of	the	B–H	(M–H)
loop	 depend	 on	 the	 mechanism	 by	 which	 the	 domains	 nucleate	 and	 grow.	 For	 example,
consider	a	hypothetical	hard	magnetic	material	that	has	been	subjected	to	a	sufficiently	high
magnetic	field	to	make	it	essentially	a	single	domain.	Now,	if	we	start	applying	a	field	in	the
reverse	direction,	the	field	will	try	to	align	this	single	domain	along	the	new	direction.	This
will	require	nucleation	of	a	new	domain	of	an	opposite	magnetization	and	its	domain	walls.
This	situation	is	referred	to	as	nucleation-controlled	coercivity.	A	very	good	hard	magnet,	on
application	of	magnetizing	field	in	the	reverse	direction,	will	resist	nucleation	of	domains	as
much	as	possible.	 If	 the	coercivity	 is	controlled	by	 the	nucleation	of	new	domains,	 then	 the
magnetizing	process	starting	from	the	origin	of	the	hysteresis	loop	(i.e.,	demagnetized	state)
to	 saturation	 (marked	 as	 the	 dotted	 curve	 in	 Figure	 11.20a	 (ii))	 is	 achieved	 using	 a	 much
weaker	 magnetizing	 field,	 compared	 with	 the	 coercivity	 which	 is	 required	 to	 flip	 the
magnetization	direction	of	the	single	domain	via	the	nucleation	controlled	process	(marked	as
the	 solid	 line	 in	 Figure	 11.20a	 (ii)).	 Most	 state-of-the	 art	 hard	 magnetic	 materials	 show
nucleation-controlled	coercivity	(Figure	11.20b	(i)).



FIGURE	11.19 Relative	coercivity	values	for	classification	of	magnetic	materials.	(From	Chin,	G.Y.,	et	al.,	In	Encyclopedia
of	Advanced	Materials,	Pergamon	Press,	Oxford,	1994.	With	permission.)

Another	way	to	enhance	coercivity	is	to	pin	down	the	domain	walls	of	the	existing	domains
as	 much	 as	 possible.	 This	 is	 known	 as	 pinning-controlled	 coercivity.	 In	 this	 case,	 multiple
domains	 can	 exist,	 but	 their	 domain	 wall	 motion	 is	 hindered	 by	 pinning.	 Typically,
microstructural	 defects,	 especially	 grain	 boundaries,	 can	 be	 pinning	 centers.	 If	 the
magnetizing	 field	 required	 for	 proceeding	 from	 the	 origin	 of	 the	 hysteresis	 loop	 curve
(demagnetized	state)	to	saturation	(marked	as	the	dotted	curve	in	Figure	11.20a	(i))	is	similar
to	 the	 coercivity	 (marked	 as	 the	 solid	 line	 in	 Figure	 11.20a	 (i)),	 the	 domain	 reversal	 is
controlled	 by	 the	 domain-pinning	 process.	 An	 example	 of	 pinning-controlled	 coercivity	 is
shown	in	Figure	11.20b	(ii)	for	a	Ce–Cu–Co–Fe	magnetic	material.

This	 is	 in	contrast	with	 the	hysteresis	 loop	for	a	Ce–Co–Cu–Fe	magnet,	 in	which	defects
that	pin	the	domains	control	the	coercivity.	An	understanding	of	the	microstructural	features
that	control	 the	coercivity	 is	 important	 for	 the	development	of	 the	hard	magnetic	materials,
especially	 those	 used	 as	 permanent	 magnets	 (see	 Section	 11.9)	 and	 magnetic	 recording
materials	(see	Section	11.12).



FIGURE	 11.20 (a)	 Schematic	 illustrations	 of	 (i)	 wall	 pinning	 in	 soft	 and	 hard	 materials	 and	 (ii)	 nucleation-controlled
coercivity	 in	modern,	hard	magnetic	materials.	 (b)	 (i)	Nucleation-controlled	coercivity	 in	a	 ferrite	 and	 (ii)	pinning-controlled
coercivity	in	Ce–Co–Cu–Fe	magnet;	a	difference	in	the	magnetizing	field	between	a	dotted	line	and	a	solid	line	is	smaller	when
the	domain	reversal	occurs	via	the	pinning-controlled	process.	(With	kind	permission	from	du	Tremolet	de	Lacheisserie,	E.,	et
al.,	Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)

11.5.5 MAGNETIC	ANISOTROPY

The	 term	 magnetic	 anisotropy	 means	 that	 magnetic	 properties	 are	 dependent	 on	 the
crystallographic	direction.	This	property	is	critical	for	the	development	of	permanent	or	hard
magnetic	materials.	The	coercivity	of	magnetic	materials	is	related	to	the	magnetic	anisotropy
in	 two	ways.	First,	 there	 is	 the	magnetocrystalline	anisotropy.	Simply	stated,	 this	means	 that
for	 a	 given	 single	 crystal	material,	magnetic	 properties,	 such	 as	 the	 coercive	 field,	 change
depending	 on	 the	 crystallographic	 direction.	 The	 second	 type	 of	 magnetic	 anisotropy	 is
known	 as	magnetoshape	 anisotropy	 or	 shape	 anisotropy.	 This	 anisotropy	 means	 that	 if	 we
have	particles	of	two	identical	materials,	with	one	particle	being	needle-like	(acicular)	and	the
other	one	nearly	spherical,	then	the	acicular	particle	will	have	a	higher	coercivity	because	of
its	shape.	The	cause	of	shape	anisotropy	can	be	traced	to	the	difference	in	the	demagnetization
factors	(due	to	differences	in	geometry;	Table	11.4).	For	an	elongated	particle,	the	hard	axis
tends	 to	 line	 up	 along	 the	 longer	 axis	 of	 the	 particles.	 This	 effect	 is	 used	 in	 magnetic



recording	materials	wherein	elongated	or	needle-like	particles	of	materials,	such	as	iron	or
barium	 ferrites,	 are	used	 (see	Section	11.12).	The	 elongated	 shape	of	 these	particles	 causes
them	to	have	higher	coercivity,	which	helps	with	the	retention	of	information	stored.

Magnetocrystalline	anisotropy	is	important	in	many	applications	of	hard	and	soft	materials
and	is	discussed	here	in	detail.	For	example,	in	magnetic	materials	used	for	data	storage,	we
take	advantage	of	the	magnetocrystalline	anisotropy	by	using	oriented	or	textured	thin	films
that	possess	higher	coercivity	and	hence	show	better	retention	of	data.	On	the	contrary,	we	use
grain-oriented	steels	for	transformer	cores	so	that	the	steel	magnetizes	easily	along	the	easy
directions.

Owing	 to	 the	 magnetocrystalline	 anisotropy	 present	 in	 an	 iron	 single	 crystal,	 the
magnetization	 develops	most	 easily	 along	 the	 [100]	 direction	 at	 smaller	magnetizing	 field.
The	crystallographic	direction	in	which	the	magnetization	develops	with	a	smaller	coercivity
is	known	as	the	easy-magnetization	direction	or	the	easy	axis.	This	represents	the	direction(s)
in	which	the	average	magnetic	moment	will	be	directed	for	a	material	with	no	application	of
an	 external	 magnetic	 field	 (Bloor	 et	 al.	 1994).	 Alignment	 of	 magnetic	 moments	 along	 the
easy-axis	directions	would	minimize	 the	 free	energy	of	 the	material.	On	 the	contrary,	 for	a
BCC	iron	single	crystal,	 the	[111]	direction	that	represents	a	body	diagonal	will	be	the	hard
magnetization	 direction	 or	 hard	 axis.	 All	 the	 body	 diagonals,	 that	 is,	 the	 <111>	 family	 of
directions,	and	not	just	the	[111]	direction,	will	represent	the	hard	axes	for	BCC	iron.

For	cobalt	(Co),	the	easy	axis	is	the	direction	perpendicular	to	the	hexagonal	planes.	The
axes	in	the	basal	plane	represent	the	hard	directions	(Chapter	2).	The	energy	needed	to	rotate
from	the	easy-magnetization	direction	is	known	as	the	magnetocrystalline	anisotropy	energy.
This	energy	can	be	written	as

For	tetragonal	crystals,	the	magnetocrystalline	anisotropy	energy	is	written	as

In	 these	 equations,	K1,	K2,	K3,	 and	 	 are	 the	 coefficients	 of	 anisotropy.	 Usually,	 the
coefficient	K1	dominates.	The	angle	θ	is	that	formed	between	the	magnetization	vector	and	the
c	 axis.	 The	 angle	 ϕ	 is	 that	 between	 the	 projection	 of	 the	magnetization	 vector	 on	 the	 basal
plane	and	one	of	the	a	axes	(Bloor	et	al.	1994).	The	coefficients	of	anisotropy	are	expressed
in	units	of	Joule/cubic	meter	or	Gauss–Oersteds	(G	·	Oe).	The	conversion	factor	is	1	mega	G
·	Oe	=	7.9577	kJ/m3.

The	anisotropy	field,	K1	values,	and	other	properties	of	some	hard	magnetic	materials	are
listed	in	Tables	11.9	and	10.

Note	that	the	values	of	K1	are	listed	as	Megajoule/cubic	meter,	that	is,	the	value	of	SmCo5
is	17	MJ/m3	or	17	×	106	J/m3.	The	K1	values	of	some	materials	are	listed	in	Table	11.10.

In	a	ferromagnetic	or	ferrimagnetic	material,	the	long-range	spin	ordering	occurs	because
of	 what	 is	 called	 the	 exchange	 interaction,	 that	 is,	 the	 combination	 of	 the	 electrostatic
coupling	 between	 electron	 orbitals	 and	 Pauli’s	 exclusion	 principle	 from	 Chapter	 2.	 In
ferromagnetic	materials,	 this	 interaction	 aligns	 the	 spins	of	 neighboring	 atoms	 in	 the	 same
direction	(Figure	11.3).	In	ferrimagnetic	materials,	this	exchange	interaction	orients	the	spins



of	 ions	 on	 different	 crystallographic	 sites	 in	 an	 antiparallel	 arrangement	 (Figure	 11.15).	 In
ceramic	 ferrites,	 this	 is	 known	 as	 the	 superexchange	 interaction	 because	 it	 is	 mediated	 by
oxygen	ions.	The	anisotropy,	however,	comes	about	because	of	 the	 interactions	between	the
electron	orbitals	and	the	potential	associated	with	the	atoms	in	the	crystal	(Bloor	et	al.	1994).

TABLE	11.9

Values	of	TC,	Anisotropy	Field,	K1,	and	Saturation	Magnetization	for	Some	Hard	Magnets

Compound Tc	(C) μ0Ha	(T) K1	(MJ	m−3) μ0Ms	(T)

SmCo5 720 40 17 1.05
Sm2Co17 823 6.5 3.3 1.30
Nd2Fe14B 312 6.7 5 1.60
Source:	 Jakubowicz,	 J.,	 et	 al.,	 J.	 Magn.	 Magn.	 Mater.	 208(3),	 163–168,	 2000;	 Bloor,	 D.,	 et	 al.,	 eds.,

Encyclopedia	of	Advanced	Materials,	vol.	4,	Pergamon	Press,	Oxford,	UK,	1994.

Note:	1	MG	·	Oe	=	7.9577	kJ/m3.



TABLE	11.10

Approximate	Values	of	Anisotropy	Coefficient	(K1)	for	Some	Magnetic	Materials

11.5.6 MAGNETIC	DOMAIN	WALLS

Normally,	we	would	expect	 the	magnetic	moments	 to	 reverse	 their	direction	only	when	 the
applied	magnetic	field	is	equal	to	or	greater	than	the	so-called	anisotropy	field	(Ha),	which	is
given	by

This	means	that	for	an	ideal	magnetic	material,	domain	switching	must	occur	only	at	one
value	of	the	magnetizing	field,	that	is,	the	hysteresis	loop	should	be	rectangular	for	the	M	(or
J)–H	loop	and	a	parallelogram	for	the	B–H	loop	(Figure	11.21a).

It	has	been	experimentally	observed	that	most	permanent	or	hard	magnetic	materials	(see
Section	11.8)	 show	magnetization	 reversal	 at	 fields	 that	 are	 only	 10%–15%	of	 the	 value	 of
anisotropy	field	(Ha)	(Buschow	and	De	Boer	2003).

The	reason	for	this	phenomenon	is	 that	magnetic	materials	consist	of	magnetic	domains,
which	 are	 separated	 by	 domain	 walls	 known	 as	 Bloch	 walls	 (Figure	 11.21b).	 The



magnetization	direction	for	adjacent	domains	is	in	opposite	directions.	This	helps	reduce	the
magnetostatic	energy.	The	magnetization	direction	changes	gradually	 from	one	direction	 to
an	opposite	direction	through	the	thickness	of	the	domain	wall.

FIGURE	 11.21 (a)	M	 (or	 J)–H	 loop	 and	 B–H	 loop	 for	 an	 ideal	 ferromagnetic	 or	 ferrimagnetic	 material.	 (With	 kind
permission	 from	 Springer	 Science+Business	Media:	Magnetism:	 Fundamentals,	 2002,	 du	 Tremolet	 de	 Lacheisserie,	 E.,	 D.
Gignoux,	and	M.	Schlenker.)	(b)	Illustration	of	change	in	magnetization	across	an	180°	Bloch	wall.	(From	Buschow,	K.H.	and
De	Boer	F.R.,	Physics	of	Magnetism	and	Magnetic	Materials,	Kluwer,	Boston,	2003.	With	permission.)

The	thickness	of	the	domain	wall	(W)	in	magnetic	materials	is	often	much	greater	than	that
of	the	ferroelectric	domains	in	ferroelectric	materials.	The	domain-wall	thickness	depends	on
the	 relative	 strengths	 of	 the	 anisotropy	 energy	 and	 the	 exchange	 energy.	 If	 the	 exchange
energy	 is	 large,	 it	 tends	 to	 maintain	 the	 magnetic	 moment	 in	 the	 given	 direction	 and	 the
magnetic	 dipoles	 rotate	 gradually	 in	 the	 domain	 wall,	 that	 is,	 the	 domain	 wall	 would	 be
thicker.

If	A	is	the	average	exchange	energy	and	K1	is	the	anisotropy	energy	constant,	then	it	can	be
shown	that	the	domain-wall	thickness	(W)	is	given	by

and	the	domain-wall	energy	per	unit	area	of	a	domain	wall	of	width	W	is	given	by



In	deriving	these	equations,	it	is	assumed	that	the	effect	of	the	demagnetization	energy	can
be	neglected.

If	 the	 anisotropy	 energy	 is	 large,	 then	 the	 domain	 walls	 would	 be	 thinner	 because	 the
material	 prefers	 to	 undergo	 magnetization	 in	 the	 easy	 direction	 of	 magnetization.	 For
example,	in	highly	anisotropic	materials	such	as	tetragonal	Nd2Fe14B	with	high	values	of	K1,
reaching	~4900	×	103	J/m3	(Tables	11.9	and	10),	the	domain-wall	thickness	is	only	~5	nm.	In
materials	 such	 as	 BCC	 iron,	 the	 domain-wall	 thickness	 may	 be	 ~50	 nm	 because	 of	 the
relatively	 smaller	 anisotropy	 energy	 (smaller	 value	 of	K1,	 ~4.8	 ×	 104	 J/m3).	 Because	 the
lattice	 constant	 (a0)	 of	 iron	 is	 ~0.3	 nm	 (Example	 11.4),	 the	 domain-wall	 thickness	 will	 be
greater	than	~200	lattice	spacings.

Thus,	 in	 many	 permanent	 magnetic	 materials	 (see	 Section	 11.9),	 the	 observed	 value	 of
coercivity	is	significantly	lower	than	that	expected	from	the	value	of	the	anisotropy	field	(Ha)
because	 magnetization	 reversal	 occurs	 by	 the	 nucleation	 of	 Bloch	 walls	 and	 growth	 of
reversed	domains.	This	 situation	 is	 somewhat	 similar	 to	 the	yield	 stress	 (τys)	of	metals	 and
alloys.	We	 know	 that	 based	 on	 the	 strengths	 of	metallic	 and	 covalent	 bonds,	most	metallic
materials	should	be	extremely	strong	and	brittle.	However,	 in	reality,	 their	strength	 is	much
lower	 (almost	 1000	 times	 lower).	 Also,	 metals	 and	 alloys	 are	 relatively	 ductile,	 because
mechanical	deformation	occurs	by	the	motion	of	dislocations	(known	as	slip)	at	much	lower
levels	of	stress	and	not	by	breaking	of	all	the	strong	bonds	(Chapter	2).

In	some	materials,	such	as	thin	films,	magnetic	domains	can	extend	across	the	entire	width
of	 a	 sample.	 If	 there	 are	Bloch	walls	 between	 two	 domains	 that	 run	 the	 entire	width	 of	 the
sample,	 then	 in	 the	wall	 region,	 the	magnetization	will	be	perpendicular	 to	 the	plane	of	 the
film.	This	causes	a	considerable	increase	in	the	demagnetization	energy.	In	this	case,	a	Néel
wall	 forms,	 in	which	 the	magnetic	moment	 rotates	within	 the	plane	of	 the	film	(Jiles	1991).
This	is	shown	in	Figure	11.22.	The	formation	of	a	Néel	wall	 is	seen	in	thin	films	because	it
occurs	with	lower	energy.	Néel	walls	do	not	appear	in	bulk	magnetic	materials	because	they
actually	 cause	 a	higher	 demagnetization	 energy.	The	 formation	of	Néel	walls	 is	 favored	 in
thin	films	when	the	thickness	falls	below	a	certain	critical	value.

FIGURE	11.22 Formation	of	Bloch	and	Néel	walls	 in	a	magnetic	 thin	film.	(From	Jiles,	D.C.,	Introduction	 to	Magnetism
and	Magnetic	Materials,	Chapman	and	Hall,	London,	1991.	With	permission.)

11.5.7 180°	AND	NON-180°	DOMAIN	WALLS

Both	Bloch	and	Néel	walls	are	examples	of	what	we	call	180°	domain	walls.	This	means	that
the	 direction	 of	 magnetization	 in	 the	 domains	 separated	 by	 the	 walls	 is	 antiparallel.
Accordingly,	by	definition,	for	these	walls,	the	crystallographic	directions	will	be	equivalent
(e.g.,	[100]	and	 ).	It	is	possible	to	have	domain	walls	that	are	not	180°.	For	example,	in



cubic	materials	with	 the	anisotropy	energy	constant	greater	 than	zero,	 it	 is	possible	 to	have
90°	domain	walls.	An	example	of	this	is	BCC	iron,	in	which	it	is	possible	to	get	magnetization
in	 adjacent	 domains	 in	 the	 [100]	 and	 [010]	 directions	 (Jiles	 1991).	 In	 nickel	 (Ni),	 the
anisotropy	 constant	 (K1)	 is	 less	 than	 zero	 (K1	 =	−4.5	×	103	 J/m3),	 and	 the	 result	 is	 domain
walls	 of	 71°	 and	 109°.	Note	 that	 for	 nickel,	 the	 easy-magnetization	 directions	 are	 all	 body
diagonals	(<111>;	Figures	11.23	and	11.24).

Such	90°	domains,	shown	in	Figure	11.23,	appear	as	closure	domains	in	materials	such	as
grain-oriented	 silicon-containing	 steel	used	 in	 transformer	 cores.	 It	 is	difficult	 to	 form	90°
domain	walls	in	materials	such	as	cobalt	(Co)	because	the	directions	in	the	basal	plane	are	the
hard	magnetic	directions,	as	shown	in	Figure	11.23.

One	 important	 significance	 of	 90°	 walls	 is	 that	 they	 are	 stress-sensitive.	 For	 example,
consider	a	domain	wall	between	the	[100]	and	[010]	directions.	If	a	tensile	stress	is	applied	to
this	material	in	the	[100]	direction,	then	the	[100]	domain	is	energetically	favored.	This	causes
the	growth	of	 [100]	domains	at	 the	expense	of	 the	 [010]	domain.	Consequently,	90°	domain
walls	will	move	under	 a	 stress.	This	 contributes	 to	 the	 strain	produced	by	magnetostriction
(see	 Section	 11.7).	 However,	 if	 there	 are	 two	 180°	 domains	 (say	 in	 the	 [100]	 and	
directions),	 the	 energies	 of	 both	will	 be	 reduced	 equally	 by	 the	 application	 of	 stress	 in	 the
[100]	direction.	Thus,	180°	domains	will	be	insensitive	to	stress.

FIGURE	11.23 Crystal	structures	and	magnetocrystalline	anisotropy	for	Fe,	Ni,	and	Co	single	crystals.	(From	O’Handley,
R.C.,	Modern	Magnetic	Materials,	Principles,	and	Applications,	Wiley,	New	York,	1991.	With	permission.)



FIGURE	11.24 Illustration	 showing	 closure	domains	 and	90°	 and	180°	domain	walls.	 (From	 Jiles,	D.C.,	 Introduction	 to
Magnetism	and	Magnetic	Materials,	Chapman	and	Hall,	Boca	Raton,	FL,	1991.	With	permission.)

11.5.8 MAXIMUM	ENERGY	PRODUCTS	FOR	MAGNETS

We	saw	the	nature	of	the	hysteresis	loops	for	both	ferromagnetic	and	ferrimagnetic	materials
in	Figure	11.18.	The	first	quadrant	of	the	loop	is	important	because	it	shows	the	dependence	of
permeability	 on	 the	 applied	 field.	 Once	 the	 material	 is	 saturated	 and	 the	 magnetic	 field	 is
removed,	the	material	is	left	in	a	state	with	a	remnant	magnetic	induction	(Br;	Figure	11.25),
which	makes	 the	magnet	permanent.	The	part	 of	 the	 loop	 in	 the	 second	quadrant	where	 the
magnetic	 material	 is	 demagnetized	 from	 Br	 to	 0	 is	 known	 as	 the	 demagnetization	 curve
(Figure	 11.25b).	 Magnetic	 circuit	 designs	 involving	 permanent	 magnets	 make	 use	 of	 this
curve.

If	we	have	a	permanent	magnet	and	we	create	a	magnetic	circuit	with	an	air	gap,	then	the
magnetic	induction	decreases	from	Br	to	some	lower	value,	say	to	point	P	(Figure	11.26).	The
actual	 level	 of	 decrease	 depends	 on	 the	 geometry	 of	 the	 magnetic	 circuit	 and	 the
demagnetization	curve.	The	ratio	of	B	to	H	at	a	point	of	operation	along	this	curve	is	known
as	 the	 permeance	 coefficient.	 The	 line	 drawn	 from	 the	 origin	 to	 the	 operating	 point	 (P)	 is
known	as	the	shearing	line.

For	permanent	magnets,	a	frequently	reported	value	is	the	so-called	(BH)max	product,	also
known	as	the	maximum	energy	product.	This	is	the	maximum	value	of	the	product	obtained	by
multiplying	the	corresponding	B	and	H	values	on	the	demagnetization	curve	(Figure	11.26),
which	represents	the	maximum	energy	that	can	be	stored	within	a	given	volume	of	a	magnetic
material.

The	 improvements	 in	energy	product	and	coercivity	of	permanent	magnets	are	shown	in
Figure	11.27a.	A	useful	conversion	between	different	units	for	expressing	the	energy	product
is:

11.5.9 MAGNETIC	LOSSES



Magnetic	 losses	 refer	 to	 the	 energy	 dissipation	 that	 occurs	 when	 a	 magnetic	 material	 is
subjected	to	a	time-varying	external	magnetic	field.	They	are	similar	to	the	dielectric	losses
occurring	in	dielectric	materials	(originating	from	different	polarization	mechanisms	such	as
ferroelectric	 polarization).	 Magnetic	 losses	 are	 especially	 important	 in	 some	 applications,
such	as	the	use	of	different	materials	(e.g.,	iron–silicon	steels)	for	transformers.	The	energy
dissipation	that	occurs	in	a	magnetic	material	can	be	seen	from	the	area	under	the	B–H	 loop,
represented	as	 ∫H	 ·	db.	 In	materials	with	higher	 electrical	 resistivity	 (e.g.,	 ceramic	 ferrites),
losses	 do	 not	 increase	 much	 with	 increase	 in	 the	 frequency	 of	 applied	 field.	 However,	 in
magnetic	 materials	 that	 are	 good	 conductors	 (e.g.,	 iron	 and	 steel),	 losses	 increase	 with
increasing	frequency.	This	is	seen	from	the	increase	in	the	B–H	loop	area	(Figure	11.27b).

FIGURE	11.25 (a)	Hysteresis	loop	at	saturation	and	(b)	demagnetization	curve	(second	quadrant).



FIGURE	11.26 Demagnetization	curve	and	a	shearing	line	for	(BH)max.	(From	Bozroth,	R.	M.,	Ferromagnetic	Materials,
IEEE	Press,	Van	Nostrand.	Copyright	(1955),	by	permission	of	IEEE.)

The	magnetic	 loss	component	 can	be	 treated	mathematically	 in	a	way	 similar	 to	 that	 for
dielectric	losses	using	a	complex	dielectric	constant.	Magnetic	permeability	(μ)	can	be	written
as	a	complex	number	(μ*)	that	has	a	real	part	(μ′)	and	an	imaginary	part	(μ′′).	The	imaginary
part	is	related	to	the	magnetic	losses	that	occur.	The	ratio	of	the	imaginary	and	the	real	parts
of	 magnetic	 permeability	 is	 defined	 as	 the	 loss	 tangent	 (tan	 δ).	 In	 some	 applications	 of
ceramic	ferrites	used	in	high-frequency	applications	for	microwave	devices,	characterization
of	such	properties	becomes	very	important.	Magnetic	losses	due	to	eddy	currents	induced	by
the	applied	magnetic	 field	are	known	as	hysteresis	 losses.	Other	components	 include	excess
losses	due	 to	domain	motion	and	classical	 losses.	For	a	detailed	description	of	both	origin
and	types	of	magnetic	losses,	the	reader	is	directed	to	the	work	by	Bloor	et	al.	(1994).	Losses
due	 to	 eddy	 currents	 can	 be	 reduced	 by	 increasing	 the	 resistivity.	 This	 is	 the	 reason	 why
silicon	is	added	(up	to	~3.5%)	to	iron	to	make	the	steel	used	in	transformer	cores.	Addition	of
silicon	also	reduces	the	coercivity	of	the	steel.



FIGURE	11.27 (a)	Improvements	 in	maximum	energy	product	(BH)max	in	kJ/m
3	over	 the	years	1880	 to	1980:	1,	carbon

steel;	 2,	 tungsten	 steel;	 3,	 cobalt	 steel;	 4,	 Fe–Ni–Al	 alloy;	 5,	 Ticonal	 II;	 6,	 Ticonal	G;	 7,	 Ticonal	GG;	 8,	 Ticonal	XX;	 9,
SmCo5;	 10,	 (SmPr)Co5;	 11,	 Sm2(Co0.85	 F0.11	 Mn0.04)17;	 and	 12,	 Nd2Fe14B.	 (From	 Jiles,	 D.C.,	 Introduction	 to
Magnetism	and	Magnetic	Materials,	Chapman	and	Hall,	Boca	Raton,	FL,	1991.	With	permission.)	 (b)	Hysteresis	 loops	 for
soft	iron	at	different	frequencies	for	induction	up	to	0.75	T.	(With	kind	permission	from	du	Tremolet	de	Lacheisserie,	E.,	et	al.,
Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)

11.6 MAGNETOSTRICTION

We	 saw	 in	 Chapter	 10	 that	 every	 material	 responds	 to	 an	 electric	 field	 and	 shows
electrostriction	 to	 some	 extent.	 The	 electrostriction	 strain	 is	 larger	 and	 more	 useful	 in
materials	that	are	more	polarizable	(e.g.,	relaxor	ferroelectrics).	Similarly,	magnetostriction
is	 seen	 in	 ferromagnetic	 and	 ferrimagnetic	 materials.	 Magnetostriction	 is	 defined	 as	 the
development	of	strain	in	a	material	subjected	to	a	magnetic	field.	A	familiar	example	of	the
magnetostriction	phenomenon	is	seen	in	magnetic	steels	used	in	transformers,	which	causes	a
transformer	 hum.	 This	 occurs	 as	 the	 magnetic	 materials	 in	 the	 transformer	 expand	 and
contract	to	their	original	dimensions.

Magnetostriction	 in	 ferromagnetic	 and	 ferrimagnetic	 materials	 can	 come	 about
spontaneously	 when	 there	 is	 a	 spontaneous	 alignment	 of	 magnetic	 moments	 at	 the	 Curie
temperature.	This	is	known	as	spontaneous	magnetostriction.

Another	form	of	magnetostriction	is	encountered	when	domains	become	reoriented	in	the
presence	of	an	external	magnetic	field.	This	is	known	as	Joule	magnetostriction.	The	extent	of
the	magnetostriction	effect	 is	 indicated	by	measuring	 the	magnetostriction	coefficient	(λ).	A
material	 known	 as	Terfenol-D	 (Tb03Dy07Fe19)	 has	 a	magnetostriction	 coefficient	 of	 ~1500
ppm,	 that	 is,	 1500	 ×	 10−6,	 at	 room	 temperature.	 Other	 materials	 include	 TbFe2,	 known	 as



Terfenol,	with	a	value	of	λ111	=	+2460	×	10−6	 (the	highest	reported	so	far),	and	SmFe2	with
λ111	=	−2100	×	10−6	(Table	11.11).

The	 magnetostriction	 coefficient	 λ100	 represents	 a	 change	 in	 length	 or	 saturation
magnetostriction	 in	 the	 [100]	 direction	 when	 the	 magnetization	 is	 also	 along	 the	 [100]
direction	 (after	 the	 material	 is	 cooled	 through	 the	 Curie	 temperature).	 The	 λ111	 is	 defined
similarly.

The	acronym	Terfenol	comes	from	Ter	for	Terbium,	Fe	for	iron,	and	NOL	for	the	Naval
Ordnance	Laboratory	 that	developed	this	material.	Terfenol-D	means	 that	 it	has	dysprosium
(Dy)	 in	 it.	Addition	of	Dy	 lowers	 the	magnetocrystalline	anisotropy,	and	 this	 leads	 to	better
magnetostriction	properties.	These	materials	 are	being	developed	 for	 a	 number	of	 actuator
applications,	 similar	 to	 the	applications	of	piezoelectric	materials.	The	cost	of	 the	elements
such	 as	 Tb	 and	 Dy	 is	 high,	 making	 it	 difficult	 to	 create	 widespread	 applications	 of	 these
materials.	 Current	 efforts	 are	 being	 directed	 to	 the	 development	 of	 relatively	 low-cost
materials	 that	 can	 show	 large	magnetostriction	 coefficients.	Metglas™	 (Fe81B13.5Si3.5C2)	 is
one	 of	 the	 best	 isotropic	 magnetostrictive	 materials.	 Because	 magnetostriction	 basically
involves	 causing	 strain	 using	 magnetic	 fields,	 many	 applications	 are	 similar	 to	 those	 of
piezoelectrics	(e.g.,	force	sensors	and	sonar).

For	polycrystalline	materials	with	no	texture	or	preferred	grain	orientation,	the	saturation
magnetostriction	coefficient	(λs)	is	given	by

In	 some	materials	 such	 as	 Invar	 (an	 iron–nickel	 alloy),	 the	 thermal	 expansion	 effect	 is
neutralized	 by	 the	 magnetostriction-induced	 contraction.	 This	 yields	 a	 material	 whose
dimensions	are	essentially	invariable	with	temperature,	and	hence	the	name	Invar.

Equations	and	coefficients	used	are	similar	 to	 those	used	for	piezoelectrics	(e.g.,	d33	and
k33).	 For	 example,	 the	 d33	 coefficient	 of	 magnetostriction	 refers	 to	 the	 amount	 of	 strain
produced	by	the	application	of	unit	magnetic	field.

The	following	example	illustrates	the	use	of	such	coefficients.

Example	11.6: Terfenol-D	Magnetostriction

The	maximum	d33	magnetostriction	coefficient	for	Terfenol-D	is	57	×	10
−9	m/A	(du	Trémolet	de	Lacheisserie	et	al.

2002).	A	bar	made	from	this	material	is	10	cm	long	and	is	exposed	to	a	magnetic	field	(H)	of	5	A/m.	What	will	be
the	elongation	produced	in	this	bar?



TABLE	11.11

Room-Temperature	Magnetostriction	Coefficients	of	Some	Materials

Material λ100(10−6) λ111(10−6)
Fe 24 −22
Ni −51 −23
TbFe2 — 2460
SmFe2 — −2100
Source:	Buschow,	K.H.	and	De	Boer,	F.R.,	Physics	of	Magnetism	and	Magnetic	Materials,	Kluwer,	Boston,

MA,	2003.	With	permission.

Solution

The	d33	coefficient	represents	the	strain	produced	per	magnetic	field.	Thus,	in	this	case,	the	strain	produced	 	will

be	given	by

Therefore,	the	increase	in	length	will	be	=	(57	×	10−9)	×	(5	A/m)	×	(0.1	m)	=	28.5	nm.

11.7 SOFT	AND	HARD	MAGNETIC	MATERIALS

Ferromagnetic	 and	 ferrimagnetic	 materials	 are	 grouped	 into	 soft	 and	 hard	 materials,
depending	on	the	value	of	coercivity	(Hc).	The	name	shows	the	level	of	difficulty	with	which
the	magnetizing	field	changes	the	magnetization	direction.	As	seen	in	Figure	11.19,	materials
with	Hc	~	5000	A/m	are	considered	soft	magnetic	materials.	Those	with	Hc	~	>104	A/m	are
considered	hard	or	permanent	magnets.	A	summary	of	some	of	 these	materials	 is	shown	in
Figure	11.19.

The	following	example	illustrates	the	coercivity	magnitudes	associated	with	soft	and	hard
magnetic	materials.

Example	11.7: Shapes	of	Hysteresis	Loops:	Soft	and	Hard	Magnetic	Materials

The	 coercivity	 (Hc)	 of	 a	 sample	 of	 a	 material	 known	 as	 grain-oriented	 steel	 is	 300	 A/m.	 The	 saturation
magnetization	(μ0Ms)	 of	 this	material	 is	 2.1	T.	A	hysteresis	 loop	 for	 this	material	was	measured	 to	determine	 the
properties.
1.	 If	the	coercivity	of	this	material	is	also	expressed	in	Tesla,	how	does	the	y-axis

value	of	saturation	magnetization	compare	with	the	x-axis	value	of	coercivity?
2.	 What	is	the	value	of	the	coercivity	of	this	material	in	Oersteds?
3.	 What	is	the	value	of	the	saturation	magnetization	of	this	grain-oriented	steel	in

Gauss?
4.	 Repeat	 this	 calculation	 for	 a	 sample	of	 a	neodymium–iron–boron	 (Nd2Fe14B)

permanent	 magnet,	 whose	 coercive	 field	 is	 700,000	 A/m,	 if	 the	 saturation
magnetization	is	1.2	T.



Solution
1.	 The	coercivity	is	300	A/m.	To	convert	this	value	into	Tesla,	we	multiply	it	by	μ0

=	4π	×	10−7	Wb/m	·	A.
The	coercivity	value	expressed	in	Tesla	will	be	μ0Hc	=	(300	A/m)	(4	μ	×	10

−7	Wb/m	·	A)	=	3.78	×

10−4	Wb/m2	or	T.	Compare	 this	with	μ0Ms	=	2.1	T.	 If	we	were	 to	plot	 the	hysteresis	 loop	as	μ0M
versus	μ0H,	the	loop	will	look	extremely	slim.

2.	 The	 coercive	 field	 is	 expressed	 as	 ampere/meter	 or	 Oersteds	 (Oe).	 From
Section	11.6.3	and	Table	11.6,	we	know	 that	1	A/m	=	4π	×	10−3	Oe.	Thus,	 the
coercivity	of	300	A/m	for	this	soft	magnetic	grain-oriented	steel	will	be

3.	 The	saturation	magnetization	of	this	grain-oriented	steel	is	2.1	T.	One	Tesla	is
10,000	Gauss;	thus,	the	saturation	magnetization	will	be	21,000	Gauss.

4.	 For	 the	Nd2Fe14B	magnet,	 the	 saturation	magnetization	 is	 listed	 as	 1.2	T.	The
coercivity	of	700,000	A/m	will	be	=	(700,000	A/m)(4π	×	10−7	Wb/m	·	A)	=	0.88
Wb/m2	or	T.	Thus,	for	 this	permanent	magnet,	 the	hysteresis	 loop	will	appear
square	in	shape.	Also,	because	this	material	is	stated	to	be	a	permanent	magnet,
we	 expect	 the	 remnant	 magnetization	 (μ0Mr)	 and	 saturation	 magnetization
(μ0Ms)	to	be	similar.

In	the	following	sections,	we	discuss	hard	and	soft	magnetic	materials	in	detail.

11.8 HARD	MAGNETIC	MATERIALS

Hard	or	permanent	magnets	 are	used	 in	many	applications	 to	 supply	a	permanent	magnetic
flux	 and	 to	 generate	 a	 static	 magnetic	 field.	 They	 are	 used	 in	 simple	 applications	 such	 as
holding	 objects,	 electrical	 motors,	 and	 so	 on.	 Permanent	 magnets	 are	 also	 used	 for
mechanical	systems	such	as	magnetic	gears,	bearings	and	shock	absorbers.

The	properties	of	some	of	the	commercially	available	types	of	hard	magnetic	materials	are
summarized	in	Table	11.12.	These	include	the	Hc	values	 for	 the	J–H	and	B–H	 loops	and	 the
variations	of	Br	with	temperature.

The	 anisotropy	 field,	 magnetocrystalline	 anisotropy	 coefficient	 (K1),	 Curie	 temperature
(Tc),	 and	 saturation	 magnetization	 for	 some	 hard	 magnetic	 materials	 were	 listed	 in	 Table
11.10.

The	 relative	 costs	 of	 some	 permanent	 magnet	 materials,	 expressed	 in	 US	 dollars/Joule
versus	the	maximum	energy	per	unit	volume	are	shown	in	Figure	11.28.

From	 this	 diagram,	 it	 can	 be	 seen	 that	 the	 so-called	 rare-earth	magnets	 (often	 based	 on
NdFeB	and	SmCo)	offer	products	with	the	highest	energy.	One	problem	with	the	use	of	rare-
earth	 magnets	 is	 that	 their	 Curie	 temperature	 is	 low	 (Tc	 ~	 300°C).	 These	 materials	 also
undergo	 surface	oxidation,	 and	 this	 leads	 to	a	decrease	 in	 the	coercivity.	Magnets	based	on
neodymium	(e.g.,	Nd2Fe14B)	are	commonly	known	as	neomagnets.



TABLE	11.12

Properties	of	Some	Hard	Magnetic	Materials

FIGURE	11.28 Relative	cost	of	permanent	magnets	per	unit	energy	versus	maximum	energy	product.	(With	kind	permission
from	du	Tremolet	de	Lacheisserie,	E.,	et	al.,	Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)

Alnico	(pronounced	al-knee-ko)	magnets	have	lower	coercivity.	However,	they	have	very
good	temperature	stability,	and	because	of	their	high	Curie	temperatures	(~857°C),	 they	can
be	used	up	to	500°C.

Ceramic	 ferrites	 offer	 the	 lowest	 cost	 per	 unit	 energy	 stored.	Thus,	 ceramic	 ferrites	 are
preferred	 for	 low-cost	 applications.	 The	 negative	 aspect	 of	 ceramic	 ferrites	 is	 that	 their
saturation	magnetization	 is	 low	(~0.3–0.6	T,	Table	11.7),	and	hence	 the	energy	products	are
relatively	low	(Figure	11.28).	Ceramic	ferrite	compositions	can	belong	to	both	soft	and	hard
categories.

The	samarium–cobalt	magnets	(SmCo5	and	Sm2Co17)	are	expensive	but	high-performance
magnets.	Their	Curie	temperatures	are	high	(727°C	for	SmCo5	and	827°C	for	Sm2Co17).

11.9 ISOTROPIC,	TEXTURED	(ORIENTED),	AND	BONDED	MAGNETS

Permanent	magnets	are	sometimes	classified	based	on	 the	orientation	of	magnetic	domains.
An	 isotropic	 magnet	 is	 a	 permanent	 magnet	 in	 which	 the	 spatial	 distribution	 of	 the	 easy



directions	 of	magnetizations	 is	 random.	An	 isotropic	magnet,	 in	 principle,	 is	 similar	 to	 an
unpoled	ferroelectric	material.	In	textured	magnets,	also	known	as	oriented	magnets,	most	of
the	 easy	 directions	 of	magnetizations	 are	 oriented	 in	 a	 particular	 direction.	 Therefore,	 the
distribution	 of	 orientations	 of	 the	 easy	 direction	 of	 magnetism	 inside	 the	 material	 is	 not
random.	This	can	be	achieved	by	a	process	 similar	 to	 the	poling	of	 ferroelectrics.	 In	 some
cases,	 processing	 of	 a	 material	 (e.g.,	 using	 a	 rolling	 process	 or	 extrusion)	 will	 cause
orientation	of	different	grains	in	a	particular	direction.	Compared	with	isotropic	magnets,	the
hysteresis	 loop	 of	 textured	magnets	 is	 square	 (Figure	11.29)	 because	 after	 saturation,	most
domains	prefer	to	remain	aligned	in	specific	directions.	In	Figure	11.29,	the	distribution	of	the
easy	axes	 is	shown	in	 the	circles	drawn	for	different	stages	of	magnetization.	For	example,
under	 saturation	 conditions,	 for	 both	 oriented	 and	 isotropic	 magnets,	 the	 easy	 axes	 are
aligned	along	only	one	direction,	which	will	be	the	direction	of	the	applied	magnetic	field.

From	 the	 distribution	 of	 the	 directions	 of	 easy	 axes,	 we	 can	 see	 that	 for	 textured	 or
oriented	 magnets,	 the	 remnant	 magnetization	 is	 much	 higher,	 typically	 ~88%–97%	 of	 the
saturation	magnetization	(du	Trémolet	de	Lacheisserie	et	al.	2002).	For	isotropic	magnets,	the
remnant	magnetization	is	much	lower	(~50%	of	the	saturation	magnetization).

FIGURE	 11.29 Hysteresis	 loops	 for	 (a)	 oriented	 and	 (b)	 isotropic	 magnets.	 (With	 kind	 permission	 from	 du	 Tremolet	 de
Lacheisserie,	E.,	et	al.,	Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)



FIGURE	11.30 Demagnetization	curves	for	(a)	ceramic	hard	ferrites	and	(b)	NdFeB	magnets.	(With	kind	permission	from	du
Tremolet	de	Lacheisserie,	E.,	et	al.,	Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)

Bonded	magnets	 are	 essentially	 composites	 made	 by	 dispersing	 magnetic	 powders	 in	 a
polymer	or	metallic	matrix.	These	are	usually	isotropic	in	nature	because	the	easy	axes	within
each	particle	(small	crystal)	are	randomly	arranged	in	the	composite	material.	It	is	possible	to
orient	 the	magnetic	particles,	 for	 example,	 ferrite	 in	 a	 polymer,	 using	 a	 special	 processing
technique.	For	example,	oriented-bonded	magnets	are	made	with	ceramic	ferrites	in	a	plastic
using	the	calendaring	process.	Such	materials,	known	as	magnetic	rubbers,	have	a	saturation
magnetization	 of	 ~0.25	 T.	 In	 refrigerators,	 for	 example,	 we	 make	 use	 of	 these	 magnetic
rubbers	 as	 door	 gaskets.	 Compared	with	 the	 so-called	 sintered	magnets,	 obtained	 by	 high-
temperature	sintering	of	metal	or	ceramic	powders,	the	energy	product	and	coercive	fields	of
bonded	magnets	are	lower.	The	sintered	materials	also	could	be	oriented	or	isotropic.

The	demagnetization	curves	for	some	ceramic	hard	ferrites	and	NdFeB	magnets,	which	are
(1)	isotropic	bonded,	(2)	oriented	bonded,	and	(3)	oriented	and	sintered,	are	shown	in	Figure
11.30.

11.10 SOFT	MAGNETIC	MATERIALS

Ceramic	ferrites,	which	are	alloys	of	iron	containing	nickel,	cobalt,	silicon,	and	some	of	the
amorphous	materials	known	as	metallic	glasses,	constitute	the	most	important	classes	of	soft
magnetic	 materials	 (Tables	 11.13	 and	 11.14).	 The	 market	 share	 is	 dominated	 by	 electrical
steels	 (especially	 nonoriented)	 as	 shown	 in	 Figure	 11.31.	 The	 ranges	 of	 the	 properties	 of
some	 technologically	 important	 magnetic	 materials	 are	 shown	 in	 Figure	 11.32.	 These
materials	 are	used	 in	 transformers,	 electrical	motors,	generators,	 electromagnetic	 switches,
and	so	on.

For	many	applications	of	soft	magnetic	materials,	it	is	desirable	to	have	materials	that	have
high	saturation	magnetization	(for	lightweightness	and	compactness),	very	low	coercivity	and
high	 resistivity	 (to	minimize	 eddy	 current	 losses),	 and	 high	 permeability	 (to	minimize	 the



magnetic	 reluctance—equivalent	of	electrical	 resistance).	No	single	material	meets	all	 these
requirements.	A	choice	is	made	depending	on	the	technical	specifications	needed	and	the	cost
involved.

In	grain-oriented	steel,	silicon	is	added	(up	to	~3.25%)	to	enhance	resistivity	and	to	reduce
coercivity	 (Figure	11.32b).	 This	 reduces	 transformer	 core	 losses.	 Permeability	 of	 this	 steel
depends	on	the	crystallographic	directions.	As	shown	in	Figure	11.23,	for	 iron,	which	is	 the
main	ingredient	of	steels,	magnetization	is	preferred	along	the	[100]	and	[110]	directions.	As
a	result,	the	permeability	of	steel	is	higher	in	these	directions.	This	is	the	reason	why	grain-
oriented	steels	are	preferred	for	making	transformer	cores;	however,	they	also	cost	more.

TABLE	11.13

Properties	of	Some	Soft	Magnetic	Materials

The	 properties	 of	 some	 commercially	 important	 soft	 magnetic	 materials	 are	 shown	 in
Tables	 11.13	 (Fiorillo	 2004)	 and	 Table	 11.14.	 In	 Table	 11.13,	 the	 maximum	 value	 of
permeability	 (see	 Figure	 11.16),	 coercive	 field	 (Hc	 in	 ampere/meter),	 and	 saturation
polarization	 (Js	 =	 μ0Ms	 in	 Tesla)	 are	 presented.	 All	 compositions	 are	 in	 weight	%,	 except
those	for	amorphous	and	nanocrystalline	materials,	which	are	in	atomic	%.

As	discussed	 in	Section	11.6.4,	 the	coercivity	of	a	magnetic	material	 is	controlled	by	 the
difficulty	 in	nucleation	or	by	 the	pinning	of	domains.	 In	most	hard	magnetic	materials,	 the



nucleation	of	new	domains	controls	the	coercivity.	In	soft	magnetic	materials,	defects	such	as
grain	boundaries	 affect	 the	 coercivity.	 Introduction	of	microstructural	 imperfections,	which
are	 of	 the	 order	 of	 domain-wall	 thickness,	 usually	 results	 in	 an	 increase	 in	 coercivity.	The
coercivity	(Hc)	of	a	magnetic	material	scales	with	the	average	grain	size	(d),	as	shown	by	the
following	equation:

In	 this	 equation,	Hc,0	 is	 a	 constant	 that	 defines	 the	 baseline	 coercivity	 of	 a	material	 and
depends	on	factors	such	as	intrinsic	properties,	stress,	other	defects	such	as	inclusions,	and	so
on	 (Bloor	 et	 al.	 1994).	 In	 fact,	 a	 class	of	 soft	magnetic	materials	 is	made	 from	amorphous
materials.	 These	materials	 are	made	 in	 the	 form	 of	metallic	 ribbons	 obtained	 by	 the	 rapid
solidification	of	alloys.	These	materials	are	known	as	metallic	glasses.	Because	there	are	no
grain	 boundaries	 in	 these	 materials,	 the	 coercivity	 of	 these	 materials	 is	 very	 low	 (Table
11.15).

11.11 MAGNETIC	DATA	STORAGE	MATERIALS

For	 storage	 of	 information	 using	 magnetic	 materials,	 the	 main	 idea	 has	 been	 to	 use	 the
remnant	 magnetization	 as	 the	 basis	 for	 storing	 data.	 For	 this	 application,	 magnetically
semihard	materials	are	needed	because	the	information	must	be	written,	and	we	must	be	able
to	erase	the	information	and	rewrite	it.	There	are	two	major	types	of	magnetic	media	(Figure
11.33).	One	 is	 in	 the	 form	of	 thin	 films,	used	 for	making	magnetic	hard	disks	 for	personal
computers	 and	 other	 electronic	 gadgets.	 The	 second	 technology	 involves	 magnetic	 tape
media,	 such	 as	 audio	 and	 video	 tapes	 and	 computer	 disks.	 The	 magnetic	 tape	 technology,
although	available	and	useful,	has	encountered	stiff	competition	with	 the	advent	of	optically
written	media,	 such	 as	DVDs	and	CDs,	 in	 addition	 to	 semiconductor-based	 flash	memories
widely	used	in	digital	cameras	and	other	electronic	hardware.



TABLE	11.14

Properties	of	Some	Commonly	Used	Soft	Magnetic	Materials

FIGURE	 11.31 Market	 share	 of	 soft	magnetic	materials.	 (From	Varga,	 L.K.,	 and	Davies	H.A.,	 J.	Magn.	Magn.	Mater.,
320(20),	2411–2422,	2008.	With	permission.)



FIGURE	11.32 (a)	Coercivity	and	saturation	magnetization	 for	 some	soft	magnetic	materials.	 (From	Bloor,	D.,	 et	 al.,	 eds.
Encyclopedia	of	Advanced	Materials,	vol.	4,	Pergamon	Press,	Oxford,	UK,	1994.	With	permission.)	(b)	Hysteresis	loops	for
pure	iron	and	a	grain-oriented	steel	with	97%	Fe	and	3%	Si.	(From	Buschow,	K.H.,	and	De	Boer	F.R.,	Physics	of	Magnetism
and	Magnetic	Materials,	Kluwer,	Boston,	2003.	With	permission.)

For	magnetic	tapes,	cobalt-modified	metallic	iron,	cobalt-modified	gamma	iron	oxide	(γ-
Fe2O3),	 and	 barium	 ferrite	 (BaFe12O19)	 are	 some	 of	 the	 commonly	 used	materials.	 Cobalt
modification	 of	 gamma	 iron	 oxide	 leads	 to	 higher	 coercivity	 values	 that	 enhance	 data
retention.	Most	particles	used	in	this	application	are	elongated	to	effectively	take	advantage	of
the	 magnetoshape	 anisotropy	 (Figure	 11.34).	 The	 important	 properties	 of	 some	 magnetic
particles	used	for	magnetic	tapes	are	included	in	Table	11.15.



TABLE	11.15

Properties	of	Some	Materials	Used	in	Magnetic	Tape	Media

FIGURE	11.33 Schematic	representation	of	(a)	magnetic	tape	and	(b)	thin-film	hard	disk.	(Reprinted	from	Li,	Y.	and	Menon,
A.K.,	Encyclopedia	of	Materials:	Science	and	Technology.	Copyright	(2008),	with	permission	from	Elsevier.)

The	 technology	 to	 manufacture	 magnetic	 hard	 disk	 has	 advanced	 at	 a	 very	 rapid	 pace.
Significant	 advances	 in	 the	 area	 of	 development	 of	 nanoscale	 materials,	 perpendicular
recording,	 advanced	 read-and-write	 heads,	 devices	 based	 on	 giant	 magnetoresistance,	 spin
electronics,	and	bit-patterned	media	have	been	made.	These	have	led	to	remarkable	advances
related	to	the	amount	of	information	that	can	be	stored	on	a	one-inch	square	of	a	hard	disk.
The	goal	in	the	year	2008	was	to	be	able	to	store	an	ultra-high	density	of	1	terabit	in	a	one-



inch	square	area	(Tbit/in2).	A	terabit	is	one	trillion	bits.	The	hard	disks	today	can	store	up	to
200	Gbit/in2.	A	gigabit	is	one	billion	bits.

There	 are	 also	 many	 other	 technologies	 such	 as	 magnetic	 random-access	 memories
(MRAMs)	that	are	being	developed	for	information	storage.	Similarly,	researchers	have	also
been	developing	different	classes	of	devices	based	on	multiferroics	for	information	storage.
Multiferroics	 have	 strongly	 coupled	 electric,	magnetic,	 and	 structural	 order	 parameters.	 In
other	words,	the	dielectric	dipoles	are	produced	by	applying	magnetic	field	or	vice	versa.	The
potential	usefulness	of	multiferroic	composites	with	superior	ferroelectric	or	ferromagnetic
properties	 is	 tremendous.	 Possible	 applications	 include	 the	 development	 of	 multiple-state
memory	elements,	tunable	ferromagnetic	resonance	devices	controlled	by	electric	field,	and
transducers	 with	 either	 magnetically	 modulated	 piezoelectricity	 or	 electrically	 modulated
piezomagnetism.	Examples	of	multiferroic	materials	are	RMnO3	and	RMn2O5	single	crystals
(R:	 rare-earth	 elements)	 and	 thin	 films	 based	 on	 BiFeO3.	 A	 physical	 mechanism	 of
multiferroics	 is	 different	 from	 that	 of	 ferroelectricity	 and	 ferromagnetism.	 A	 general
consensus	 on	 the	 mechanism	 of	 multiferroics	 is	 (i)	 that	 the	 magnetic	 spirals	 in	 frustrated
ferromagnetic	can	induce	the	ferroelectricity	by	breaking	the	centrosymmetry	and	(ii)	that	the
strain	 can	 manipulate	 the	 magnetic	 spirals	 by	 changing	 the	 spatial	 configuration	 of	 3d
orbitals.	 Including	 multiferroics,	 there	 are	 many	 rapidly	 evolving	 and	 very	 exciting
developments	occurring	in	the	field	of	magnetic	materials	and	devices	which	are	challenging
talented	material	scientists	and	engineers.

FIGURE	11.34 Schematic	illustration	of	an	advanced	acicular	particle	of	cobalt-modified	iron.	(From	Bloor,	D.,	et	al.,	eds.,
Encyclopedia	of	Advanced	Materials,	vol.	4.	Pergamon	Press,	Oxford,	UK,	1994.	With	permission.)

PROBLEMS

11.1 Comment	on	the	following	statement:	“All	materials	in	this	world	are	magnetic.”
11.2 What	 is	 the	 difference	 between	 a	 diamagnetic	 and	 paramagnetic	 material?	 Give	 an

example	of	each	type	of	material.
11.3 What	 is	 an	 antiferromagnetic	 material?	 Are	 there	 examples	 of	 antiferromagnetic

coupling	in	ferromagnetic	materials?
11.4 What	is	the	difference	between	a	ferromagnetic	and	a	ferrimagnetic	material?



11.5 Is	it	necessary	for	ferromagnetic	or	ferrimagnetic	materials	 to	contain	ferromagnetic
elements?	Explain.

11.6 What	is	a	superparamagnetic	material?
11.7 What	is	a	ferrofluid?	Where	are	ferrofluids	used	commercially?
11.8 What	is	the	basis	of	magnetic	levitation	using	superconductors?
11.9 The	coercive	field	for	a	neodymium	iron	boron–based	magnet	is	reported	to	be	1.25	T;

how	much	is	this	value	in	Oersted?
11.10 Bohr	magneton	 (μB)	 is	 the	 basic	 unit	 for	magnetic	moment.	 It	 is	 based	 on	 the	 spin

component	 of	 the	 magnetic	 moment	 of	 an	 electron	 that	 is	 aligned	 with	 an	 external
magnetic	 field,	 and	 its	 value	 is	 given	 by	 μB	 =	 ħqe/2me	 =	 11.274	 ×	 10−24	 A·m2.
Sometimes,	 it	 is	necessary	or	useful	 to	express	 the	number	n,	which	 is	 the	number	of
Bohr	magnetons	per	mole	of	a	material.	Show	that	if	MW	is	the	molecular	weight	of	a
material	 and	 if	 x	 is	 the	 number	 of	 Bohr	 magnetons	 per	 atom,	 the	 value	 of	 Bohr
magnetons	per	mole	of	a	material	is	(5.585	×	x)/(MW).

11.11 The	 magnetic	 moment	 of	 a	 nickel	 atom	 is	 listed	 as	 0.606	 Bohr	 magneton	 at	 0	 K
(shown	in	Table	11.7).	The	value	of	saturation	magnetization	at	290	K	is	listed	as	0.61	T.
Nickel	 has	 a	 face-centered	 cubic	 (FCC)	 structure,	 and	 its	 lattice	 constant	 at	 290	 K	 is
3.5167	Å.	What	will	be	the	effective	magnetic	moment	of	nickel	atoms	in	FCC	nickel	at
T	=	290	K?

11.12 In	Table	11.7,	why	are	the	values	of	saturation	magnetization	not	listed	for	gadolinium
(Gd)	and	dysprosium	(Dy)	at	290	K?

11.13 The	exchange-energy	(A)	values	for	iron	and	nickel	are	2.5	×	10−21	and	3.2	×	10−21	J,
respectively.	The	anisotropy	energies	 (K1)	 for	 iron	and	nickel	 are	4.8	×	104	 J/m3	 and
−0.5	 ×	 104	 J/m3,	 respectively	 (Jiles	 1991).	 In	 which	 material	 would	 you	 expect	 the
domain	walls	to	be	thicker?	Why?	How	will	the	domain	energies	compare	for	iron	and
nickel?

11.14 What	is	a	Bloch	wall?	How	is	it	different	from	the	Néel	wall?
11.15 Why	 is	 the	coercivity	of	permanent	magnetic	materials	 significantly	 lower	 than	 that

expected	from	the	value	of	the	anisotropy	field?
11.16 How	is	the	coercivity	of	a	polycrystalline	soft	magnetic	material	related	to	the	grain

size?
11.17 Why	are	180°	domain	walls	not	stress-sensitive,	whereas	90°	domain	walls	are	stress-

sensitive?
11.18 What	will	be	the	flux	density	(B)	created	for	a	current	of	1	A	if	a	toroidal	solenoid	has

an	air	core?	Assume	 that	 the	average	circumference	of	 the	solenoid	 is	50	cm	and	 that
there	are	1000	turns.

11.19 How	much	will	 the	 flux	density	 (B)	be	 if	 the	core	 is	 filled	with	a	ceramic	 ferrite	of
permeability	300?	Assume	that	the	average	circumference	of	the	solenoid	is	50	cm	and
that	there	are	1000	turns.	If	the	diameter	of	the	solenoid	core	is	5	cm,	what	will	be	the
flux	in	Wb?

11.20 The	demagnetization	curves	for	different	commercially	available	permanent	magnets
are	shown	in	Figure	11.35.



a. Which	magnets	have	the	lowest	and	the	highest	coercivity	values?
b. Calculate	the	coercivity	of	the	material	Sm2Co17	in	Oersteds.
c. Calculate	the	maximum	energy	product	for	SmCo5	and	Nd2Fe14B	(shown	in	Figure

11.35).
11.21 The	properties	of	 isotropic-bonded,	oriented-bonded,	 and	oriented-sintered	magnets

made	from	hard	ceramic	ferrites	and	NdFeB	are	shown	in	Figure	11.30.
a. Why	 is	 the	 energy	 product	 for	 the	 oriented-sintered	material	 (ferrite	 or	 NdFeB)

better	than	that	of	either	of	the	bonded	magnets?
b. Calculate	 the	 energy	 products	 for	 the	 oriented-sintered	 NdFeB	 and	 compare	 the

value	with	those	for	oriented-bonded	and	isotropic-bonded	NdFeB	materials.
11.22 The	lifting	force	(F)	of	a	permanent	magnet	is	given	by	the	following	equation:

FIGURE	 11.35 Demagnetization	 curves	 for	 some	 permanent	 magnets.	 (With	 kind	 permission	 from	 du	 Tremolet	 de
Lacheisserie,	E.,	et	al.,	Magnetism:	Fundamentals,	Springer	Science+Business	Media,	2002.)

where	A	is	the	area	of	the	magnet.	Calculate	the	lifting	force,	in	kN,	for	a	permanent
magnet	with	saturation	magnetization	of	1.5	T.	Assume	that	the	area	is	0.25	m2.

11.23 What	types	of	materials	are	used	for	magnetic	tape	data	storage?	Why?
11.24 Permanent	magnets	have	high	coercivity;	why	can	these	not	be	used	for	magnetic	data

storage?
11.25 In	 Figure	 11.32b,	 why	 is	 the	 maximum	 magnetization	 for	 the	 grain-oriented	 steel

lower	than	that	for	pure	iron?
11.26 What	is	the	material	used	for	the	magnetic	stripe	on	credit	cards	and	automated	teller

machine	cards	used	for	banking?
11.27 What	 magnetic	 properties	 are	 important	 for	 a	 material	 to	 be	 used	 for	 transformer

cores?



11.28 What	 is	 grain-oriented	 steel?	 What	 magnetic	 properties	 of	 steel	 are	 improved	 by
producing	 grain-oriented	 steel?	 In	 what	 crystallographic	 directions	 are	 the	 grains
oriented?	Why?

11.29 Why	is	silicon	added	to	grain-oriented	steels?
11.30 The	domain	pattern	in	a	rolled	polycrystalline	Ni–Fe	alloy	is	shown	in	Figure	11.36.

a. Are	the	grains	oriented	in	this	sample?
b. Based	 on	 the	 domain	 geometry	 shown,	 is	 the	 material	 likely	 to	 have	 any	 net

remnant	magnetization?
c. What	will	happen	if	this	material	is	heated	above	its	Tc	and	then	“field-cooled,”	that

is,	annealed	at	 temperatures	below	Tc	by	placing	 it	 in	a	magnetic	 field	parallel	 to
the	rolling	direction.

11.31 What	are	the	different	smart	materials	based	on	the	use	of	magnetic	materials?
11.32 What	is	a	ferrofluid?	How	is	it	different	from	a	magnetorheological	(MR)	fluid?
11.33 How	does	an	MR	fluid	work	in	a	magnetic	shock	absorber?
11.34 The	magnetization	curves	for	two	MR	fluids,	one	based	on	iron	and	another	based	on

a	ceramic	ferrite,	are	shown	in	Figure	11.37.
a. Calculate	the	initial	permeabilities	of	both	these	MR	fluids	from	the	magnetization

curves.
b. Calculate	 the	 volume	 fraction	 of	 iron	 in	 the	 iron-based	 fluid.	 Assume	 that	 the

saturation	magnetization	 of	 iron	 is	 2.1	 T	 and	 that	 the	MR	 fluid	 is	made	 using	 a
dispersion	of	iron	particles	in	synthetic	oil.

c. Assuming	that	the	ferrite-based	fluid	is	made	using	iron	oxide	(Fe3O4),	what	is	the
volume	fraction	of	this	material	in	this	MR	fluid	made	using	synthetic	oil?

FIGURE	11.36 Domain	pattern	in	rolled	Ni–Fe	alloy.	(From	Buschow,	K.H.	and	De	Boer,	F.R.,	Physics	of	Magnetism	and
Magnetic	Materials,	Kluwer,	Boston,	2003.	With	permission.)



FIGURE	 11.37 Magnetization	 curves	 for	 magnetorheological	 fluids.	 (From	 Fulay,	 P.P.,	 et	 al.,	Proc.	 MRS	 Symp.	 Mater.
Smart	Syst.,	459,	99,	1997.	With	permission.)

11.35 If	nickel	ferrite	has	an	inverse	spinel	structure,	what	will	be	the	net	magnetic	moment
of	 this	 structure	 per	 unit	 formula?	Assume	 that	 the	 lattice	 constant	 of	 nickel	 ferrite	 is
8.37	Å.

11.36 In	 Table	 11.8,	 zinc	 ferrite	 is	 shown	 to	 have	 zero	 magnetic	 moment.	 The	 magnetic
moment	per	 formula	for	MnFe2O4	 is	5	μB	and	 that	of	NiFe2O4	 is	2	μB.	Why	does	 the
initial	 addition	 of	 zinc	 ferrite	 to	 MnFe2O4	 and	 NiFe2O4	 increase	 the	 total	 magnetic
moments	of	these	materials?	However,	as	increasing	quantities	of	zinc	ferrite	are	added,
the	magnetization	eventually	decreases.	Explain.

11.37 What	 is	 magnetostriction?	 Explain	 how	 this	 phenomenon	 can	 be	 used	 to	 create
ultrasonic	waves	and	a	nanopositioning	device.

11.38 What	phenomenon	causes	an	electrical	transformer	to	“hum”?

GLOSSARY

Antiferromagnetic	material:	A	material	 that	 shows	 zero	 net	magnetic	moment	 because
the	magnetic	moments	of	different	ions	or	atoms	cancel	each	other	out	completely.

(BH)max	product:	See	Maximum	energy	product.
Bloch	 wall:	 A	 wall	 between	 two	 magnetic	 domains	 across	 which	 the	 magnetization

direction	 changes	 by	 180°.	The	 thickness	 of	 a	Bloch	wall	 increases	with	 increase	 in
exchange	 energy	 (as	 the	material	 tries	 to	maintain	 the	magnetization	 in	 the	 already-
existing	direction)	and	decreases	with	increased	anisotropy	(where	the	material	prefers
to	magnetize	in	the	easy	direction	of	magnetization).

Bohr	magneton:	The	unit	in	which	the	magnetic	dipole	moment	of	an	electron,	atom,	or
an	 ion	 is	 measured.	 A	 Bohr	 magneton	 is	 also	 equal	 to	 the	 component	 of	 the	 spin
magnetic	moment	of	an	electron	that	is	aligned	with	the	applied	magnetic	field



Bonded	 magnets:	 Magnetic	 composites	 made	 by	 dispersing	 magnetic	 particles	 in	 a
polymeric	or	metallic	matrix,	which	are	low-cost	magnetic	materials	that	could	exhibit
isotropic	or	oriented	magentization.

Curie	temperature	(Tc):	Temperature	at	which	a	ferromagnetic	or	ferrimagnetic	material
becomes	paramagnetic.	Note	that	this	term	is	also	used	for	ferroelectrics	(Chapter	10).

Demagnetization	curve:	The	second	quadrant	of	the	hysteresis	loop	in	which	a	magnetic
material	moves	 from	 flux	 density	Br	 to	 zero.	 This	 curve	 is	 important	 for	 designing
circuits	involving	permanent	magnets.

Demagnetizing	 factor	 (Nd):	 A	 numerical	 factor	 that	 shows	 the	 extent	 of	 internal	 field
created	 in	a	magnetic	material.	This	 field	opposes	 the	effect	of	 the	applied	magnetic
field.

Diamagnetism:	 Exclusion	 of	 the	 applied	 magnetic	 field	 from	 a	 material.	 Diamagnetic
materials	 are	 defined	 by	 negative	 values	 of	 magnetic	 susceptibility,	 ranging	 from
−10−6	to	−1	(for	superconductors).	Most	materials	(e.g.,	most	metals,	inert	gases,	and
organic	compounds)	that	are	classified	as	“nonmagnetic”	are	actually	diamagnetic.

Domain:	See	Magnetic	domain.
Domain	 wall:	 A	 surface	 across	 which	 the	 magnetization	 direction	 rotates.	 If	 the

magnetization	rotates	180o	within	a	domain	wall,	the	domain	wall	is	known	as	a	Bloch
wall	(Figure	11.21),	and	 if	 it	 rotates	such	 that	 it	has	a	component	normal	 to	 the	wall,
then	it	is	called	a	Néel	wall.

Easy	axis:	The	crystallographic	directions	in	which	the	magnetic	moments	in	a	material
tend	to	line	up	naturally	in	the	absence	of	any	magnetic	field,	thus	minimizing	the	free
energy.

Exchange	interaction:	The	long-range	spin	ordering	occurring	as	a	result	of	a	quantum
mechanical	 interaction,	 which	 is	 due	 to	 the	 combination	 of	 electrostatic	 coupling
between	electron	orbitals	and	Pauli’s	exclusion	principle.	In	ferromagnetic	materials,
this	interaction	causes	the	spin	to	be	aligned	in	the	same	direction;	and	in	ferrimagnetic
materials,	 the	 magnetic	 moments	 due	 to	 the	 electron	 spin	 of	 ions	 at	 different
crystallographic	locations	are	antiparallel.

Ferrofluid:	 A	 stable	 dispersion	 of	 superparamagnetic	 particles,	 used	 as	 heat-transfer
fluid;	the	carrier	is	typically	an	oil	or	organic	fluid,	but	it	could	also	be	water.

Ferrimagnetic	materials:	Materials	in	which	the	magnetic	moments	of	some	of	the	atoms
or	 ions	 are	 antiparallel	 but	 do	 not	 completely	 cancel	 out,	 thereby	 creating	 a	 net
magnetic	moment.

Ferromagnetic	materials:	Materials	in	which	all	the	magnetic	moments	of	atoms	or	ions
remain	in	the	same	direction	(e.g.,	Fe,	Ni,	Co,	Gd,	and	alloy	of	Fe–Co).

Flux	density	(B):	See	Magnetic	flux	density.
Hard	 axis:	 Crystallographic	 directions	 along	 which	 it	 is	 difficult	 to	 reorient	 the

magnetization	direction.



Hard	magnetic	materials:	Materials	that	have	a	high	(~	>104	A/m)	coercivity,	also	known
as	permanent	magnets.

Hysteresis	loop:	See	Magnetic	hysteresis	loop.
Hysteresis	losses:	Power	loss	 in	a	magnetic	material	because	of	 the	occurrence	of	eddy

currents	induced	by	an	applied	magnetic	field.
Induction	(B):	See	Magnetic	flux	density.
Isotropic	 magnet:	 A	 magnet	 in	 which	 the	 spatial	 distribution	 of	 the	 magnetization

directions	is	random.
Joule	magnetostriction:	 The	magnetostriction	 strain	 component	 caused	 by	 rotation	 of

magnetic	domains,	which	is	different	from	the	spontaneous	magnetostriction	that	sets
in	when	magnetic	dipoles	undergo	a	 spontaneous	alignment	at	 temperatures	near	 the
Tc.

Liquid	 magnets:	 Materials	 showing	 an	 entire	 body	 motion	 when	 placed	 next	 to	 a
permanent	magnet.	See	also	Ferrofluids.

Magnetic	 domain:	 Region	 of	 a	 ferromagnetic	 or	 ferrimagnetic	 material	 in	 which	 the
magnetization	(i.e.,	net	magnetic	moment	due	to	different	atoms	or	ions)	is	in	the	same
direction.

Magnetic	flux	density	(B):	The	magnetic	flux	created	per	unit	area;	unit	is	Weber/square
meter	 or	 Tesla,	which	 represents	 the	 strength	 of	 the	magnetic	 field	 created	 inside	 a
magnetic	 material;	 its	 level	 depends	 on	 the	 applied	 external	 field	 and	 the	 magnetic
permeability	of	the	magnetic	material.

Magnetic	induction:	See	Magnetic	flux	density.
Magnetic	 hysteresis	 loop:	 The	 trace	 of	 magnetization	 (M)	 developed	 in	 magnetic

materials	as	a	function	of	the	applied	magnetic	field	(H),	plotted	as	μ0M	versus	H	or
flux	density	B	versus	H.

Magnetic	levitation:	See	Meissner	effect.
Magnetic	losses:	Energy	dissipation	occurring	when	a	magnetic	material	is	subjected	to	a

time-varying	external	magnetic	field.
Magnetization	(M):	The	total	magnetic	moment	per	unit	volume;	unit	is	ampere/meter.
Magnetic	 permeability	 of	 free	 space	 (μ0):	 A	 constant	 that	 relates	 the	 flux	 density	 B

created	by	a	magnetic	field	H	in	space.	Its	value	is	μ0	=	4π	×	10−7	H/m	or	Wb/A · m.
Magnetic	permeability	(μ):	A	property	that	describes	the	ease	with	which	magnetic	flux

lines	are	carried	through	a	material.	Ferromagnetic	and	ferrimagnetic	materials	have
large	 magnetic	 permeability	 values,	 which	 are	 field	 dependent.	 The	 units	 are
Henry/meter,	which	is	the	same	as	Weber/ampere·meter.

Magnetic	polarization	(J):	The	quantity	μ0M	that	is	shown	using	the	symbol	J.
Magnetocrystalline	 anisotropy:	 The	 dependence	 of	 magnetic	 properties,	 such	 as

coercive	field,	on	the	crystallographic	direction.
Magnetocrystalline	 anisotropy	 energy:	 The	 energy	 that	 is	 needed	 to	 rotate	 from	 the

easy-magnetization	direction	to	a	given	direction.



Magnetorheological	 (MR)	 fluids:	 Dispersions	 of	 noncolloidal	 and	 magnetically
multidomain	soft	ferromagnetic	or	ferrimagnetic	particles.	Applications	of	MR	fluids
include	vibration	control.

Magnetoshape	 anisotropy:	 Anisotropy	 created	 by	 the	 shape	 of	 magnetic	 grains	 or
particles;	 same	 as	 shape	 anisotropy;	 causes	 needle-like	magnetic	 particles	 to	 exhibit
higher	coercivity,	which	is	used	in	magnetic	recording	media.

Magnetostriction:	A	change	in	the	dimension	of	a	magnetic	material	after	magnetization
caused	by	either	 the	development	of	 spontaneous	magnetization	as	 the	material	goes
through	 the	 Curie	 temperature	 or	 by	 application	 of	 a	 magnetic	 field,	 which	 causes
changes	in	the	domain	configuration.

Maximum	energy	product:	The	maximum	value	of	a	product	obtained	by	multiplying	the
corresponding	 B	 and	 H	 values	 on	 the	 demagnetization	 curve	 (Figure	 11.26);	 also
known	 as	 the	 (BH)max	 product;	 is	 a	measure	 of	 the	 energy	 stored	 in	 a	magnet	 of	 a
given	size.

Meissner	effect:	Expulsion	of	magnetic	 flux	 lines	due	 to	 the	diamagnetic	behavior	of	a
superconductor	 in	 a	 superconducting	 state,	which	 is	 the	 basis	 of	magnetic	 levitation
using	superconductors.

Minor	 loop:	 A	 magnetic	 hysteresis	 loop	 in	 which	 the	 applied	 fields	 do	 not	 reach
saturation	levels.

Multiferroics:	 Materials	 that	 possess	 two	 or	 more	 switchable	 properties,	 such	 as
spontaneous	polarization,	spontaneous	magnetization,	or	spontaneous	strain.

Néel	 temperature	 (TN	 or	 ON):	 Temperature	 at	 which	 antiferromagnetic	 exchange–
coupling	 interactions	 develop	 spontaneously	 in	 the	 sublattice	 (Figure	 11.12c).	 In	 an
antiferromagnetic	material,	these	are	overcome	by	increasing	 the	temperature,	due	to
which	 the	 material	 becomes	 paramagnetic.	 Note	 that	 below	 the	 TN,	 because	 the
antiferromagnetic	 coupling	 is	 reduced,	 the	 susceptibility	 increases	 (i.e.,	 1/χm
decreases).

Néel	wall:	A	domain	wall	in	which	the	magnetization	rotates	in	the	plane	of	the	sample	as
we	 move	 from	 one	 direction	 of	 the	 magnetic	 moment	 to	 another	 (Figure	 11.22);
occurs	in	thin	films	and	not	in	bulk	magnetic	materials.

Neomagnets:	Permanent	magnets	based	on	neodymium	(e.g.,	Nd2Fe14B).
Nonlinear	magnetic	materials:	 Ferromagnetic	 and	 ferrimagnetic	materials	 below	 their

Curie	temperature.
Nucleation-controlled	coercivity:	When	control	of	coercivity	of	a	magnetic	material	 is

accomplished	 by	making	 it	 difficult	 to	 nucleate	 new	 domain	walls,	 the	 coercivity	 is
said	to	be	nucleation	controlled.	See	also	Pinning-controlled	coercivity.

Oriented	 magnets:	 Magnetic	 materials	 in	 which	 the	 distribution	 of	 the	 easy	 axes	 of
magnetization	is	not	random.	The	hysteresis	loops	of	these	materials	are	squarer,	and
the	remnant	magnetization	is	higher;	the	same	as	textured	magnets.

Paramagnetic	atoms:	Atoms	that	have	a	net	magnetic	moment	(e.g.,	Al,	Cu,	Fe).
Paramagnetic	ions:	Ions	that	have	a	net	magnetic	moment	(e.g.,	Fe2+).



Paramagnetic	 materials:	 Materials	 with	 relatively	 small,	 but	 positive,	 susceptibility
(~+10−6−10−3);	for	example,	liquid	oxygen,	copper,	and	aluminum.	Ferromagnetic	and
ferrimagnetic	materials	become	paramagnetic	above	their	Curie	temperatures.

Permanent	magnets:	Materials	that	have	a	large	coercivity	(~>104	A/m);	also	known	as
hard	magnetic	materials.

Pinning-controlled	coercivity:	When	coercivity	values	are	controlled	by	controlling	the
concentration	 of	 defects	 or	 grain	 boundaries	 that	 can	 pin	 domains.	 In	 this	 case,
domains	 already	 exist,	 and	 the	 focus	 is	 on	 pinning	 the	 domain	 walls.	 See	 also
Nucleation-controlled	coercivity.

Rare-earth	magnets:	Permanent	magnets	based	on	rare-earth	elements	(e.g.,	Sm,	Co,	and
Nd).

Relative	magnetic	permeability	(μr):	Ratio	of	the	magnetic	permeability	of	a	material	to
that	 of	 magnetic	 permeability	 of	 free	 space;	 has	 no	 units	 and	 is	 related	 to	 the
susceptibility	as	shown	by	the	following	equation:	μr	=	1	+	χm.

Saturation	 magnetization	 (μ0Ms):	 The	 maximum	 possible	 magnetization	 in	 a
ferromagnetic	or	ferrimagnetic	material;	the	unit	is	Tesla.

Semihard	 magnetic	 materials:	 Materials	 whose	 coercivity	 values	 are	 between	 a	 few
hundred	and	~104	A/m	(Figure	11.19).

Shape	anisotropy:	See	Magnetoshape	anisotropy.
Sintered	 magnets:	 Solid	 and	 relatively	 dense	 magnetic	 materials	 obtained	 by	 the

compaction	of	metal	or	ceramic	powders	of	a	magnetic	material,	 followed	by	high-
temperature	sintering.	These	materials	could	be	either	oriented	or	isotropic.

Smart	material:	A	material	whose	properties	are	controllable	using	an	external	field	or
stimulus	(e.g.,	piezoelectrics	and	magnetostrictive	materials).

Soft	magnetic	materials:	In	general,	materials	with	a	coercivity	less	than	~5000	A/m	are
considered	magnetically	soft	materials.

Spontaneous	 magnetostriction:	 Development	 of	 strain	 in	 ferromagnetic	 and
ferrimagnetic	 materials,	 which	 occurs	 spontaneously	 when	 there	 is	 a	 spontaneous
alignment	of	magnetic	moments	at	the	Curie	temperature.

Superparamagnetism:	 A	 behavior	 in	 which	 a	 material	 that	 is	 originally	 either
ferromagnetic	or	ferrimagnetic	in	its	bulk	form	behaves	as	a	paramagnetic	material	on
a	nanoscale.

Superparamagnetic	 materials:	 Nanoscale	 particles,	 grains,	 or	 structures	 made	 from
materials	 that	 are	 ferromagnetic	 or	 ferrimagnetic	 in	 their	 bulk	 form	 but	 behave	 as
paramagnetic	materials	because	of	randomization	of	magnetic	interactions	by	thermal
energy.

Textured	magnets:	See	Oriented	magnets.
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Index

A
Acceptor-doped	semiconductors,	108–109,	145–146
Admittance,	280–282
Allotropes,	3
Alloys,	see	Metals	and	alloys,	electrical	conduction	in
Amorphous	materials,	32–35
applications	of	amorphous	materials,	34–35
atomic	arrangements	in	amorphous	materials,	33–34

Amphoteric	dopants,	110
Antiferromagnetic	material,	477
Antifluorite	structure,	21
Antireflection	coating,	343–346
Atomic	polarization,	262–264
A-type	octant,	23
Avalanche	breakdown,	182

B
Back	surface	field	(BSF),	398
Band	gap
effect	of	crystallite	size	on,	126
effect	of	dopant	concentration	on,	125–126
effect	of	temperature	on,	123–125

BCC	crystal	structure,	see	Body-centered	cubic	crystal	structure
Beer–Lambert	law,	336–339
Bipolar	junction	transistor	(BJT),	212–224
active	mode,	214
applications,	222–224
base	current,	217–218
bipolar	junction	transistor	action,	214
collector	current,	216–217
common	base	configuration,	214
common	collector,	215,	216
controlling	current,	219
conventional	current,	214
current	flows	in	npn	transistor,	214–216



current	flows	in	pnp	transistor,	221–222
current–voltage	characteristics,	219–221
cutoff	mode,	219
emitter	current,	217
inverted	mode,	219
principles	of	operation,	212–214
role	of	base	current,	218–219
transistor	operating	modes,	219

BJT,	see	Bipolar	junction	transistor
Bloch	walls,	503
Blue	laser	diodes,	209
Blue	shift,	35
Blu-ray	format,	29,	209
Body-centered	cubic	(BCC)	crystal	structure,	7,	177
Bohr	magneton,	475
Bonded	magnets,	512–513
Bound	charge	density,	244
Bravais	lattices,	1
Brewster ’s	angle,	327
BSF,	see	Back	surface	field
B-type	octant,	23
Built-in	potential,	160
Bulk	resistivity,	44

C
Ceramic	ferrites,	24
Ceramic	materials
point	defects	in,	26
semiconductivity	in,	126–127

Cesium	chloride,	structure	of,	17–18
Charge	carriers,	mobility	of,	53
Chemical	vapor	deposition	(CVD),	33,	250
Classical	theory	of	electrical	conduction,	50–51,	71
comparison	of	quantum	mechanical	approach,	82
limitations,	71

Clausius–Mossotti	equation,	256,	264
Close-packed	(CP)	structure,	10
CN,	see	Coordination	number
Coercive	field,	419
Cole–Cole	plots,	279



Collector	current,	216–217
Common	collector	(CC),	215,	216
Compensation	doping,	110
Complex	dielectric	constant,	274–275
Compound	semiconductors,	89
Conduction	band	edge,	89
Conductivity	effective	mass,	112
Contact	potential,	160,	163–166
Converse	piezoelectric	effect,	426
Coordination	number	(CN),	16
Copper	alloy,	67
Copper	indium	diselenide,	202
Corundum	structure,	21
CP	structure,	see	Close-packed	structure
Crystalline	materials,	1–5
allotropes,	3
Bravais	lattices,	1
eutectic	compositions,	4
grain	boundaries,	5
long-range	order	of	atoms,	5
polymorphs,	3

Crystal	structures,	17–24
cesium	chloride,	17–18
corundum,	21
diamond	cubic	structure,	18–19
directions	and	planes	in,	11–15
fluorite	and	antifluorite,	21
perovskite	crystal,	22–23
sodium	chloride,	17
spinel	and	inverse	spinel	structures,	23–24
wurtzite,	21
zinc	blende,	19–21

Curie-point	suppressors,	414
Curie	temperature,	407,	486,	496
CVD,	see	Chemical	vapor	deposition
Cyanopolymers,	446

D
Dark	current,	175
Debye	equations,	277



Deep-level	defects,	113
Defects	in	materials,	24,	36
Degenerate	semiconductors,	125,	151–152
Demagnetization	curve,	506
Demagnetizing	factor,	483
Depletion-mode	MOSFET,	233–234
Depletion	region,	width	of,	170–172
Diamagnetic	materials,	481,	485–486
Diamond	cubic	structure,	18–19
Dielectric	materials	(linear),	241–300
capacitance	and	dielectric	constant,	242–251
complex	dielectric	constant	and	dielectric	losses,	274–279
dependence	of	dielectric	constant	on	frequency,	270–274
dielectric	materials,	241–242
dielectric	polarization,	251–254
dipolar	or	orientational	polarization,	267–268
dipole	moment,	251
electronic	or	optical	polarization,	256–262
electrostatic	induction,	241–242
equivalent	circuit	of	a	real	dielectric,	279–280
equivalent	series	resistance	and	equivalent	series	capacitance,	288–290
impedance	and	admittance,	280–282
interfacial,	space	charge,	or	Maxwell–Wagner	polarization,	268–269
ionic,	atomic,	or	vibrational	polarization,	262–264
local	electric	field,	254–256
Lorentz–Lorenz	equation,	272–274
loss	angle,	285
parallel-plate	capacitor	filled	with	a	vacuum,	242–244
parallel-plate	capacitors	with	ideal	dielectric	material,	244–251
power	loss	in	a	real	dielectric	material,	282–287
Shannon’s	polarizability	approach,	264–267
spontaneous	or	ferroelectric	polarization,	269–270
vector	diagram,	283
volumetric	efficiency	of	a	single-layer	capacitor,	246

Dielectric	permittivity,	243
Digital	video	disk	(DVD),	209,	516
Dipolar	polarization,	267–268
Dipole	moment,	251
Direct	band	gap	semiconductors,	100–101
Direct	piezoelectric	effect,	426
Donor-doped	semiconductors,	107–108



Dopant	ionization,	110–115
conductivity	effective	mass,	112
deep-level	defects,	113
freeze-out	range	110
partial,	120
shallow	dopants,	113

Drift,	52
DVD,	see	Digital	video	disk

E
Effective	Richardson	constant,	197
EHP,	see	Electron–hole	pairs
Einstein	relation,	164
Elastic	modulus,	32
Electrical	conduction	in	metals	and	alloys,	41–88
band	structure	and	electric	conductivity	of	solids,	77–80
bound	state,	77
chemical	composition–microstructure–conductivity	relationships	in	metals,	65–67
classical	theory	of	electrical	conduction,	50–51
comparison	of	classical	theory	and	quantum	mechanical	approach,	82
dependence	of	resistivity	on	thickness,	63–64
drift,	mobility,	and	conductivity,	51–54
effect	of	thermal	expansion,	62
electrolytic	tough	pitch	copper,	66
electron	affinity,	82
electron	current,	52
electronic	and	ionic	conductors,	55–57
electrons	in	a	solid,	74–77
energy	bands,	79
Fermi	energy	and	Fermi	level,	80
four-point	probe	technique,	49
free	state,	77
impurity-scattering	limited	drift	mobility,	59
Joule	heating	or	I2R	losses,	62–63
Kelvin	probe	technique,	49
lattice-scattering	limited	mobility,	59
limitations	of	the	classical	theory	of	conductivity,	71
magnetic	quantum	number,	72
mobility	of	the	charge	carriers,	53
Ohm’s	law,	43–48



Pauli’s	exclusion	principle,	72
quantum	mechanical	approach	to	electron	energy	levels	in	an	atom,	71–74
radio	frequency–identification	technology,	45
resistivity	of	metallic	alloys,	67–71
resistivity	of	metallic	materials,	57–62
sheet	resistance,	48–50
spin	quantum	number,	72
work	function,	82
yttria-stabilized	zirconia,	55

Electrical	resistivity,	44
Electric	potential,	variation	of,	168–170
Electrolytic	tough	pitch	(ETP)	copper,	64,	66
Electron	affinity,	82
Electron	current,	52
Electron	diffusion	length,	175
Electron–hole	pair	(EHP),	92,	365
Electronic	book	readers,	33
Electronic	conductors,	55–57
Electronic	polarization,	256–262
of	atoms,	256–261
Coulombic	force,	258
of	ions	and	molecules,	261–262
static	electronic	polarizability,	261

Electron	transporting	layer	(ETL),	352
Electrostatic	induction,	241–242
Electrostriction,	416–417
Elemental	semiconductors,	89
Enhancement-mode	MOSFET,	225,	231,	232
Equivalent	series	capacitance	(ESC),	288–290
Equivalent	series	resistance	(ESR),	288–290
ETP	copper,	see	Electrolytic	tough	pitch	copper
Eutectic	compositions,	4
External	magnetic	induction,	480
Extinction	of	light	(scattering	and	absorption),	328–339
attenuation	of	light	by	absorption,	332–336
diffuse	reflection,	329–330
Mie	scattering,	331–332
quantitative	expression	of	extinction	(Beer–Lambert	law),	336–339
Rayleigh	scattering,	330–331
scattering	at	rough	surface	or	fine	objects,	329–332

Extrinsic	semiconductors,	107,	115–116



F
Fabry–Perot	laser,	356
Face-centered	cubic	(FCC)	frame,	7,	77
Fermi–Dirac	distribution,	150–151
Fermi	energy	levels,	80–82,	374
Fermi	energy	levels	(in	semiconductors),	133–156
carrier	concentrations	in	intrinsic	semiconductors,	143–145
degenerate	or	heavily	doped	semiconductors,	151–152
electron	and	hole	concentrations,	137–141
Fermi	energy	as	a	function	of	temperature,	146–149
Fermi	energy	levels	across	materials	and	interfaces,	152–154
Fermi	energy	positions	and	the	Fermi–Dirac	distribution,	150–151
intrinsic	semiconductors,	Fermi	energy	levels	in,	141–143
invariance	of	Fermi	energy,	154
law	of	mass	action	for	semiconductors,	141
metals,	Fermi	energy	levels	in,	133–135
n-type	and	p-type	semiconductors,	Fermi	energy	levels	in,	145–146
semiconductors,	Fermi	energy	levels	in,	135–137

Ferrimagnetic	material,	477
Ferrites,	23
Ferroelectric	hysteresis	loop,	419
Ferroelectric	polarization,	269–270
Ferroelectrics,	piezoelectrics,	and	pyroelectrics,	267,	407–471
applications	of	piezoelectrics,	436
applications	and	properties	of	hard	and	soft	lead	zirconium	titanate	ceramics,	448–450
cyanopolymers,	446
dependence	of	dielectric	constant	of	ferroelectrics	on	temperature	and	composition,

412–415
devices	based	on	piezoelectrics,	436–441
direct	and	converse	piezoelectric	effects,	426
electromechanical	coupling	coefficient,	450–453
electrostriction,	416–417
expander	plate,	436–441
ferroelectric	domains,	409–412
ferroelectric	hysteresis	loop,	417–424
ferroelectricity	in	barium	titanate,	407–408
ferroelectric	materials,	407–415
illustration	of	an	application,	453–457
lead-free	piezoelectrics,	457–458
lead	zirconium	titanate,	443–448



macro	fiber	composites,	458
motor	effect,	426
paraelectric	phase,	407
piezoelectric	behavior	of	ferroelectrics,	426
piezoelectric	coefficients,	427–429
piezoelectric	composites,	458–460
piezoelectricity,	424–426
piezoelectric	polymers,	445–448
primary	pyroelectric	effect,	462
pyroelectric	coefficient,	462
pyroelectric	detectors	for	infrared	detection	and	imaging,	465
pyroelectric	materials	and	devices,	461–465
recent	developments,	457–458
relationship	between	piezoelectric	coefficients,	431–436
relationship	of	ferroelectrics	and	piezoelectrics	to	crystal	symmetry,	415–416
relaxor	ferroelectrics,	414
remnant	polarization,	419
saturation	polarization,	418
strain-tuned	ferroelectrics,	457
technologically	important	piezoelectrics,	441–443
tensor	nature	of	piezoelectric	coefficients,	430–431
trace	of	the	hysteresis	loop,	420

Ferrofluids,	488
Ferromagnetic	material,	476
Field-effect	transistor	(FET),	212,	224
junction,	225
metal	insulator,	225
metal	oxide	semiconductor,	212,	227–234
metal	semiconductor,	225
source	and	drain	regions,	224
types	of,	224–225
unipolar	device,	225

Fill	factor	(FF),	389
Flexible	electronics,	6
Fluorite	structure,	21
Forward-biased	p-n	junction,	172
Four-point	probe	technique,	49
Free	state,	77
Freeze-out	range,	110
Fresnel’s	equations,	326



G
Gate	dielectric,	227
Gauss’s	law,	243,	305
Generation	current,	175
Giant	dielectric	constant	materials,	278–279
Glasses,	32
Grain	boundaries,	5,	29–30

H
Hard	magnetic	materials,	510–512
Heterojunction	LED,	211
Highest	occupied	molecular	orbital	(HOMO)	level,	403
High-k	gate	dielectrics,	228
Hole	diffusion	length,	175
Hole	injection	layer	(HIL),	352
Hole	transport	layer	(HTL),	352,	403
Homojunction	LEDs,	211
Hydrogen	bond,	6
Hydrogen	model,	112

I
IACS,	see	International	Annealed	Copper	Standard
ICs,	see	Integrated	circuits
Ideal	dielectric	material,	244–251,	275
Ideal	diode	equation,	177
Impact	ionization,	182
Impedance,	280–282
analyzer,	279,	285
spectroscopy,	279

Impurity-scattering	limited	drift	mobility,	59
Incident	photon-to-current	efficiency	(IPCE),	372
Indirect	band	gap	semiconductors,	100–101
Integrated	circuits	(ICs),	48,	212
Interfacial	polarization,	268–269
International	Annealed	Copper	Standard	(IACS),	64
Interstitial	sites,	10,	15
Intrinsic	impedance,	309
Intrinsic	semiconductors,	89–91
carrier	concentrations	in,	143–145



conductivity	of,	115–116
Fermi	energy	levels	in,	141–143

Inverse	spinel	structure,	23–24
Ionic	conductors,	55–57
Ionic	polarization,	262–264
IPCE,	see	Incident	photon-to-current	efficiency
Isotropic	magnets,	512–513

J
Joule	heating,	62–63
Joule	magnetostriction,	508
Junction	field-effect	transistor	(JFET),	225

K
Kelvin	probe	technique,	49
Knee	voltage,	178
Kröger–Vink	notation	for	point	defects,	26–28

L
Laser,	353–358
Laser	diodes,	209
Lattice	point,	1,	3
Lattice-scattering	limited	mobility,	59,	117
Law	of	mass	action	for	semiconductors,	141
LCDs,	see	Liquid	crystal	displays
Lead-free	piezoelectrics,	457–458
Lead	zirconium	titanate,	443–448
Lenz’s	law,	307
Levelized	cost	of	electricity	(LCOE),	364
LID,	see	Light-induced	degradation
Light,	extinction	of	(scattering	and	absorption),	328–339
attenuation	of	light	by	absorption,	332–336
diffuse	reflection,	329–330
Mie	scattering,	331–332
quantitative	expression	of	extinction	(Beer–Lambert	law),	336–339
Rayleigh	scattering,	330–331
scattering	at	rough	surface	or	fine	objects,	329–332

Light-emitting	diodes	(LEDs),	204–212,	349–353
efficiency,	211



emission	spectral	ranges,	208–209
heterojunction	LED,	211
homojunction	LEDs,	211
indirect	band	gap	materials,	LEDs	based	on,	207–208
I–V	curve,	209–210
laser	diodes,	209
materials,	205–207
operating	principle,	204–205
organic	light-emitting	diodes,	207
packaging,	212
polymer	light-emitting	diodes,	207
semiconductors,	203
stimulated	radiation,	209

Light-induced	degradation	(LID),	399
Light–matter	interaction,	application	of,	343–358
antireflection	coating,	343–346
laser,	353–358
light-emitting	diodes,	349–353
optical	fibers,	346–349

Linear	dielectric	materials,	241–300
capacitance	and	dielectric	constant,	242–251
complex	dielectric	constant	and	dielectric	losses,	274–279
dependence	of	dielectric	constant	on	frequency,	270–274
dielectric	materials,	241–242
dielectric	polarization,	251–254
dipolar	or	orientational	polarization,	267–268
dipole	moment,	251
electronic	or	optical	polarization,	256–262
electrostatic	induction,	241–242
equivalent	circuit	of	a	real	dielectric,	279–280
equivalent	series	resistance	and	equivalent	series	capacitance,	288–290
impedance	and	admittance,	280–282
interfacial,	space	charge,	or	Maxwell–Wagner	polarization,	268–269
ionic,	atomic,	or	vibrational	polarization,	262–264
local	electric	field,	254–256
Lorentz–Lorenz	equation,	272–274
loss	angle,	285
parallel-plate	capacitor	filled	with	a	vacuum,	242–244
parallel-plate	capacitors	with	ideal	dielectric	material,	244–251
power	loss	in	a	real	dielectric	material,	282–287
Shannon’s	polarizability	approach,	264–267



spontaneous	or	ferroelectric	polarization,	269–270
vector	diagram,	283
volumetric	efficiency	of	a	single-layer	capacitor,	246

Liquid	crystal	displays	(LCDs),	349
Liquid	magnets,	488
Local	electric	field,	254–256
Lodestone,	473
Long-range	order	(LRO),	5
Loss	angle,	285
Loss	current,	284
Lowest	unoccupied	molecular	orbital	(LUMO)	level,	403

M
Macro	fiber	composites	(MFCs),	458
Magnetic	flux	lines,	483
Magnetic	materials,	473–525
antiferromagnetic	materials,	477,	489–490
Bloch	walls,	503
Bohr	magneton,	475
classification	of	magnetic	materials,	485–496
coercive	field,	498–499
Curie	temperature,	496–497
demagnetization	curve,	506
demagnetizing	factor,	483
demagnetizing	fields,	482–483
diamagnetic	materials,	481,	485–486
domain	walls,	180°	and	non-180°,	505
easy	axis,	501
exchange	interaction,	502
external	magnetic	induction,	480
ferrimagnetic	material,	477
ferrofluids,	488
ferromagnetic	and	ferrimagnetic	materials,	476,	490–496
flux	density	in	ferromagnetic	and	ferrimagnetic	materials,	483–485
hard	axis,	501
hard	magnetic	materials,	510–512
isotropic,	textured	(oriented),	and	bonded	magnets,	512–513
Joule	magnetostriction,	508
liquid	magnets,	488
lodestone,	473



magnetic	anisotropy,	501–502
magnetic	data	storage	materials,	514–518
magnetic	domain	walls,	503–505
magnetic	flux	lines,	483
magnetic	losses,	506–508
magnetic	permeability,	497–498
magnetic	polarization,	491
magnetic	susceptibility	and	magnetic	permeability,	481–482
magnetizing	field,	magnetization,	and	flux	density,	479–481
magnetorheological	fluids,	488
magnetostriction,	508–510
maximum	energy	products	for	magnets,	506
Meissner	effect,	486
metallic	glasses,	513,	514
minor	loop,	498
multiferroics,	473
Néel	temperature,	489
neomagnets,	512
nucleation	and	pinning	control	of	coercivity,	499–501
origin	of	magnetism,	473–478
paramagnetic	materials,	481,	487
permanent	magnets,	499
phenomenology,	473
pinning-controlled	coercivity,	500
rare-earth	magnets,	511
saturation	magnetization,	492
semihard	magnetic	materials,	499
sintered	magnets,	513
smart	materials,	488
soft	magnetic	materials,	510–511,	513–514
superparamagnetic	materials,	488

Magnetic	quantum	number,	72
Magnetic	random-access	memories	(MRAMs),	517
Magnetic	resonance	imaging	(MRI),	475
Magnetocrystalline	anisotropy	energy,	501
Magnetostriction,	508–510
Majority	device,	199
Materials	science	and	engineering,	basic	concepts	in,	1–40
allotropes,	3
amorphous	materials,	32–35
blue	shift,	35



ceramic	ferrites,	24
ceramics,	metals	and	alloys,	and	polymers,	6–7
cesium	chloride,	structure	of,	17–18
classification	of	materials,	1
coordination	numbers,	16
corundum	structure,	21
crystalline	materials,	1–5
crystal	structures,	7–11,	17–24
defects	in	materials,	24–25,	36
diamond	cubic	structure,	18–19
directions	and	planes	in	crystal	structures,	11–15
dislocations,	28–29
eutectic	compositions,	4
flexible	electronics,	6
fluorite	and	antifluorite	structure,	21
functional	classification	of	materials,	7
grain	boundaries,	5
hydrogen	bond,	6
interatomic	bonds	in	materials,	6–7
interstitial	sites	or	holes	in	crystal	structures,	10,	15
Kröger–Vink	notation	for	point	defects,	26–28
lattice	point,	1,	3
long-range	order	of	atoms,	5
microstructure–property	relationships,	31–32
nanostructured	materials,	35–36
octahedral	site,	16
octants,	18
organic	electronics,	6
packing	fraction,	9
perovskite	crystal	structure,	22–23
plastic,	definition	of,	6
point	defects	in	ceramic	materials,	26
polymorphs,	3
quartz	clocks,	34
radius	ratio	concept,	16–17
sodium	chloride,	structure	of,	17
spinel	and	inverse	spinel	structures,	23–24
stacking	faults	and	grain	boundaries,	29–30
substitutional	atom	defect,	24
tetrahedral	coordination,	18
tetrahedral	site,	16



theoretical	density,	21
thin-film	transistors,	33
threading	dislocations,	29
unit	cell,	1
vacancy,	24
van	der	Waals	bond,	6
wearable	electronics,	6
wurtzite	structure,	21
zinc	blende	structure,	19–21

Matthiessen’s	rule,	59
Maximum	power	point	tracking	technology	(MPTT),	391
Maxwell’s	equation,	305,	307,	328
Maxwell–Wagner	(M–W)	polarization,	268–269
MESFET,	see	Metal	semiconductor	field-effect	transistor
Meissner	effect,	486
Metal	insulator	semiconductor	field-effect	transistor	(MISFET),	225,	227
Metallic	glasses,	513,	514
Metal	oxide	semiconductor	field-effect	transistor	(MOSFET),	212,	227–234
depletion-mode	MOSFET,	233–234
enhancement-mode,	231–232
high-k	gate	dielectrics,	228
integrated	circuits,	227–228
mechanism	for	enhancement	MOSFET,	232–233
negative	voltage,	230
NMOS,	PMOS,	and	CMOS	devices,	228–231
output	characteristics,	230
role	of	materials	in,	228
threshold	voltage,	233
transfer	characteristics,	230

Metals	and	alloys,	electrical	conduction	in,	41–88
band	structure	and	electric	conductivity	of	solids,	77–80
bound	state,	77
chemical	composition–microstructure–conductivity	relationships	in	metals,	65–67
classical	theory	of	electrical	conduction,	50–51
comparison	of	classical	theory	and	quantum	mechanical	approach,	82
dependence	of	resistivity	on	thickness,	63–64
drift,	mobility,	and	conductivity,	51–54
effect	of	thermal	expansion,	62
electrolytic	tough	pitch	copper,	66
electron	affinity,	82
electron	current,	52



electronic	and	ionic	conductors,	55–57
electrons	in	a	solid,	74–77
energy	bands,	79
Fermi	energy	and	Fermi	level,	80
four-point	probe	technique,	49
free	state,	77
impurity-scattering	limited	drift	mobility,	59
Joule	heating	or	I	2R	losses,	62–63
Kelvin	probe	technique,	49
lattice-scattering	limited	mobility,	59
limitations	of	the	classical	theory	of	conductivity,	71
magnetic	quantum	number,	72
mobility	of	the	charge	carriers,	53
Ohm’s	law,	43–48
Pauli’s	exclusion	principle,	72
quantum	mechanical	approach	to	electron	energy	levels	in	an	atom,	71–74
radio	frequency–identification	technology,	45
resistivity	of	metallic	alloys,	67–71
resistivity	of	metallic	materials,	57–62
sheet	resistance,	48–50
spin	quantum	number,	72
work	function,	82
yttria-stabilized	zirconia,	55

Metal	semiconductor	field-effect	transistor	(MESFET),	225,	226–227
MFCs,	see	Macro	fiber	composites
Microstructure–property	relationships,	31–32
grain	boundary	effects,	31
grain	size	effects,	31–32
microstructure-insensitive	properties,	32

Mie	scattering,	331–332
Miller	indices,	11
Minority	carriers,	175
MISFET,	see	Metal	insulator	semiconductor	field-effect	transistor
MLC,	see	Multilayer	capacitor
Modifier	ions,	295
Moore’s	law,	228
MOSFET,	see	Metal	oxide	semiconductor	field-effect	transistor
Motor	effect,	426
MPTT,	see	Maximum	power	point	tracking	technology
MRAMs,	see	Magnetic	random-access	memories



MRI,	see	Magnetic	resonance	imaging
Multiferroics,	473
Multilayer	capacitor	(MLC),	246
Multiple	quantum	well	(MQW)	structure	(LEDs),	356

N
Nanostructured	materials,	35–36
Néel	temperature,	489
Neomagnets,	512
Nonradiative	recombination,	101
n-type	semiconductors,	see	Donor-doped	semiconductors
Nuclear	magnetic	resonance	(NMR),	475

O
Octahedral	site,	16
Octants,	18
Ohmic	contacts,	200–202
Ohm’s	law,	43–48
OLEDs,	see	Organic	light-emitting	diodes
One-sided	p-n	junction,	183
Optical	fibers,	346–349
Optical	frequency	dielectric	constant,	271
Optical	polarization,	see	Electronic	polarization
Optical	properties	of	materials,	301–360
change	in	light	traveling	direction	at	a	material	interface,	319–328
description	of	light	as	electromagnetic	wave,	304–308
effects	of	scattering,	reflectance,	and	absorption	of	light,	339–343
extinction	of	light	(scattering	and	absorption),	328–339
intrinsic	impedance,	309
light–matter	interaction,	application	of,	343–358
origin	of	the	refractive	index,	311–319
refraction	and	reflectance,	319–328
refractive	index,	308–310
results	of	energy	loss	of	excited	electrons	by	light	absorption,	341–343
wave	vector,	308

Organic	electronics,	6
Organic	light-emitting	diodes	(OLEDs),	207,	353
Orientational	polarization,	267–268
Oriented	magnets,	512



P
Packing	fraction,	9
Parallel-plate	capacitor
filled	with	a	vacuum,	242–244
with	ideal	dielectric	material,	244–251

Paramagnetic	materials,	481,	487
Pauli’s	exclusion	principle,	72
PCE,	see	Power	conversion	efficiency
PDPs,	see	Plasma	display	panels
Permanent	magnets,	499
Perovskite	crystal	structure,	22–23
Phase	change	memory	(PCM),	34
Phasor,	283
Photon	detectors,	465
Photovoltaics,	202,	361
Piezoelectrics,	see	Ferroelectrics,	piezoelectrics,	and	pyroelectrics
Pinning-controlled	coercivity,	500
Plasma	display	panels	(PDPs),	349
PLEDs,	see	Polymer	light-emitting	diodes
p-n	junction-type	semiconductor	solar	cells,	365–374
current–voltage	characteristics	of,	366–370
design	of	high-performance,	393–400
electron–hole	pairs,	365
fill	factor,	power	conversion	efficiency,	and	quantum	yield	of	a	solar	cell,	370–374
incident	photon-to-current	efficiency,	372
open-circuit	voltage,	367,	369
photocurrent,	366
short-circuit	current,	366

p-n	junction-type	solar	cells,	factors	limiting	power	conversion	of,	385–393
additional	power	loss	mechanisms,	388–390
factors	influencing	solar	cell	operation,	390–393
maximum	power	point	tracking	technology,	391
theoretical	limit	of	PCE,	385–388

p-n	junction-type	solar	cells,	physical	events	underlying,	374–385
changes	in	Fermi	energy	level	under	illumination,	374–377
continuity	equation	in	a	neutral	semiconductor	at	quasi-equilibrium,	378–379
generation,	recombination,	and	transport	of	electrons	and	holes,	377–385
photogenerated	carrier	transport	in	depletion	region,	382–385
photogenerated	carrier	transport	in	neutral	semiconductor	at	quasi-equilibrium,	379–382

Poisson’s	equation,	167,	306



Polar	dielectrics,	267
Poling,	418
Polymer	light-emitting	diodes	(PLEDs),	207
Polymorphs,	3
Polysilicon,	227
Power	conversion	efficiency	(PCE),	385
p-type	semiconductors,	see	Acceptor-doped	semiconductors
Pyroelectrics,	see	Ferroelectrics,	piezoelectrics,	and	pyroelectrics

Q
Quality	factor,	285
Quantum	confinement	effect,	126
Quantum	detectors,	465
Quantum	dots,	35,	126
Quartz	clocks,	34

R
Radiative	recombination,	101
Radio	frequency–identification	(RFID)	technology,	45
Rare-earth	magnets,	511
Rayleigh	scattering,	330–331
RC	circuit,	see	Resistor-capacitor	circuit
Real	dielectrics,	275
equivalent	circuit	of,	279–280
power	loss	in,	282–287

Reflectance,	319–328
Refraction,	319–328
Refractive	index,	308–310
origin	of,	311–319
response	of	bound	electrons	over	an	electromagnetic	wave,	317–319
response	of	free	electrons	to	electromagnetic	wave,	312–317

Relaxor	ferroelectrics,	414
Remnant	polarization,	419
Resistor-capacitor	(RC)	circuit,	279
Reverse-biased	p-n	junction,	drift	current	in,	173–176
RFID,	see	Radio	frequency–identification	technology

S
Saturation	magnetization,	492



Saturation	polarization,	418
Scanning	electron	microscope	(SEM)	image,	345,	410
Schottky	barrier,	193
Schottky	contacts,	192–200
advantages	of	Schottky	diodes,	199–200
band	diagrams,	193–194
current–voltage	characteristics,	196–199
effective	Richardson	constant,	197
gate	isolation	using,	225
majority	device,	199
surface	pinning	of	Fermi	energy	level,	194–195

Schottky	diode,	192,	199
Semiconductor	devices,	191–240
bipolar	junction	transistor,	212–224
common	base	current	gain,	217
early	effect,	221
field-effect	transistors,	212,	224–225
gate	dielectric,	227
inversion	layer,	233
light-emitting	diodes,	204–212
MESFET	I–V	characteristics,	226–227
metal	insulator	semiconductor	field-effect	transistors,	225,	227
metal	oxide	semiconductor	field-effect	transistors,	227–234
metal–semiconductor	contacts,	191–192
ohmic	contacts,	200–202
output	characteristics,	230
Schottky	contacts,	192–200
solar	cells,	202–204
threshold	voltage,	233

Semiconductor	materials,	fundamentals	of,	89–131
acceptor-doped	(p-type)	semiconductors,	108–109
amphoteric	dopants,	compensation,	and	isoelectronic	dopants,	110
applications	of	direct	band	gap	materials,	101–105
band	structure	of	semiconductors,	94–100
compensation	doping,	110
compound	semiconductors,	89
conduction	band	edge,	89
conductivity	of	intrinsic	and	extrinsic	semiconductors,	115–116
deep-level	defects,	113
degenerate	semiconductors,	125
direct	and	indirect	band	gap	semiconductors,	100–101



donor-doped	(n-type)	semiconductors,	107–108
dopant	ionization,	110–115
effect	of	crystallite	size	on	the	band	gap,	126
effect	of	dopant	concentration	on	band	gap,	125–126
effect	of	dopant	concentration	on	mobility,	118–119
effect	of	partial	dopant	ionization,	120–123
effect	of	temperature	on	band	gap,	123–125
effect	of	temperature	on	mobility	of	carriers,	116–117
elemental	semiconductors,	89
extrinsic	semiconductors,	107
freeze-out	range,	110
hydrogen	model,	112
intrinsic	semiconductors,	89–91
motions	of	electrons	and	holes	(electric	current),	105–107
nonradiative	recombination,	101
quantum	dots,	126
radiative	recombination,	101
semiconductivity	in	ceramic	materials,	126–127
temperature	dependence	of	carrier	concentrations,	93–94
temperature	and	dopant	concentration	dependence	of	conductivity,	120
thermally	generated	charge	carriers,	92
valence	band	edge,	89
vertical	recombination,	101

Semiconductor	p-n	junctions,	157–190
avalanche	breakdown,	182
built-in	potential,	160
calculation	of	contact	potential,	163–166
constructing	the	band	diagram	for	a	p-n	junction,	161–163
contact	potential,	160
dark	current,	175
diffusion	currents	in	forward-biased	p-n	junction,	172–173
diffusion	potential,	160
diode	based	on	p-n	junction,	178–181
drift	current	in	reverse-biased	p-n	junction,	173–176
drift	and	diffusion	of	carriers,	160–161
dynamic	resistance,	180
Einstein	relation,	164
electric	field	variation	across	the	depletion	region,	167–168
electron	diffusion	length,	175
formation	of	p-n	junction,	157–160
generation	current,	161,	175



hole	diffusion	length,	175
ideal	diode	equation,	177
impact	ionization,	182
knee	voltage,	178
limiting	resistor,	180
minority	carriers,	175
one-sided	p-n	junction,	183
overall	I–V	characterstics	in	p-n	junction,	176–178
Poisson’s	equation,	167
reverse-bias	breakdown,	181–185
reverse-bias	saturation	current,	176
space	charge	at	the	p-n	junction,	166–167
transistors,	178
variation	of	electric	potential,	168
width	of	depletion	region	and	penetration	depths,	170–172
Zener	diodes,	185–187
Zener	effect,	184

Semiconductors,	Fermi	energy	levels	in,	133–156
carrier	concentrations	in	intrinsic	semiconductors,	143–145
degenerate	or	heavily	doped	semiconductors,	151–152
electron	and	hole	concentrations,	137–141
Fermi	energy	as	a	function	of	temperature,	146–149
Fermi	energy	levels	across	materials	and	interfaces,	152–154
Fermi	energy	positions	and	the	Fermi–Dirac	distribution,	150–151
intrinsic	semiconductors,	Fermi	energy	levels	in,	141–143
invariance	of	Fermi	energy,	154
law	of	mass	action	for	semiconductors,	141
metals,	Fermi	energy	levels	in,	133–135
n-type	and	p-type	semiconductors,	Fermi	energy	levels	in,	145–146
semiconductors,	Fermi	energy	levels	in,	135–137

Semihard	magnetic	materials,	499
Semi-insulators,	44
SEM	image,	see	Scanning	electron	microscope	image
Shallow	dopants,	113
Shannon’s	polarizability	approach,	264–267
limitations,	265–267
outline,	264–265
total	dielectric	polarizability,	264

Shape	anisotropy,	501
Sheet	resistance,	48–50
Shockley	and	Queisser ’s	detailed	balance	model	(SQ-DB	model),	386



Short-range	order	(SRO),	33
Silicon	heterojunction	solar	cell	(SHJ),	399
Sintered	magnets,	513
Smart	materials,	488
Snell’s	law,	320
Sodium	chloride,	structure	of,	17
Soft	magnetic	materials,	510–511,	513–514
Solar	cells,	202–204
absorptivity,	202
LED	semiconductors,	203
photovoltaics,	202
silicon	heterojunction,	399

Solar	cells,	electrical	and	optical	properties	of,	361–405
back	surface	field,	398
description	of	solar	cell,	362–365
design	of	high-performance	p-n	junction-type	semiconductor	solar	cells,	393–400
emerging	solar	cells	not	using	p-n	junction	of	inorganic	semiconductors,	400–403
factors	limiting	power	conversion	of	p-n	junction-type	solar	cells,	385–393
levelized	cost	of	electricity,	364
light-induced	degradation,	399
open-circuit	condition,	367
operation	principle	of	p-n	junction-type	semiconductor	solar	cells,	365–374
physical	events	underlying	p-n	junction-type	solar	cells,	374–385

Solid-state	lighting	(SSL),	351
Space	charge	polarization,	268–269
Spinel	structure,	23–24
Spin	quantum	number,	72
Spontaneous	magnetostriction,	508
Spontaneous	polarization,	269–270
SQ-DB	model,	see	Shockley	and	Queisser ’s	detailed	balance	model
SRO,	see	Short-range	order
SSL,	see	Solid-state	lighting
Stacking	faults,	29–30
Static	electronic	polarizability,	261
Stimulated	radiation,	209
Strain-tuned	ferroelectrics,	457
Substitutional	atom	defect,	24
Supercapacitors,	243,	269
Superparamagnetic	materials,	488

T



Temperature	coefficient	of	resistivity	(TCR),	44
Tetrahedral	coordination,	18
Tetrahedral	site,	16
Textured	(oriented)	magnets,	512–513
Theoretical	density,	21
Thermal	detectors,	465
Thermal	energy,	71,	80
Thermal	expansion,	62
Thin-film	hard	disk,	517
Thin-film	transistors	(TFTs),	33
Threading	dislocations,	29
Threshold	voltage,	233
Transistors,	178
bipolar	junction,	212–224
operating	modes,	219
thin	film,	33

Transition	elements,	73,	465
Transmission	electron	microscopy	(TEM),	250

U
Ultimate	efficiency	(UE),	385
Unipolar	device,	225
Unit	cell,	1

V
Vacancy,	24
Valence	band	edge,	89
Valence	electrons,	74,	93
van	der	Waals	bond,	6
Vector	diagram,	283
Vertical	recombination,	101
Vibrational	polarization,	262–264
Volume	resistivity,	44

W
Wave	vector,	95–97,	100,	105–107,	308,	336
Wearable	electronics,	6
Weiss	domain,	409
Work	function,	82



Wurtzite	structure,	21

Y
Yield	stress,	32
Young’s	modulus,	32,	251
Yttria-stabilized	zirconia	(YSZ),	27,	55

Z
Zener	effect,	184
Zener	tunneling	mechanism,	184
Zinc	blende	structure,	19–21
Zirconia	oxygen	sensor,	25,	28
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